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n X.

Unit 2

EXPONENTS AND LOGARITHMS

2.01 Positive real integers as exponents

Recursive definition

Addition rule for exponents, induction proof
Multiplication rule for exponents, induction proof
Powers of products, induction proof

2.0 2 The real integer 0^ a^^ an exponent

Recursive definition for non-negative integral exponents
Induction proofs of exponent theorems

2.0 3 Negative real integers as exponents

Recursive definition for all integral exponents
Induction proofs of exponent theorems

2.04 Scientific notation

Computation procedures

2.05 Roots of non-negative real numbers

Locus of y = X
Uniqueness of non-negative real roots - -principal root
Radicals and transforming radicals

2.06 Real rational number s as exponents

E
Defining principle for a^ , non-negative bases
Proofs of exponent theorems
Rational number exponents and negative bases

2.07 Irrational real numbers as exponents

Exponential curves, "continuity" discussion
Defining principle for a , x real
Exponent theorems
Computation using exponential curves
Exponential curve for the base 10, table of coordinates
Linear interpolation
Applications, mensuration problems

2.0 8 Logarithms

Logarithms as exponents
Common logarithms
Defining principle for log y, uniqueness
Proofs of logarithm theorems
Computations with common logarithms
Exponential equations

(continued on next page)
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students should understand the listed kinds of real numbers to the

extent that they are able to give examples of each kind. They should know

that the integral real numbers,

---, -3, -Z, -1, 0, +1, +2, +3, ---

form a subset of the real numbers (and that the integer is neither positive

nor negative). They should know that the rational real numbers are those

numbers which are quotients of integral real numbers, and that these

include the integi ".1 real numbers. Thus :

3 = y, '^ " -f' ° " T' ^^^'

Irrational real numbers are real numbers which, like \fZ and rr , are not

quotients of real integers. An irrational number is, also, not a quotient

of rational numbers.

Review the meaning of the word 'power' given in the Review Exercises

of Unit 1, THIRD COURSE. A power is a number; it has an exponent which

is a number and it has a base which is also a number. An exponential, on

the other hand, is a name for a power; an exponential contains an exponent

symbol and a base symbol. It is not the case that every name for a power

contains an exponent symbol and a base symbol. For example, '8 ' is an

exponential which is a naxne for the second power of 8. The symbol '64'

is another name for this power, but this name does not contain an exponent

symbol nor does it contain a base symbol.

T. C. lA Third Course, Unit 2



[2.01] [2-1]

You know that when an exponent is a counting number, you can
3

interpret an exponential like '4 ' as '4 X 4 X 4'. That is, such an

exponential is a name of the product of "4 taken as a factor 3 times".

However, there is no similar interpretation for exponentials such as:

-2 .0

j.

.2 .'v/2

For example, what could it mean to "take 3 as a factor y times"?

In this unit we shall extend the definition of exponentials to include cases

in which the exponents are real numbers of the following kinds:

positive integers

zero

negative integers

rational numbers

and

irrational numbers.

In nnost cases we shall give recursive definitions; you will then use

these definitions and mathematical induction to prove theorems about

operating with such powers.

2,01 Positive real integers . --As you might guess, the recursive defi-

nition for powers with positive integral exponents is just like the one

you constructed in Exercise 7 on page 1-53 of Unit 1.

For every real nuinber a,

1
a = a

and, for every integer x > 0,

x+ 1
a =

X
a • a.

UICSM-2-56, Third Course
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Hence, in view of (a) and (b), it follows from the principle of

mathematical induction for positive (real) integers that the

property in question holds for all positive integers.

vO vl^ vl^
'I- 'p '1^

The theorem in Exercise 3 can be generalized to:

For every real number a, and

for every positive integer x,

, .Zx - 1 . 2x - 1.
(-a) = -(a ).

T. C. 2D Third Course, Unit 2
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3. The property is that expressed by :

1
(-2)

(a) 1 has the property .

2 • 1 - 1 1

i-Zr = (-2)'

"(2'
- L

-(a^-'-'l
1.

-(2') = -(2) = -2

(b) The property is hereditary .

Suppose that, for a given integer k > 0,

,2k - 1

(-2)

Then, for that k,

(.2)2(k+l)-l

(z^^-S.

(-2)

(-2)

2k + 2 - 1

2k + 1

= (-2)^^- (-2)

= [(-2)
2k- 1

(-2)] • (-2)

recursive
definition

(-2)
2k- 1

"(2

[(2

2k- L

2k- 1

- -[2^^ • 2]

4 [inductive hypothesis]

2) • 2]

recursive definition

.(,2(k+l)-l^_

2k- 1

T. C. 2C

So, for every integer k > 0, if (-2)

then(-2)2<^+i)-^ = -(2^(^+^)-V

(continued on T . C. 2D)

Third Course, Unit 2
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Remind students that in any proof using mathematical induction

they must be prepared to state which principle of mathematical

induction they are using.

1. The property is that expressed by:

0" • =0.

By the recursive definition, = 0.

(a) 1 has the property

By the recursiA

(b) The property is hereditary .

Suppose that, for a given integer k > 0, =0.

Then, for that k,

k + 1 k=0-0 [recursive definition]

= 0.

k k + 1

So, for every integer k > 0, if =0 then =0.

Hence, in view of (a) and (b), it follows from the principle of

mathematical induction for positive (real) integers that the

property in question holds for all positive integers.

For every integer x > 0,

(-l)-+2 = (-1)^-^^. (-1)

= [(-if • (-1)] • (-1)

- (-if [(-1) • (-1)]

= (-if- [+1]

[Students may give an inductive proof.]

(continued on T. C. 2C)

^- ^- 2^ Third Course, Unit 2
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2
The step from '1 • 1' to '1 • 1' is justified by the inductive hypo-

thesis '1 =1'. In reaching the conclusion in this proof ask the students

to state the principle of mathematical induction involved. It is the prin-

ciple of mathematical induction for the positive real integers.

Exercises.

A- Be sure that students actually use the recursive definition given

on page Z-1 to handle each of the exercises in Part A.

1. 4^ - 4^ • 4 = (4^ • 4) • 4 = (4 • 4) • 4

Z. 8"* = 8^ • 8 = (8^ • 8) • 8 = [{8^ • 8) • 8] • 8 - [(8 • 8) • 8] • 8

3Point out to students that they can assert that 4 = 4 • 4 • 4 because

the associative principle for multiplication permits them to assert

that (4 • 4) • 4 = 4- (4 • 4).

vi^ ^r, vi^W '1^ '1^

(continued on T. C. 2B)

T. C. 2A Third Course, Unit 2
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As an example of how this recursive definition can be used we

shall prove the following theorem:

For every integer x > 0, 1 =1.

We need a principle of mathematical induction. Since the set in queS'

tion is the set of positive integers, the principle we shall use is:

Every property of positive integers

which holds for +1 and is hereditary

holds for every positive integer.

Proof:

(a) 1 has the property .

1 = 1 by the recursive definition.

(b) The property is hereditary .

We want to prove that for every integer z > 0, if

z z + 1
1 =1 then 1 =1. By the recursive definition,

for every integer z > 0,

jZ+1
^

jZ
. 1

= 1-1 [Why?]

= 1

Thus, it follows from (a) and (b) and the principle of mathe-

matical induction that for every integer x > 0, 1 =1.

EXERCISES

A. Use the recursive definition to prove each of the following.

1. 4^ = (4 • 4) • 4 2. 8^ = [(8 • 8) • 8] • 8

B. Use the recursive definition (and matheinatical induction when

necessary) to prove each of the following:

1. For every integer x > 0, = 0.

X + 2 X
2. For every integer x > 0, (-1) = (-1) •

3. For every integer x > 0, (-2) = -{2 ).

UICSM-2-56, Third Course
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For every integer x > 0,

for every integer y > 0, and

for every real number a,

X y x+ ya - a' = a '

This is, of course, merely a re-wording of the boxed theorem on page 2-3.

T. C. 3B Third Course, Unit 2
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B. 5. Using the theorem in Exercise 2 of Part B we have

4 3
(-1) X (-1) 1)^ X (-1)^

1)^ X (-1)

1)^

-1)

7. Using the theorem in Exercise 1 of Part B we have

3 5
X

8, For every real number k.

3 2 1
k^ X k^ X k^

= 0X0
=

8

k^ X (k^ • k) X k

(k^ X k) X k X k

k"* X k X k

k^ X k

, 6

vl^ O^ vl^
'1^ '1^ 'r

Notice that the inductive proof for the theorem in Part C is carried

out "with respect to 'y' ". An inductive proof could also be carried

out with respect to 'x'. The latter would, strictly speaking, prove the

theorem;

T. C. 3A

(continued on T. C. 3B)

Third Course, Unit Z
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Sample . 5X5 =5

Solution . 5^ X 5^ = (5^ X 5) X 5^

= (5 X 5) X 5"^

= 5 X (5 X 5^)

= 5 X (5^ X 5)

= 5X5^
5

= 5X5
= 5

4.

6.

8.

[Note: There are other proofs for the Sample.]

4^ X 4^ = 4^

? 12X2= 16

5. (-1)^ X (-1)^

7. 0^ X 0^ = 0^

"^ ? 1 A
For every real number k, k Xk Xk =k.

(-1)

C. Exercises 4-8 of Part B suggest the following theorem:

For e\ery integer y > 0,

for every integer x > 0, and

for every real number a,

X y x + ya • a' = a ' .

We use mathematical induction to prove this theorem. Note that

the property in question is that expressed by:

for every integer x > and for

every real number a,

X
a • a = a

x+ .

Proof:

(a) The property holds for 1 .

For every integer x > and for every a,

X 1
a • a

X
a • a

= a
x+ 1

UICSM-2-56, Third Course
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(b) The property is hereditary .

For every integer x > 0, for every a, and for

every integer z > 0,

X + z

^, X z + 1 X
then a • a -a. (a • a)

= a

(a • a )
•

X + z
a • a

(x + z) + 1

[Why?]

= a
x + (z + 1)

Hence, by (a), (b), and the principle of mathematical induction

(for positive integers), the theorem follows.

This theorem we have proven is a case of what is often called

the addition rule for exponents which may be stated as follows:

The product of two powers of the same

base is a power of that base with expo-

nent equal to the sum o f the exponents

of th e given powers.

[Notice that this statement does not restrict the kind of number used

as exponent. We have only proved that the rule is valid in the case

of positive integral exponents. Later, we shall prove that the rule

applies to other kinds of exponents. ] Note well in the statement of

the addition rule for exponents the phrases the same base and the

product.

Here is an instance of the addition rule for exponents:

5 7 123X3 = 3 ,

Notice that

3^ X z"^ / 6^^

and 3^ + 3^ / 3^^,

UICSM-2-56, Third Course
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25. (x + 3)^ 26. (y + 1)^

27. (z - 2)^ 28. (a + b)^

29. (x ^ l)^(x + 5)^ 30. (a + 4)'^(a + 1)^, or: (a + l)^(a + 4)*^

31. (3y^ + y + 7)^ 32. [(a + h)^f

33. (2x^ + 9x + 4)^^

34. In this exercise students need to use the generalization of the

theorem in Exercise 3 of Part B. This generalization implies

the following

:

For every a and b,

(a - b)^ = -{b - a)^

If students have not yet seen the generalization of the theorem

in Exercise 3 they should do so at this time.

35. This exercise needs to be handled in the same manner as Ex-

ercise 34.

36. Be sure that students understand the need for the restriction

on the variable 'x'.

T. C. 5B Third Course, Unit 2
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z.
a + 2

4.
^a + b

6.
a b

X y

8. a'

10. 1

12. 17

14.
^a + b + 7

{Cont.

)

1. 5«

3. S^^"^

c a + b
5. X

7. 19^ + b^^

5 4
9. a + a

11. 2

a + b + c ,. _a + b + 7 a + 7 + b
13.

g'l-r'J-rv.
j^^ 2 , or: 3 , etc.

^5 +ba + c ,/ cbad
15. 4 , X 16. X y z a

17. 6^ + ^ + ^^

18. x^^

19. a"^^. b^-"^ 20. t" + ^ r^- s^

21. Some students may give :

c +d c +d
X y

as an answer rather than:

c + d
(xy)

Of course, those students would be assuming a theorem that

is yet to be proved (see page 2-7).

-,-, /u\X + y ->-> a + b + c+d
22. (abc) ' 23. x

24. Be sure that students recognize the difference in handling ex-

pressions such as

:

2
aa

and:

(aa)^.

(continued on T . C. 5B)

T. C. 5A Third Course, Unit 2
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Simplify each of the following. [The domain of each exponent pro-

numeral is the set of positive integers.]

1.

3. 4. b^e'^

_ a b
5. XX , a b

6. X y

7. 19^19*^19*^ o 2 3 4
8. a a a

2 3, 4
a a + a 10. 1364^25^321

11. 1^^^ + 1^ 12. 3^ + 2^

13.
a b c

s s s 14. 3^3^^

^ r: ^5 a .b c
15. 4 X 4 X , / c b a d

lb. X y z a

17. 6V6^ , Q a a a
lb. XXX

in Xuyu2 6
19. a b^b a 20 . t r t s

21. (xy)^(xy)^ 22. (abc)^(abc)'*'

T_ a + bc + d
Zi. x X

-,. 2 X y + z
24. aa a a'

25. (x + 3)^(x + 3)^ 26. (y+l)^(y+l)^

27. (z - 2)(z - 2)- 28. (a + b)^(a + b)(a + b)^

29. (x + l)^(x + 5)^ 30. (a + 4)^(a + l)(a + 4)^(a + 1)^

8,2 8,7
31. (3y + y + 7) (3y + y + 7) 32. [(a + b) ] • [(b + a) ]

33. (2x^ + 9x + 4)^(2x^ + 9x + 4)^(2x + l)(x + 4)

34. (a - b)^b - a)^ 35. (3x - 2y)^(2y - 3x)^

36.
1

2
1

X + 1 X + 1

-,7

, [x / -1] 37.
'k + 5' " k +

5"

m - 1 m - 1
. [m / 1]

(continued on next page)

UlCSM-2-56, Third Course
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C. (Cont.)

38. If a student gives as his simple expression: —g-
, point out to

X

him that he is making use of a theorem which has not yet been

proved.

41. Be sure students understand why the restriction:

xy /

is equivalent to the restriction:

X / and y / 0.

^1^ ..I, o^
•"1^ -f '4^

D. Although such proofs are not in accord with the instructions for

this part, students should recognize that the statement in Exer-

cise 2 can be proved by applying the theorem given at the top of

page 2-2 and that the statement in Exercise 3 can be proved by

applying the theorem in Exercise 1 of Part B.

6. For every t, and for every integer x > 0,

(t'')^ = (t"")^ • t"^

= [(t'')^ . t-^] • t

^ (t^)^ . t^^

= [(t"")^ • t'']t^''

= t^ • t^^

4x

X

T. C. 6A Third Course, Unit 2
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38.

40,

X

2r

X

3r

X . [^/ 0]

4 . [a ^ 0]

39.

41.

- + -
. [x 7^ 0]

- 5 6
3x y 3 X y

D. Use the recursive definition and the theorem in Part C to prove

each of the follo\wing.

Sample. (5^)' = 5*)

Solution

.

(5^)' = ^sY' 1

= ISY . 5^

= [(5^)' • 5^1

— (S^ • 5^1

= 5

1.

3.

5.

6.

(8^)-^

ioY - 0^'

3 4
For every t, (t )

12

2. HY = 1^°

4. [(-9)^]'' = (-9)'^

X 4 4xFor every t, and for every integer x > 0, {t ) = t

E. The exercises in Part D suggest the following theorem:

1

For every integer y > 0, for

ever y integer x > 0, and for

ever y real number a

(a^)y = a^y.

1

UICSM-2-56, Third Course
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Before we can use the recursive definition in the proof of the

theorem in Part E, we nnust be sure that

For every integer x > 0, and for every

real nunnber a,

X . 1 ,a IS a real number.

We can prove the boxed statement by the principle of mathematical

induction for the set of positive integers. We also need to assume

that the set of real numbers is closed under multiplication, that is,

the product of a real number by a real number is a real number.

Proof :

(a) 1 has the property .

For every real number a,

a = a and a is a real number.

(b) The property is hereditary .

For every real number a and for every integer z > 0,

z + 1 z
r • , r. • -1a = a • a [recursive definition]

a is a real number [inductive hypothesis]

a is a real number

a • a is a real number [closure under
multiplication]

Hence, it follows from (a) and (b) and the principle of mathematical
induction for the set of positive integers that

For every integer x > 0, and for every

real number a,

a IS a real number.

T. C. 7C Supplement Third Course, Unit 2
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(a)
6

y (b) 3^ (c)
4

X (d) 2 , or : 16

(e) (3a)^ (f) (xy)^° (g) (6 +a)^ (h) (^^)'^

F. 5. Again point out that the exponent symbol affects only that to~
4

which it is directly attached. In other words, contrast 'I6a '

4
with '(16a) '. Compare this with the case of the ' - ' in '-Z • 3'.

The latter symbol is taken as a name for the product of -2 and

3.

vl^ v'^ xl^
'1^ 'l^ '1^

G. [We give a sketch of the proof.]

(a) (ab) = ab = a b

(b) (ab)''^^ = (ab)''{ab)

X X
= (a b )(ab) [inductive hypothesis]

= (a''a)(b''b)

X + 1 , X + 1
= a b

T. C. 7B Third Course, Unit 2
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Property is that expressed by:

for every integer x > 0, and

for every real number a,

, X. . . . x • . . .

(a )
= a

(a) 1 has the property .

For every integer x > 0, and for every real number a,

(a''^) = aL^ [recursive definition]

= a' [principle of 1]

(b) The property is hereditary .

Suppose that, for a given integer k > 0,

, x.k
(a ) =

xk
a

Then, for that k.

, x.k + 1
(a )

= (a ) • a

=
xk X

a • a

=
xk + X

a

— ^X(k4l)_

[recursive definition]

[addition rule]

5C Ic 5ck.

So, for every integer k > 0, if (a ) = a then

, x.k+ 1 x(k+ 1)
(a )

= a

Hence, in view of (a) and (b), it follows from the principle of

mathematical induction for positive integers that the property

in question holds for every positive integer.

2. [Forestall attempts to give an answer such as 'x y * for

Exercise (f). This answer depends on the theorem to be proved

in Part G.
]

(continued on T. C. 7B)

T. C. 7A Third Course, Unit 2
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1. Use the proof in Part C as a model in proving the above theorem.

This theorem is a case of what is often called the multipli-

cation rule for exponents .

2. Use the multiplication rule for exponents to simplify each of

the following.

(a) (y^^
7 1

(b) OV (c) (x^)^ (d) (2^)^

(e) [(3a)^]^ (f) [(xy)^]^ (g) [(6 + a)^]^ (h) [(4~Z)^f

Use the recursive definition and the addition rule for exponents to

prove each of the following.

3 3Sample . (2-5) =2
3

Solution. (2 - 5) (2 • 5)" • (2 • 5)

[(2 5)^ (2 • 5)] • (2 • 5)

[(2 • 5) • (2 • 5)] . (2 • 5)

(2 2 • 2) . (5 . 5 5)

-.3 .3

1. (3 • 8)^ = 3^

3 3 3
(14) =7-2

For every real number a, (2a)' = I6a

2. [4(-3)]^ = 4^(-3)^

4. iisTZ)^ = 7r^(N/2)^

4

G. Use mathematical induction to prove the theorem suggested by the

exercises in Part F.

For every integer x > 0,

and for all real numbers

a a.nd b,

(ab)^ = aV.

UICSM-2-56, Third Course
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H.

(2X4X7)-^ = {(2 X 4) X 7)^

3 3
= (2 X 4) X 7

3 3 3
=: 2 X 4 X 7 .

Of course, after a small amount of practice, students will be able

to omit the intermediate steps.

vi, vi^ vr^

1. 5u5 5a b c 2. ioy z 3. a (m - 1)

4. (X + l)^(x + 2)^ 5.
m, nn m .mabed 6.

4 8 10
X y z

7.
-z 2z, xz 2vz
3 a b c ^ 8. lOab^c^ 9. 19C 3 3

1257r r

T- C. 8B Third Course, Unit 2
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(Cont. )

The distributive principle with which the students are already

acquainted is called the distributive principle for multiplication

over addition . An instance of a "distributive principle for expo-

nentiation over addition" is:

2 2 2
(3 + Zf = 3'^ + Z^ .

Obviously, this statement is false. However, it illustrates an

error comnionly committed by students who, apparently, deduce

such a principle from the distributive principle for multiplication

over addition and the distributive principle for exponentiation over

multiplication .

5 2 9
In simplifying such an expression as '3 • 3 • 3 ' it should

5 2 9
be considered as an abbreviation for '{3 • 3 )

• 3 . Thus,

3^ • 3^ • 3^ = (3^ • 3^) • 3^

7 9
= 3-3^

= 3^^

Similarly,

^5+2+9 ^ 2(5 + 2) + 9

- 3^-^^. 3^

- 3^. 3^. 3^

(continued on T . C. 8B)

^- C. 8A Third Course, Unit 2
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This theorem could be called the distributive principle for exponen-

tiation over multiplication. Do you see why this name could be

appropriate ? Does the "distributive principle for exponentiation

over addition" hold?

H. Give equivalent expressions which contain fewer grouping symbols.

Sample , (x y z )

Solution . For every x, y, and z,

, 2 3 4,5 ,2 3,5, 4,5
(x y z ) = (x y ) (z )

,
2 5, 3,5, 4,5

= (x ) (y ) (z )

10 15 20
= x y z

[In practice you can omit inost of the steps.]

1. (abc)^ 2. (2yz)^ 3. [a(m - 1)]^

4. [(x + l)(x + 2)]^ 5. (abcd)^ 6. (x^y^z^)^

7. (3a^b''c^^)^ 8. (lOab^c^^ 9. (57rr)-^

I. Simplify. [Leave answers in exponential form.]

3 5 4
Sample j^. 2 4 2

3 5 4 7 5
Solution . 2 4 2 = 2 4

=
2'^2^°

Sample 2. 3^2'^ 30
'^

2 3 4 2 3 4
Solution . 3 2^30 = 3 2 (2 •3-5)

= 3^232SV

= 2^S^

UICSM-2-56, Third Course







3^ 2. 2^.5^ or :
10^- z' 3. 33. 58

2^^. 3^ 5. 2«. 3^ •17^ 6.
,m + 2. 32

12"^. ^2171 _m
or : 2 '3 8.

^3m + 4
• 3"^ + 4

9.
,5 ,6 9
2 • 3 • X

^Sm. _m m m
3 • X y 11.

^,^jm(p + m)

3^° 13. 320 14. 7^

3^2. ,18 ,12
2 , or : 6 z' 16.

6 15
X y

2
3°

18.
4 8 12

X y z 19.
3m 3m

y m
tr(rt) ^t(rt)

21. 3'' 22. 5'2- 2'^

5^0. z'' 24. ,32. 3I8
25. a'°b^

14 7 5
X y z 27.

am T b
X

)

am + c

1.

4.

7.

10.

12.

15.

17.

20.

23.

26.

,„ a + 2b a + 2b a + 2b ^„ , , 10 928. X y z 29. (x + 1) y

30. x^S^^ 31. (1 + 1)^^ + 3
32. y2^V" + "

33. (1 - x)-^^"^^
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1. 3h^

4. 48^2^

7.
2""6"^

[2.02] [2-9]

2. (10)^(20)^ 3. 15^ • 3 • 5^

5. 17^51^6^2^ 6. 2"^6^

8.
12"'2"^6^ 9. {2x)^(6x)^(3x)^

10. (16x) (48y) 11. (x^2 ) (x 2^) 12. (3 )

13. (5^)^ 14. (7^)^ 15. (3^2^)^

16. (x^y^)^ 17. (2^4^2^)^ 18. (xy^z^)^

19. (ym)^"^ 20. (t'"s^)''^ 21. (3^3^)^

22. (5^20^)^ 23. (200^50^)^ 24. (

3'^1 2^)^(4^6^)^

25. (a^b)^(ba^)^ 26. (x^y)^(yz)^{x^z )^ 27. (x^y^)"^xV

28. (xyz)^x^y^z^)^ 29. [(x + 1) ^y^]^(x + 1)\^

30. [(x^^(y^)^]^ 31. (t + l)*"^t + 1)' + ^

32. (y^z^)" • y^^ • z" 33. ( 1 - x)^ + \x - 1)^^ + ^

2.02 The real integer as an exponent. -In the exercises of the

preceding section the following three theorems were proved:

(I) For every integer y > 0,

for every integer x > 0, and

for every real number a,

X y x + ya • a' = a '

.

(II) For every integer y > 0,

for every integer .% > 0, and

for every real number a,

, x.y xy
(a )^ ^ a. ^

.

(Ill) For every integer x > 0, and

for all real numbers a and b,

(ab)'"" = aV.

UICSM-2-56, Third Course
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Line 12.

The word 'domain' may be new to THIRD COURSE students. De-

fine it for them as follows :

The domain of a pronvimeral

(or numerical variable) is a

set of numbers. The pronu-

meral holds a place for a name

of anv one of these numbers.

The reason why we use the old recursive definition to provide a

clue for a new recursive definition is that we want the old definition

to be "included" in the new one.

Equation 5 does not give us a clue to the definition of '0 * because

equation 5 is satisfied when =0,0 =9,0 - Zw , etc.

T- C. lOA Third Course, Unit 2

I



[2.02] [2-10]

In proving these theorems we used the principle of mathematical in-

duction for positive integers, and the following recursive definition:

For every real number a,

1
a = a

and, for every integer x > 0,

x+ 1 X
a = a a.

The next step in our program of discussing all real number

exponents is to define exponentials such as :

2° (^)° (-7)° .° (^2)° 0°

It would be convenient if the new definition could enable us to prove

new theorems very much like (I), (II), and (III) above in which the

domain of 'x' and of 'y' includes the integer as well as the positive

integers. A clue to the construction of such a definition can be found

by considering the recursive definition given above.

That definition tells us that for every a and for every integer

X > 0.

/ 1 \ X -r 1 X
(1) a = a -a.

If we replace 'x' by '0' we get the equation:

,,, + 1
(2) a = a • a.

Since a = a = a, equation (2) is equi\^lent to:

(3) a = a -a.

For every a / 0, equation (3) holds if and only if

(4) a° = 1.

For a = 0, equation (3) becomes:

(5) = 0° • 0.

..0.Clearly, equation (5) does not give us a clue to a definition of '0

[why?]. However, if we consider the addition rule for exponents

[See page 2-4] for the case in which the base is and each exponent

is 0, we get

:

0° • 0° . 0°+°

UICSM-2-56, Third Course
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In defining '0 ' we depart from the treatment usually found in con-

ventional textbooks. There, '0 ' is not defined.

Students should compare this new recursive definition with the old

one as given on page Z-10. It is easy to derive from this new definition

1 X + 1 X
the theorem that for every a, a = a by replacing 'x' in 'a = a • a'

by '0'. There may be a tendency for students to feel that such a proof in-

volves a certain amount of circularity in view of equation 2 on page 2-10,

However, the work on page 2-10 was largely heuristic, that is, suggestive

of the form of the new definition. Actually, we could have stated the new

definition without any build-up at all.

A. The proofs of the theorems similar to theorems 1, 2 and 3 are

entirely like those given for the older theorems except that, in-

stead of demonstrating that 1 has the property in question, one

must demonstrate that has the property in question. Students

will not suffer fronn giving new proofs in spite of the fact that such

proofs involve repetition of earlier ones.

B. 1. 1 2. 3. 4

4. 5. 1 6. -1

T- C. UA Third Course, Unit 2



[2.02] [2-11]

(6) 0° . 0° = 0°

1£ (6) is to be true, then '0 ' must be a name for a root of the equation;

(7) p • p = p

Equation (7) has the roots and 1. Hence, if (6) is to be true, '0 '

must be a name for or a name for 1. It would be more convenient

to say that =1, for this alternative would result in a single defini-

tion for powers with exponent.

We now state a nev; recursive definition.

For every real nuniber a.

a = 1

and. for ever y integer X > 0,

x+ 1
a = a.

X
• a.

[Note: You can derive from the above definition the theorem that,

for every a, a = a. Do it.]

EXERCISES

A. Refer to theorems (I), (II), and (III) on page 2-9. State new

theorems similar to these but in which the donnain of 'x' and

of 'y' is the set of non-negative integers. Then use the new

recursive definition and the principle of mathematical induc-

tion for non-negative integers to prove the new theorems.

B. Use the theorems you have just proved and the recursive defi-

nition to write the simplest non- exponential names for the powers

listed below.

1.

4.

,0
2.

5. (-6^

3.

6.

.0

(-6)

(continued on next page)
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B. (Cont.)

7. -1

10. 1

13. 1

16. 1

19. 1

C. 1

X

4. 1

7. 1

8. 1

11. 1

14. 1

17. 1

20. 1

2. a

5. 1

8. 1

9.

12.

15.

18.

21.

3.

6.

9.

T. C. 12A Third Course, Unit 2



[2.03] [2-12]

7. (+6)^

C.

10.
r 163]
. 497

_

13. 508°

16. (3°)^

19. (15 - 5

Simplify.

, X
1. a • a

4. (a )

14.

17.

20.

(3-9)

oO

''
•::o

(5 • sr

(3Y

y
2. a

5. (a )

12.

15.

18.

21.

(Stt + 2)'

1
°

4

5O
.
5O

(3°)°

(6 - 9)

3. a • a

6. (a )

(ab)^ 8. (-ab) -(ab)'

2.03 Negative real integers as exponents. --Our experience with

constructing a recursive definition to include the case of the expo-

nent suggests that we use a similar approach in deciding upon a defi-

nition of exponentials which will include the case of a negative integer

exponent.

As before, we want the equation:

, , . x+ 1 X
(1) a = a • a

to hold for every a and for every integer x. Let us replace in (1)

the symbol 'x' by '-1'. We get:

-1 + 1 -1
a = a • a

or

or

-1
a = a -a

1

(2) 1 =

Now, (2) holds for every a /^ if and only if

(3) a = -.

In case a = 0, equation (2) becomes:

(4) 1
1
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stress line three: Students should realize that we do not define

the expression 'O' because it would lead to a contradication of the

principle of 0. [See equation (5).] And not because it is too difficult

to do so.

v'^ ^'^ v'^
,^> ^,x -•,.

Instead of the boxed recursive definition we could have given as

an alternative, explicit, defining principle :

For every a not equal to 0,

and every integer n < 0,

a" = -i-
-n

a

Our reasons for not doing this are that

(1) it necessitates considering numerous cases in proving theorems

,x > , y <
[for example : (a^)^ = a^"'^ Jx<0, y>0],

Ix < 0, y <

(2) we prefer to emphasize mathematical induction proofs and

recursive definitions are useful in such proofs,

(3) it is more aesthetically satisfying to stick to one kind of defi-

nition.

Stress the fact that exponentials with base and negative exponents are

not defined.

Since, for the set of integers < 0, the follower of x is x - 1, it is

natural to state the second part of the recursive definition as we have

done.

T. C. 13A Third Course, Unit Z



[2.03] [2-13]

If (4) is to be true, then '0 ' must be a name for a root of the equation:

(5) 1 = p • .

Clearly, (5) has no roots. Hence, we do not define '0

Now, let us replace in (1) the symbol 'x' by '-2':

-2+1 -2
a = a • a

or

:

(6) a'
-2

a • a

If equation (3) holds for every a. j^ then equation (6) holds for every

a / if and only if

(7) a = -2 .

a

Similarly, we can show that, for every a 7^ 0,

3 1

(8) a

/ -4 -5We could consider, for every a / 0, powers such as a , a ,

if equation (7) holds for every a. ^ .

a , . . . . However, the few cases already considered suggest the

following recursive definition:

I
1

For every real number a /

-1 1
a = —

a

and, for every integer x < 0,

X - 1 X 1
a = a • — .

a
I J

We can use this definition to show, for example, that, for every

-4 1

UICSM-2-56, Third Course





.iU {: .

^2-14]



Note that if we include in our new recursive definition *for every

a / 0, a =1' and {*) then we can derive:

For every a ^ 0, a = — .

a

This derivation is given at the bottom of page 14. The derivation de-

monstrates that the boxed recursive definition on page Z-15 does, in-

deed, include the recursive definitions on pages 2-13 and 2-11.

T- C. 14A Third Course, Unit 2



[2.03] [2-14]

Proof :

For every a / 0,

a = a •
— [since -4 = -3 - 1]

,
-2 1 . 1

= (a . _ )
. _

a ' a

-2 1
= a

2
a

,-11, 1

-1 1

a

a 3
a

4

We seek, now, a recursive definition which will cover all integer

exponents. The foregoing definition covers negative integer exponents,

and the one on page 2-11 covers non -negative integer exponents. If

we restrict ourselves to non-zero bases (a / 0) then the second part

of each definition can be derived from:

(*) for every integer x,

x+ 1 x
a = a • a

Also, if, for every a / 0, a =1, then (='•-') gives us:

-1 + 1 -1
a = a • a

or
-1

a = a

or

:

1 = a-1

or :

-1 1
a = —

a
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[2.03] [2-15]

Thus, the following recursive definition "combines" the two earlier

ones and covers the case of base:

For every real

a =

num

1,

ber a / 0,

and, for every

x+ 1
a =

integ

X
a •

er

a

X,

for every integ

0^ =

sr X

0;

> 0,

and

0° = 1.

EXERCISES

A. Use the foregoing recursive definition for integral powers to

prove each of the following statements.

Sample . 6 = —j

Solution. In 'a = a • a' replace 'x' by '-2' and 'a'

by '6'. Then we have :

2+ 1 6-^- 6

or

(1) 6 6-^- 6

Now, we use the recursive definition to find the

value of '6 '

:

and

Hence,

6-^ + ^ =
6-^-

6,

1.

6"^
• 6,

or

(2) 6
-1

6
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So, from (1) and (2) we get:

^.6-^.6

or ;

-2 1

1. (-3)'

(-3)-

2. 7

3. Why can't you apply the recursive definition to prove that

0-^=4?
0^

You have proved the addition rule for exponents in the case of

non-negative integral exponents [Part A on page 2-11]. Using

the new recursive definition we shall now prove this rule for

all integral powers.

F or every real number a / 0,

and for all integers x and y.

X
a • a^ = a^ + y

•

For all non -negative integers

X and y.

0^ 0^ ^ 0^+y
•

We use mathematical induction to prove the first statement

in the box. Note that the property in question is expressed by:

for every integer x and

for every real number a /^ 0,

X x +

UICSM-2-56, Third Course
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solutions to the exercises in Part E and Part F on pages 2-19 and

2-20, respectively.

Note that in the given proof of (b^ ) the replacement of 'a
..y-1.

y 1

ir

is justified by the recursive definition:

_ . ^ X + 1 X
For every integer x, a = a • a.

by

Hence, for the integer y in question,

^y =
^(y-i) + i

= a

Since a / 0, it follows that

y-1
.

a^-l = aV. i.
a

Also, as in the proof of (b ), the replacement of 'a^ • a^' by 'a^"*"^'

is justified by the inductive hypothesis.

T. C. I7B Third Course, Unit 2
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Proofs given for (b ) and (b ) are naore abbreviated than those

given in Unit 1 of Third Course, Here is a fuller treatment for (bj) :

Suppose that, for a given integer y > 0,

a^ • a^ = a^^^. [Inductive hypothesis]

By the recursive definition,

X y + 1 X, y .

a • a' = a (a' • a)

= (a^ • a^) • a.

So, by the inductive hypothesis, for the number

y in question,

X y + 1 X + ya • a'^ = a ' • a.

Hence, by the recursive definition,

a''- a^^^ = Jx + y) + l ^ ^x + (y+l)

r^i r r ^f>.fXyx + yTherefore, for every y > 0, if a • a' = a '

^, X y + 1 x + {y + 1)
then a • a^ = a ^^ '.

A similar development can be given for (b^^).

The abbreviated proofs given in the text may lead students

to give the very theorem which is to be proved as a reason for going

from the expression:

to

(a • a^')

I X + y.
(a y) • a .

They should, instead, cite the inductive hypothesis as a reason. Check
your students' understanding of this point when you go over their

(continued on T. C. 17B)
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We shall use two principles of mathematical induction.

(I) Every property of integers > which holds for and

is hereditary [y's follower is y + 1] holds for every

integer > .

(II) Every property of integers < which holds for and

is hereditary [y's follower is y - 1] holds for every

integer < .

Proof:

(a) has the property.

X X ,

a • a = a • 1

X
= a

x +

(b^) The property is hereditary for integers > 0.

We want to prove that for every integer y > 0,

.^x y x+y ^, X y+1 x+(y+l)
if a • a-' = a ' then a • a-' -a. ' ' .

x y+1 X / y Xa • a-' = a • {a.' a)

= {a a^) • a

= (a'''*'^) • a [Why?]

^
^(x + y)+ 1

_ x + (y+l)

(b )The property is hereditary for integers < 0.
II

We want to prove that, for every y < 0,

.^ x y x + y ., X y-1 x+(y-l)
if a • a' = a •' then a • a' = a '

X y-1 X , y 1 .

a • a-' = a. ia.' • —)
a

/
X Yx 1= (a • a^) • -

^
' a

, X + y. 1
= a ) • —

^
' a

,
3,(x + y)-l
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The second statement in the box can be proved as follows :

For every integer x > 0, if y >

then 0^ • 0^ = 0^ • = ^ 0^ ^ "^',

while 0^^ • 0® = 0* • 1 = o'^ = 0^^°.

•Xr J, v»^
"f '1^ '4-

In s implif^'in g the expressior^ in Sample 2 students may want to

1 -1 7

assert that —— = 5 Although this assertion is correct, it needs

to be proved. The proof involves nothing more than a step very much

like that taken in the next to the last line of the Solution. In Part D on

page 2-19, the stvident is asked to prove two theorems the first of which

covers the case in question here. L«t him practice the device indicated

in this Solution instead of using the theorems of Part D without proof.
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Hence, by principle I i: ::11:.:. s irzrs, a., a.-- -. .z.^-. ;:r i . ery

a ;^ 0, for every integer x, =-d f-r every ir.'ezer y >^ -.

:•: V _ X — V
5. • £. ' —5. '

.

By principle (II) i: ::..: sir :.--. = ir _ ;.. :.- ^ :or every 2. ^ Q,

for every integer x, and for every integer y < Q.

X y _ X - v
a a ' — a ' .

Therefore, since for every -..:t ;^r y, either y > C or y <0,

we have proved the first statement in :>. r ; : : ; : r. t i ; ^ 1 - . t .

The stu-denr should prove the s r : : r. i 5~a~err-=r-. m :he zcx.

C. Apply the theorem proved in Part B to simplify each of the :

ing. Leave answers in simplest exponential form.

-p -1 —

Sample I. 9~ x 9"^ X 9''

Solution .
9~ X ;

9'"

= 9-2 + 3 ^ ^-5

-J.
= 9 -

5-^ X 5-^
CKL^XipJ.C ^ .

-12

Solution.

--3
-> X 5~ ' --10

f "» T

--I2

12 --I2

UICSM-2-56. Third Course
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Then, for that y,

(a^)^ = (a^)^ • — [recursive definition]
X

a

= (a^)^ • a'^ [Ex. 1 of Part D]

I ^ • a [inductive hypothesis]= a

= a
xy - X

[addition rule]

a ^ [distributive principle]

X V XV
So, for every integer y _< 0, if (a )' = a ^ then

, X. y - 1 x( y - 1

)

(a )^ = a ^
' '.

Hence, by principle (I) it follows from (i) and (ii^) that for

every a / 0, for every integer x, and for every integer y > 0,

{a )^ = a ^
. By principle (II) it follows from (i) and (iirr) that

for every a / 0, for every integer x, and for every y < 0,

X V XV
(a ) = a ^

. Therefore, since for every integer y, either

y < or y > 0, we have proved the first statement in the box

on page 2-19.

(2) (a) For all integers x > and y > 0,

(O'')^ = 0^-0 and O"^^ = 0.

(b) For all integers x > and y = 0,

(O^)y ^ 0° = 1 and O^y = 0° = 1.

(c) For every integer y > 0,

(0°)^ = 1^ = 1 and 0°y = 0° = 1.

(d) (OV . 1° = 1 and qO^O
= 0° = 1.
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[stress that division by a number is equivalent to multiplication

by the reciprocal of that number.
]

Part E.

(1) The property in question is that expressed by:

for every integer x, and for every

real number a / 0,

, X, . . . X •
. . .

(a ) = a

(i) has the property .

X
(a ) =1 [recursive definition]

X-
a = a = 1

(ii ) The property is hereditary for integers > 0,

Suppose that, for some integer y > 0,

(a^)y = a^y.

Then for that y,

, x.y + 1 , x.y X r • , r• 1(a )' = (a j' • a [recursive definitionj

= a '^ • a [inductive hypothesis]

= a '^ [addition rule]

x( y + 1

)

r , •

,

,1= a . [distributive principle]

So, for every integer y > 0, if {a^)^ = a^^ then

(iijj) The property is hereditary for integers < 0.

Suppose that, for some integer y < 0,

(a^)y = a^y.

(continued on T . C. 19C)
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(Cont.)

^-5
1

-1-6

-6

7. 3

10. 6'

13. 7

16. x'

Part D.

20

11. 9
11

14.

17. y
-2

9. 1

12. 8^ = 8

15. TT

1. For every real number a / 0, and for every integer x.

X -X X - X ,

a -a =a ^a-^l.
X

Since a -a = 1, a / . So,

X -X
a • a _1_

X

or

Alternative Proof:

X
1 -ySince —- = a • — and, by Exercise 1, — = a. ^

,

=y ^y ' y

a^. a-y . a^ + <-y) = a^ " y.

T. C. 19A
(continued on T. C. 19B)
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-2 -3
1. 1^1^

4. X
2

-3

5 -5
2. 3X3

2

3
X

2

3

10

3. 2^ X 2"^

9

4

-6

X 9

4

15

7. 3° X 3'"^ X 3^
7 3

8. X 9. 5^ X 5'-^

10.
6^. 6-^

11,

9-^.9-^
12.

8^ .
8-"^

,10

13.
,-10

14.
3^ • 3^ 3^

3^^
-
3-^

15.

3 -7

-3 7
TT • TT

-2 5

16. \4=r. [x^O]
X X

17.

-5 -3
y y y

-2 -4
y y

. [y/o]

D. Use the addition rule for exponents to prove each of the following

theorems

.

1. For every real number a 7^ 0, and for every integer x,

a = — and a f .

X '

a

2. For every real number a ^^^ 0, and for all integers x and y,

X - y-a. ^
.

X

E. Use the two principles on page 2-17 to prove the following theorem.

For every real number a / 0,

and for all integers x and y,

(a^^)^ = a^y .

For all non -negative integers

X and y,

(o")y = o^y .

Ti T/^ trs if -) c L





^2-20]

.r



The theorem proved in Part A on page 2-11 can be stated:

For all non-zero real nunnbers

a and b, and for every integer

X > 0,

(ab)'' = aV.

Combining the theorem with the one just proved yields the first state-

ment in the box on page 2-20. [Note that 'ab / 0' is equivalent to

'a / and b / 0'. In pointing out this equivalence ask students if they

can state a single inequality which is equivalent to 'a / or b / '.

2 2
"

One such inequality is *a + b / 0'.] The second statement in the box

follows from

:

and:

For every integer x > 0, =0,

0° = 1,

T. C. 20B Third Course, Unit 2
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Part F.

Property is that expressed by:

for all non-zero real numbers a and b,

(ab)' ' = a'
'

b' .

(i) has the property .

(ab)° = 1

a b = 1 ' 1 = 1

(ii) The property is hereditary .

Suppose that, for some x < 0,

(ab)"" = aV .

Then, for that x,

X - 1 X 1
(ab) = (ab) • —r- [recursive definition]

= (ab) • - • 7-
^ ' a b

= (ab) -a • b

x.x -1,-1
r- , T- a- b • a • b [inductive hypothesis]

_X-1,X-1 r,- T- a • b [addition rule]

So, for every integer x < 0, if (ab)^ = aV then

(ab)^-^ =a^-^b^-^

Hence, by principle II, the property in question holds for all in-
tegers < 0.

(continued on T. C. 20B)
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Use principle (II) on page 2-17 to prove the following theorem.

For all non-zero real numbers

a and b, and for every integer

X < 0,

(ab)'
X, X

a b

Combine this theorem with one of the theorenns you proved in

Part A on page 2-11 to obtain the following theorem.

For all real numbers a and b such

that ab ;^0, and for every integer x,

(ab)""
X, X

= a b .

For all real numbers a and b such

that ab = 0, and for every integer

X > 0,

(ab)""
X, X

= a b .

G. Give non-exponential names for the nuinbers nanned by the follow-

ing expressions.

Sample 1

,

Solution.

-7 S 2
(3 X 3 )

(2^ X 2° X 2-^-^

(3"^ X 3^)^

4 -5-3
(2 X 2 X 2 )

[Why?]

=
3-^ X -4

(continued on next page)
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G. (Cont.)

1.
1

8
2.

4. -8 5.

7. .000 001 8.

10. 625 11.

8

25

8
1/8

6. 1

001 9. 1

12. 25

T- C. 21A Third Course, Unit 2
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[Why?]
1

3^ %3
1

81 X 8

1

648 '

, -, 30"^ X 25"^ X 28^ X iSample £. r 5 =-

10 X 15 X 14

Solution.

-3 -4 5 -3
30 X 25 X 28 X 8

10" X 15'^ X 14^

-3 2-4 2 5 3-3(2X3X5) X (5 ) X (2X7) X (2 )

(2 X 5)"^ X (3 X 5)"^ X (2 X 7)'^

(2"^ X 3"^ X 5"^) X (5"^) X (2^° X 7^) X (2"^)

(2"^ X 5'^) X (3"'^ X 5'^) X (2"^ X 7^)

2"^ X 3"^ X 5"^^ X 7^
-3 -3 -9 32X3X5X7

= 2t-2-<-2)] X 1 X 5t-ll-(-9)] X 7[^-3]

= 2 X 1 X 5'^ X 7^

2 X 7^

5
2

98
~ 25

•

1. z-^ 2.
2-3 X 2^

4. (-2)^ 5. (-2)
-3

7. 10-' 8. 10^ X 10

10.
1

5-^
11.

320

322

-3 3
3. 2+2
6. (-2)3 X (-2)-3

"^
9. (4^ X 8"^)°

12.

5-^Q

5-"

(continued on next page)
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G. (Cont.)

13. 4

18. 8

H. 1.
^m + p - q

3.
k + m , -k - m

a b

14.
27

11

17.
1

720

19.
3

5

2.
-a -

a
b-c

4. 6^P(^aVP

100
3

c o-d.d_3d 23d -9d , ,4 3. -2 ,2
3. 357s t 6. 2xbd
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13.
(-2)

{-2)'
11. (-3)|

(-3)'
15.

(-5)

2-1 + 4-1

16.

1-^1-^

1-^1-^ 17.

2 -2
1 4

(i) (f)

18.

-3 3
24 X 48

-2 4
36 X 6^

19.

-3 4 -3
5 X 15 X 10 -^

(1.5)^ X (-3)° X 5"!

H. Simplify by applying the preceding theorems, stating whatever

restrictions must be made in each case so that the simplest

expression is equivalent to the given one.

Sample

.

(3xy)^(4x y' )-

(5x y) (2xy
)

Solution.

,-,a a a.,-,-2b -2b 2b.
(3 x y )(2 x y )

,^b 3b b,,^-a -a -3a,
(5 x y )(2 x y )

T-2b-a a - 2b a + 2b
c. 3 X y
-,-a^b -a + 3b -3a + b
2 5 X y

^a-2b-ar-b 2a - 5b 4a + b
= 2 3 5 X y

Restrictions : x / and y / unless a = and b = 0;

donnain of 'a' and 'b' is the set of all integers

m p -q
X XX ^ T -b -c -a

2. a a a

-, k, -m m, -k
3. a b a b

[3st^]-^[5s^-^]^'^
r^ -3 -2,dr_ 5 -K-3d
[5s t

J
[7s t j

4. [ab]-P[6a^b-l]^P

6.

-,2 7.-5 3,2
3d X b c d

.] 4.-3 3
>lx b c

(continued on next page)
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X X ~ 1

So, for every integer x < 0, if a > then a > 0.

Hence, by principles (I) and (II) the property holds for

all integers

.

J. For ease in reading we suggest that decimal numerals for num-

bers which are less than 1 be written with the digits grouped three

to a group. For exannple the answer to the Sample could be writ-

ten:

0.000 001.

1. 10 2. 1000 3. 0.001

4. 1 5. 0. 1 6. 0.00001

7. 1,000, 000,,000 8. 0.0001 9. 100

10. 0.01 11. 0.000 000 1 12. 1.000,000,000,000

. 1. 10^ 2. 10^ 3. 10 '0

4. 10-^
5. 10-^

6. 10-'

7. 10-1
8. 10-^

9. lo'

'^ C. 23B Third Course, Unit 2
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H. (Cont.)

^ t'^PS +s -p+stp
g J

- r+s,q+s r+q
9. a b^ c ^

Part I.

Property is that expressed by:

for every real a > 0,

a" > 0.

(i) has the property .

aO = 1 >

(ii ) The property is hereditary for integers > 0.

Suppose that, for some integer x > 0, a > 0.

Then, for that integer x,

a = a' • a [recursive definition]

> • a [inductive hypothesis and
the hypothesis that a > 0]

= 0.

x X + 1
So, for every integer x > 0, if a > then a > 0.

(ii^J The property is hereditary for integers < 0.

Suppose that, for some integer x < 0.

a^ > 0.

Then, for that integer x,

x-1 xl r .,,...,a = a • — [recursive definition]
a

> • — [inductive hypothesis and

'- >0'.]
a

a
= 0.

(continued on T . C. 23B)
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.s -r r -p-,s
r X

L t'^ -1

.s.PiS
[t^^]° - [t""^]

stp-,p

r kn
X (j + k) [xJ](m + j) r iTi ~iX

j m k
L X'' - L X - L- X -1

(k + m)

ibc]!l[ca]^l[abl^^
r, r - 1 s-lnqr s-1 q-lnrr q - 1 , r - l-,s
[b c

j L*^
^

J L^-
b

J

Use principles (I) and (II) on page 2-17 to prove the following

theorem.

X
For every real a > 0, and every integer x, a >

Write a non- exponential name for each of the powers listed in

the following exercises. For those powers which are less than

1, give a decimal numeral rather than a common fraction.

Sample. 10

Solution. 10
-6 1

10

1.

4.

7.

10.

10

10

10

10

1,000 000

- 0.000001.

2. 10^ 3.

5.
10-^ 6.

8. 10-4 9.

11.
-7

10 ' 12.

10

10

10

10
12

K. Write an exponential name for each of the numbers listed below.

1. 10,000

4. 0.001

7. 0. 1

2.

5.

1000,000

0.01

1

10000

3.

6.

9.

10,000,000,000

0.000000001

1

0.00001
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1. 2000

3. 0.8

5. 0.00071

7. 0.416

9. 0.000 59

11. 0.000 00263

13. 11,400

15. 6,210,000

2. 5, 300,000

4. 0.03

6. 41.6

8. 59,000

10. 2.63

12. 538

14. 0.2863

16. 0.000 049 8
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L. Each of the following expressions contains a decimal numeral,

a 'X', and an exponential for a power of 10. For each expression

write an equivalent expression which does not contain an exponen-

tial.

-3
Sample . 3.7 X 10

-3
Solution . 3.7 X 10

= 3. 7 X 0.001

= 0.00 37.

1. 2 X 10^

3. 8 X lo"'^

5. 71 X 10'^

7. 4.16 X 10"^

9. 5.9 X 10"^

11. 0.00263 X 10"^

13. 1. 14 X 10^

15. 6.21 X 10^

2. 53 X 10^

4. 3 X 10"^

6. 4. 16 X 10^

8. 5.9 X lo"^

n. 0.00263 X 10^

12. 538 X 10°

14. 2.863 X 10'-^

16. 4.98 X 10"^

2.04 Scientific notation . --Often scientists and engineers need to

refer to very large or very small numbers. For example, the inass

of the earth is about 6, 595, 000, 000, 000, 000, 000, 000 tons, the average

distance from the earth to the sun is about 93,000,000 miles, and the

mass of an electron is about 0.00000000000000000000000000000201

pounds. As you- can see, it is very inconvenient to write so many

'O's in a numeral. If you were going to copy one of these numerals,

you would probably count the number of *0's first. Therefore, it

might be easier to write the numeral by telling how many 'O's there

are in it. For example you might state that the mass of the earth

in tons i" given by the numeral '6, 595' followed by 18 'O's. As you

have learned froin the preceding exercises, a shorter way of writing
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It has been suggested that we discuss a notation, called 'floating

point notation' which is closely related to scientific notation. It is

much used in the computing field. A floating point notation for a num-

ber consists of :

a decimal numeral (not necessarily for a number between 1 and 10),

a times sign, and

an exponential for a power of ten.

Thus, the scientific notation for a number is one of the floating point

notations for the number. Scientific notation is especially convenient

when one is interested in comparing numbers. Other floating point

notations are particularly useful in addition problems. For example:

0.25 X 10"^ + 0.52 X 10^

= 0.25 X 10^ + 52 X 10^

= 52.25 X 10^

You may wish to mention this generalization of scientific notation

to your class

.

2. 63.28

4. 603,800

6. 6,595,000,000,000,000,000,000

8. 0.3314

10. 70,000

12. 1,318.9

14. 0.00000004001

A. 1. 540

3. .000 900 1

5. 92,900,000

7. 0.00001

9. 1.41

11. 0.08

13. 400, 100,000

15. 2,010,000,0

16. 0.000 000 OOC
I
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this numeral is :

6, 595 X 10^^
.

In order to be able to compare numbers rapidly and to compute with

them easily, scientists and engineers have adopted a standard nota-

tion for such numbers. The number is expressed by a numeral

consisting of the parts :

a decimal numeral for a nunnber between 1 and 10,

a tinaes sign, ' X ' or ' '

, and

an exponential for a power of ten.

Thus, the mass of the earth is given in scientific notation by:

6.595 X 10^^ tons,

the average distance from earth to sun by:

7
9.3 X 10 miles,

and the mass of an electron by:

2.01 X 10
"^^ pounds.

EXERCISES

A. Give a decimal numeral for each of the numbers which is named

below in scientific notation.

1. 5.4 X 10^ 2. 6.328 X 10^

3. 9.001 X 10~^ 4. 6.038 x 10^

5. 9.29 • 10^ 6. 6.595 • 10^^

7. 1.00 • 10"^ 8. 3.314 •
10"^

9. 1.41 X 10° 10. 7 X lo'^

11. 8 X 10"^ 12. 1.3189 X 10'^

13. 4.001 • 10^ 14. 4.001 •
10"®

15. 2.01 X 10"^° 16. 8.3294 •
10'^°
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1. 5.36 X 10^

3. 1.3 X lO"^

5. 6.918 X 10^

7. 8. 1204 X 10

9. 9.0 X lO"^ 10. 9.832 x 10

2. 1.432 X 10^

4. 5.3 X lO"^

6. 4.918 X 10^

8. 4.8192 X 10^

11. 8.92 X 10"'

13. 6.32 X 10^

15. 4.91 X lo"^

17. 3.814 X lo'*

19. 6.921 142 X 10^

21. 5.8 X 10^

23. 3.21 X 10"^ 24. 8,621 x 10^

25. 5.01 X 10° 26. 1.001 x lo"^

12. 4.31 X 10^

14. 6.321 X 10

16. 5.2 X 10^

18. 4.208 X 10

20. 5.0 X 10'^

22. 3.21 X 10^
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B. State a rule for determining whether a number named by a numeral

in scientific notation ?c pre^ter than^ equal to, or smaller ths.n 1.

Which of the numbers listed in Part A is the largest ? The smallest?

C. Write a numer3,l in scientific notation for each of the numbers

listed belcv/

.

1. 536 2. 14.32

3. 0.0013 4. 0. 53

5. 6,913,000 6. 4,918,000,000

7. 0.0000081204 8. 4819 2

9. 0.00009 10. 983.2

Sample 1. 3815 X 10^

Solution. This numeral is not in scientifi«_ no
3

3815 is greater than 10. Since 3815 =: 3. 815 X 10 ,

3815 X io'^ = (3.815 X 10^^ X 10^

= 3. 815 X (10^ X lo"^)

= 3.815 X lo"^

11. 89.? X 10^ 12. 431 X lo'^

13. 0.632 X lo"^ 14. 63.21 X lO'^

15. 49.1 X 10""^ 16. 0.00052 X 10^

17. 381.4 X 10^ 18. 42.08 X 10^

19. 6,921,142 X lO"-" 20. 0.00005 x lO"^

21. 0.0058 X 10^ 22. 0.321 X 10

23. 0.321 X 10'^ 24. 8.621 x 10^

25. 0.0501 X 10^ 26. 0.0001001 X lO"^

(continued on next page)
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(Cont.)

In connection with the multiplication exercises in Part C you may

want to ask the following question.

Given two nunnbers a and b such that

1 < a < 10 and 1 < b < 10. Under

what condition isab<10? >10?

> 100?

27. 8.4 X 10^ 28. 3.8 X 10^

29. 4.41 X lo'^ 30. 2.624 x 10^

31. 2.624 X 10^ 32. 2.624 x 10^

33. 2.624 X 10^^ 34. 3.61221 x 10^

35. 3.61221 X IQ-^ 36. 3.61221 x 10^

2. 2.0 X lo"^

4. 1.1 X IQ-^

6. 6.8 X 10-8

p. 1. 2.0 X 10-8

3. 6.2 X 10-4

5. 6.8 X 108

"^
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Sample 2. 0.0000076 x 42000

Solution . 0.0000076 X 42000

= (7.6 X 10'^) X (4.2 X lo'^)

= (7.6 X 4.2) X (10"^ X lo"*)

= 31.92 X lO"^

= 3.192 X 10"^

27. 4000 X 0.021 28. 3,800,000 X 1000

29. 0.00021 X 0.0021 30. 41 x 64

31. 410 X 64,000 32. 0.00041 x 6,400,000

33. 4.1 X 10^ X 64,000 34. 501 X 721

35. 0.00501 X .00000721 36. 5,010,000 X 0.721

D. Simplify by dividing. Give answers in scientific notation.

0.0000163
Sample .

Solution.

0.00000074

0.0000163 1.63 X 10-^

0.00000074
7.4 X 10-^

=
1.63
7.4

X
10-5

10-^

a
.216 X 10^

i .22 X 10^

= 2.2 X 10.

0.00012 ^ 128000

3.

6000 0.000064

0.032 0.0007159
52 ^- 0.00631

4281000 , 0.0004281
0.00631 "• 6310

(continued on next page)
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. ( Cont . )

7. 6.8 X 10^

9. 6.8 X 10^

. 1. 10 X 10^

3. 2 X 10^

5. 1 X 10-^

7. 3.6 X 10"-^

9. 5 X lo'

11. 2 X 10-^

13. 4 X 10
8

15. 3 X 10-'

17. 10^

or 10

8. 6.8
-3

X 10

10. 6.8 X 10^

2. 2 X 10^

4. 3 X 10-^

6. 5 X 10^

8.
1

2

10. 8 X 10^

12. 1 X 10-^

14. 1.2 X 10^1

16. 3 X 10^

18. 10-^
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7.

9.

4.281
0.0631

0.000000004281
0.0000000000631

8.

10,

4. 281
631

4281065943
6310000

Estimate each number listed below.

48000 X 0.0201
Sample .

Solution.

0.00032

48000 X 0.0201
0.00032

(4.8 X 10^) X (2.01 X 10"^)

3.2 X 10

4.8 X 2.01
3.2

4. 8 X 2.01
3.2

a 5_ X 2
1 X 10

X
4 -2

10 X 10

10

X 10

- J X lo^

1. 21000 X 522000 2.
391 X 285

5850

3.
4900
240

4. 0.0024 X 0.004 X 3100

5.
140

6. 168 X 3100
721 X 192

7. 450 X 0.00082 8.
1014

r\ ri ^ vv T

9. {3.14)(42)(42)

11. (0.0015)(0.0015)

13. (21,000)^

15. (0.0201)^

17.
4
3

(3. 14)(58. 1)-

10.

12.

14.

16.

18.

987 X 2

(426)(426)
2

(0.0017)(0.0017)
39. 1

(4,800)^

(3. 14)(42. 8)^63. 1)

(3. 14)(0. 0016) (0.04)

(continued on next page)
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19. 8 X 10^ 20. 3 X 10

21. 6 X 10^ 22. 1.7 X 10^

23. 5 X 10"-^^ 24. 10"^

Section 2.05 contains a careful development of work with radical

expressions. This work underlies work with powers for which the

exponents are rational numbers. If students develop a sound grasp

of radicals, they will have no trouble with rational number exponents.
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iQ (1900)''(0.004)
,

638X492

2j^
422 X 963 x 0.0014 ^2 (13.1)^(19.8)^

492 X 0.0019 4314

(0.00018)^(0.000802)^ (
0.059)^

48 4
(11.5)

2.0 5 Roots of non -negative real numbers .
-- Before explaining powers

with real rational exponents, for example,

2 3 17
1 (3.2) ^ TT

you must learn a little more about powers with integral exponents.

In the exercises which follow we shall learn more about such powers

by considering the locus of the equation 'y = x ' for positive integral

values of ' n '.

EXERCISES

A. Draw the locus of each of the following equations.

3
Sample. y = x ; values of ' x ' from -2.5 to +2.5.

Solution . Some of the points in the locus are graphs of the

ordered pairs listed below.

(-2.5, -15.625) (2.5, 15.625)

(-2, -8) (2, 8)

(-1.5, -3.375) (1.5, 3.375)

(-1, -1) (1, 1)

(-0. 5, -0. 125) (0.5, 0. 125)

(0, 0)

If we plot these points and draw a smooth curve

through them, we get the following figure.
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Part B.

2 4
The loci of 'y = x ' and 'y = x ' are symmetric with respect to

the y-axis. The ordinates for the loci are non-negative; the abscissas
3

include all real numbers (positive, 0, or negative). The loci of 'y = x ',

5 9
'y - X ', and 'y = x ' are symmetric with respect to the origin. Posi-

tive ordinates correspond to positive abscissas; a ordinate corresponds

to a abscissa; negative ordinates correspond to negative abscissas.

Part C.

3Here we prove that loci of the form of the locus of 'y = x ' are

symmetric with respect to the origin.
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1. y = x"; -4 < X < 4

5
3. y=x; -1.5<x<1.5

2. y = x^ -2 < X < 2

4, V = x' : -1 < X < 1

Study the loci you drew in Part A. Teil how :.. : :

:

loci which corres-; ...:! to even exponents (Exercise-

differ from those which correspond to odd expc.".tr.:

3, 4, and Sample).

C. It is the case that for an odd exponent n, the poi:

to the locus of ' y = :c" ' if 3~ic. :.-'-" :: -;. :_-: -

We can prove this by usir.; . :_3.:.. \ i:: ;i_ ::.:

set in question is the set of all odd ^r.zt^-~z - I .

that for every n in this set, n's follower ir n -r 2

of mathematical induction which we shal. us

y) belongs

= uli.c

1

Every p-roperty :: ; :. L integ S"^ 3 > "*

which

(a) holds for i.

and is such that

(b) for every if

it holds for k, then it iicl CIS

for k -- 2

t_

holds for every odd integer > 0.

Since what we want to prove is that, for every odd integer n > C,

and for every (x, y),

n n
(x, y) satisfies ' y = x 'if ly if (-x, -y) satisfies 'y = x ",

the property of odd integers > C we are c : . : . with is ex-

pressed by:

for ever-,- •: '-X)- = -X
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The justification for the equation in line 8 is the double application

of the recursive definition. Similarly, for the replacement of '(-x)

by 'x^'.

•J^ nT^ vI^
'1^ '1^ '1^

The theorem called for in lines 15-17 is: For every even integer

n > 0, and for every (x, y),

(x, y) satisfies 'y = x

if and only if

(-X, y) satisfies y = x

The proof of this theorem by mathematical induction is very simi-

lar to the proof given on page 2-32 except that the first step of the proof

involves demonstrating that 2 has the property. Note that since we are

dealing with the set of even integers, k's follower is k + 2.

The following is a proof which does not use mathematical induction.

By the first theorem we know that for every

even integer n > 2, and for every (x, y),

n - 1

y = x

if and only if

/ v^ - 1

y = -{-x)

that is,

n - 1 , .n - 1
-X = (-x)

But, for every x,

if -x^-^M-x)"-^

then [-x"-^](-x) = [(-xf -^](-x)

n , ,n
or X = (-x) .
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Proof:

(a) 1 has the property.

{->^)
1 X = -X

(b) The property is hereditary.

Suppose, for a given odd integer k, that

(-X)" = -x'

Then, for this k,

,k+2
(-x)'

. .k 2
(-x) • X

k 2
-X • X

/
k 2,-(x • X )

-X
k+ 2

Hence, by the principle of mathematical induction stated

above, the property holds for every odd integer > 0.

As an exercise you should state and prove by mathennatical

induction a corresponding theorem about the locus of ' y = x '

for every even integer n > 0.

[Note: Can you prove this second theorem without using inathe-

matical induction but, instead, by using the first theorem and

the fact that, for every integer n > 0, if n is even then n - 1

is odd?]

D. You proved in Part I on page 2-23 that for every real number

X > 0, and for every integer n > 0, x > 0. In connection with

loci of equations of the form 'y = x ' we need a more general

theorem.

For all real numbers X, and x^,

and for ever / integer n > 0,

if < ^1 < ^2

then < (xp" <
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[In terms of a locus this theorem tells you that if you pick two

points in the locus of ' y = x ' and if those points are in the first

quadrant, the point which has the smaller first coordinate has

the smaller second coordinate. Verify the theorem with refer-

ence to the loci you drew in Part A.
]

We prove the theorem by using the principle of mathematical

induction over the set of integers > 0. The property in question

is expressed by:

for all real numbers x, and x-,,

if < X < X,

then £ (xp' < (x^)' ' '
.

Proof :

(a) 1 has the ijroperty .

If < X < X then < (x ) < (x^) •

(b) The property is hereditary .

[That is, for all real nuinbers x, and x^, if

k k
if < X- < x^ then < (x^) < (x^)

then

if < x^ < x^ then < (x^^^^ < (x^)^^^

We consider each of the two parts of the inequality:

< x < X, .

(i) If < X, then, by the inductive hypothesis,

< (x^)^ .

So, transforming this last inequality by multiplica-

tion, we get

:

• x^ < (xp^ • x^ [x^ > 0]

or :

<(xj)''+'.
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k+ 1 k
X = X • X

< X • X [Inductive hypothesis and 'x > 0'.]

< X- 1 ['x < 1' and 'x > 0'.
]

= x.

Hence, for every integer k > 0, if, for every x such that

0<x<l, X <x, then, for every x such that < x < 1,

k+1 ^

Consequently, by the principle of mathematical induction for

positive integers, the property holds for every positive integer.
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Then, for this k, and any x > 1,

k+ 1 k
X = X • X

> X • X [Inductive hypothesis and 'x > 0'.]

> X- 1 ['x > 1' and 'x > 0'.
]

= X.

Hence, for every integer k > 0, if, for every x > 1,

k k + 1
X > X, then, for every x > 1, x < x. Consequently, by

the principle of mathematical induction for positive integers,

the property holds for every positive integer.

2. Property is that expressed by:

For every real number x such that < x £ 1,

x' ' ' < X .

The theorem is proved by mathematical induction over the set

of positive integers.

Proof:

(a) 1 has the property .

For every real number x such that 0<x<l, x <x.

(b) The property is hereditary .

Suppose, for a given positive integer k, that

for every real number x such that < x < 1,

k^
X < X.

Then, for this k, and any x such that < x < 1,

(continued on T . C 34C)
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D. 1. True. [By the theorem on page 2- 32.
]

2. False. [By the theorem referred to at the end of Part C, the

inequality is equivalent to '2 < 1. 5 '. By the theorem on

page 2-32, 1.5 < 2 . Since < is asymmetric (Unit 1, T. C.

22M), it is not the case that 2 < 1. 5 .]

3. True. [By the theorem of Part C, the inequality is equivalent

to *-(3^^) > -(4^ V. and so to '3^^ < 4^^'. The last is in con-

sequence of the theorem on page 2-32.]

4. True. [(-5)^^ < < (-5)^°]

5. False, [y is a counter-example.]

g
6. True. [Proof -sketch : For every x> 1, x / 0. Hence,

8 ^ 10 -^ , , ..
, ^ 2 ,

X < X 11 and only ii 1 < x .J

E. 1. Property is that expressed by:

For every real number x > 1, x* ' ' > x.

The theorenn is proved by mathematical induction over the set

of positive integers.

Proof:

(a) 1 has the property .

For every x > 1, x > x. [inductive definition; > is a

reflexive relation (i.e. for every x, x > x; 'irreflexive'.

Unit 1, T. C. 22M).]

(b) The property is hereditary .

Suppose, for a given positive integer k, that,

for every x > 1, x > x.

(continued on T . C. 34B)
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(ii) If X, < x^ then, by the inductive hypothesis,

So,

or.

(Xj)^ < (x^)^

(Xj) x^ < (x^)^ • x^ [x^ < x^]

, .k+ 1
, .k+ 1

Hence, from (i) and (ii), we have that,

if < X < x^ then < (x
)^"^^

< (x^)^"*"^ •

Therefore, from (a) and (b) and the principle of mathematical

induction, the boxed theorenn on page 2-32 is proved.

Of each of the following statements decide whether it is

true or false, appealing where possible to the foregoing theorems.

1.
2^"^

< 2.0001^^ 2. (-2)^° < (1.5)^°

3. (-3)^^ > (-4)^^ 4. (-5)^^ < (-5)^°

8 10
5. For every real number x > 0, x < x

8 10
6. For every real number x > 1, x < x

E. Prove by nnathematical induction:

1. For every real number x > 1, and

for every integer n > 0,

n ^x > x .

2. For every real number x such that < ^ ^ ^' ^"^

for every integer n > 0,

x < X .
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.V e state now am important theorem about real

were probably av/are :: ::. is theorem v/her.

oi eq'oations o: :.. ; :;rr,-. v = x . ^.\ _ /.etr;

theorem asserts tr.at every line which is naral

but is not below it intersects ir. a i: ^_: d.r.: :

locus of 'y = x" ' .vr.icr. is -c-'.r.tr

of it.

e x-axis

'.."-- v-axis

For every real .

: ;r every integer - >

::".ii.:- real -i::-r:ber ::

X > : i.:i- v' a.

The theorem can be di\ddeci i: parts :

(i) 7 ; 1- every real number a > I . ar.d.

n > 1 . .here is at .Te.f: ::i; real

X > and x" = a

erv iTiteser

X such that

_ ["There are r : :i :

est point) in the locus of ' y = x" '. "]

(ii) For every real number a > " .- -
:'-:

n > 0, there is at m^ost :;i- e . -. v,

X > C and x" = a. '""r. r '_
; is ;;' ' v = uocS not

have ripples in

The proof of (i) depends r ee iacts

:

1

(1) i or every integer n > =

(2) For every real n_;r.cer x > 1. anc

teger n > 0, x > x.

(3) For every in: _

IS "sniooth" .

Fact (1), which follows frrr; -' ^------ -- -

us that ir. case a = C. ' is a r

ery m-

y = X
n .

;asei-

Fact (2), v,-!.:

2-34, assures us
n

' v = x" •.

h^xercis

= ".*"*' r* •

on page

lere is nc
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The notion of a smooth curve will be made more nearly precise

in section 2.0 7.

'1- '1^ '1-

Students should be encouraged to say, for example, 'the principal

4th root of 16' instead of 'the 4th root of 16'.
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Fact (3) cannot be established at this time because to do so

would require a definition of 'smooth curve', a definition which

we are not ready to state.

You will learn in a later course how to establish fact (3)

and how to use the three facts to prove part (i) of the theorem.

So, we shall accept (i) at this time.

The proof of part (ii) depends upon the boxed theorem in

Part D on page 2-32. We leave the proof of (ii) as an exercise

for you. [Hint

:

Suppose that there are two non-negative real

numbers (x. and x-,) such that (x,) = a and (x,) = a. Use the

theorem in Part D to show that this leads to a contradiction.]

G. The "uniqueness theorem" stated in the box of Part F permits

you to conclude, for example, that the equation:

x^ = 17

has precisely one non-negative real root. This means that it

5
is proper to speak of the real number x > such that x = 17.

We give a shorter name to this real number :

the principal 5th root of 17

and a still shorter name:

More generally, for every real number a > 0, and for every

integer n > 0,

the real number x > such that x -a.

is

the principal nth root of a

or

^ .

[
Note 1 : \/a is further abbreviated "ia. . Note 2: -s/a = a.]

Evidently, for every real number a > 0, and for every integer

n > 0,

\fa. > and ('\/a) = a .

UICSM-2-56, Third Course





I
f2-37]

I



G. 1. 2 2. 3

3. 1 4. ^
5. None 6. None

7. l°?rT-5 8. 9«^/7

9. y 10. None

[* nTS ' is an acceptable answer to Exercise 1, but students should

recognize that this can be simplified. The equation of Exercise 5

has a negative real root, -1; that of Exercise 6 has no real root.

The specified roots of the equations in Exercises 4, 7, and 8 have

no simpler standard names than those listed above.]

H. If a < and n > are odd, then ( -nT^ ) = A 4^ j - -(-a) = a.

On the other hand, for every real number b, if b = a < then,

by the boxed theorem on page 2-32, b < 0. Hence -b > and

(-b) =-a, so-b = "-f^ , and b = - n/^ .

For every real number b and every even n > 1, b > 0.

Hence, for every a < and every even n > 1 there is no real num-

ber b such that b = a.
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Sample . Find the non-negative real number which is a root

of the equation

:

x^ = 16.

Solution . The positive real root of the equation is ^/T6 .

A simple name for this root is * 2 ". [2 >

and 2^ = 16.]

Find the non-negative real root of each of the following equations

if the equation has one.

1. x^ = 8

3.

5. 6x^ = -6

7. a^OO = 1.5

9. x-^ = 4

2.
5

X 243 =--

4. b^ = 7

6. 6z^ -.= -6

8. r9« :: -n

0.
-3

-y
1

8

H. Use the results in Part C and those stated in Part F to show

that it is possible, for every real number a < 0, and for every

odd integer n > 0, to find a unique real numiber N/a such that

,n/—,n
(Va) a.

Show that this is impossible for each real a < 0, and for

each even integer n > 1.

' 3 '

A symbol such as 'v/7 is called a radical . For each of the

powers listed below find a radical name.

Sample . { "nT? )

Solution . [( nT? )^]^ = ( nTz )^ [Why?]

= 7 [Why?]

Since ( 's/7 ) > and its third power is 7,

we know that ( nT? ) = ^/7 .
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I. 1. ^/^"

4. 'In

2. n/IT

5. ^n/2

3. \/9 ['3' is not a radical name.
]

6. ^Tz

7. irz 8. ^n/^ 9. [Nonsense problem.
]

10.

v'^ O^ ^1,
'1^ 'i^ 'i^

Since" v/a > 0, it follows from the boxed theorem on page 2-32

Y
that V^va- /' ^ 0- Since, also, "iYa-y

J = (^V^)
qk

= a.

^k Y
it follows that i ^ N/a ; = \/a . [Note that to show that

b = Va we have, precisely, to show that b > and b" = a.
]

</4 = 4" r-^4V^
LV

18^>m
V

one principal 9th root of L^^OT. (^
Since ihere is just

6
18^4y
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1. (nTFS)^ 2. (te)^ 3. (^)^

4. (^t-2)^ 5. (^trZ)^ 6. (^^2)^

7. (^irZ)^ 8. (^t2)« 9. ('tr2)^

^.'^ -l^ x'^
'!•• '1^ '1-

10. Prove the following theorem.

For every real number a > 0,

and for all positive integers k and q,

^ = (^^^^

Q A 1 7 Q
£. Consider the powers ( ^[l ) and ( nTt ) . Do you think that

We can prove that this is the case as follows:

'- [(''^^7)Y

8 6 8
Since there is just one principal 8t_h root of [( ^/7

) ] , and since

[(^)^]^ = [(^nT?)'^]^, we know that

9 3 18 6
Similarly, we could show that ( ^/4 ) = ( -s/? ) , that

{ITS)^ = {^n/5)^, and that (nTM)^ = (^^/l4)^^. In fact it

appears that

:
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(r,7 ('^-r ('^-T ( ^^'T

Cv,T C^-T (^.-,7 -s/g

(%y e-y

&^y c^-r w
(--r (--y^ w
(^-T (v,T i^^y

e-y^ eir,r {-r.y
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Completion of proof of boxed theorem:

[Reason for first i

step is hypothesis

[Reason for first step is Exercise 10, Part I; reason for third

P _ r ^

^^^/i

q s

qr
""^

Va

Proof of supplementary statement concerning powers of 0:

Since — = —
, q > 0, and s > 0, and since p > 0, either

q s ^ ^ — '

p and r are both positive or both 0. But

= 0, so [JfoJ = if p > 0, and = 1 if p = 0,Yo

and

VO = 0, so \ \fO = if r > 0, and = 1 if r = 0.

In either case, i, X/a ) = [ %fa. J .

Exercises.

1. (a) 4 (h) 1

(c) 1 (d) 4

(e) 8 (f) 10

3, (-.,7 {-~r.T (V,J (tr,7

t..r w (3^0 (^-T

T. C. 39

A

{continued on T. C. 39B)
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For every real number a > 0, and

all integers p. q, r, and s such

that q > and

P
q

s > 0, and

r

if a = and p > then ( %a f = (ra)^

Use the theorem in Exercise 10 of Part I to prove the boxed

statement.

Here are the first three steps of the proof.

= [^^]"P

[Why?]

[Why?]

1. Use the theorem you have just proved to solve the following

equations.

(a) (^^^7)' = ('^^if

(c) (^)'^ = (^-4)^^

(e) (43)^ -- (^3)^^

(b) (^)^ = {'s/9)y

(d) C^o^)^ -- {^^49)^^

(f) {Tzf = {^) 20

Partition the set of expressions which follow according to

the relation IS A NAME FOR THE SAME NUMBER AS.

('^V-9)'

(^9)" ^9

(V9)'^

12
("49)

i''49)''

(continued on next page)
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K. 1, ^ \[a.

Hence, since

of aP.

[sja. J
> 0, \ N3iJ is the principal qth root

qs

llvi J -- IVjvi

'/a

Hence, since v 'v/a > 0, 'v N/a is the principal qsth root of a.

T. C. 40
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(^9)^ (^)' (^9)^ (^^9)^

('^)^ •J9 (^9)^ (*-9)'

(^9)^ ('Sr9)^ (^S/-9)'^ i'ir9)'°

(
'^^9 )' ('^^9)''

K. Prove each of the following theorems.

1. For every real number a > 0, and for all integers p and q

such that q > 0,

for all integers p and q such that p > and q > 0,

(^)P = ^.
[Hint: If X = (^ )^ then X > and X^ - a^.

]

Here are several instances of this theorem. Make up six more.

(^2)^ = te ^ = (W -
2*^

^/l7^ = {^fT^)^ 4^ = (^/4)^ = 32

vO vO vl-
'|V 'iv '|V

2. For every real number a > 0, and for all positive integers

q and s,

Here are several instances of this theorem. Make up six more.

^/W :^ ^^f9 fee = H'^flSb = im = Z

^^4 = 5n2 ^^ = ^3

vl^ vU v',
'|V '!> '(V
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Proof that if < a < 1 then a. < 'sfa. :

If < a < 1 then a < a . [Transformation of 'a < 1 ' by

multiplication, justified by '0 < a'.]

2 I 2
If a < a then ^/a < >/a . [Previous theorem.]

If f^a < \fa. then a < \[a, . [Wa = {\fa )
' by Exercise 1,

Part K.]
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If < \[b < \/a then b < a. (Boxed theorem on page 2-32.)

If b < a then a ^ b. ( Asymmetry and irreflexiveness of < . )

Hence, ii %a ^ ^1) then a ;!^ b.
]

[students may be interested in the fact that although the converse

of a conditional statenaent is not, in general, equivalent to the state-

ment itself, the statement:

if a < b then va < \lh

can be used in proving its converse :

q q
if \fa. < \}h then a < b.

Proof of converse:

If \fa. < \fb then sfb ft ^fa. . (Asymmetry of < .
)

q q
li -Jh ^ sfa. then h -^ a.

If b ^ a then a < b. (Connectedness of < .
)

If a = b then ^ = Vb .

If \[a. = \fh then \fa. ^ \fh . (Irreflexiveness of < .
)

Hence, if sfa. < s/b then a / b.

Consequently, if ^/a < \/b then a < b and a / b, i.e. a < b.

Warning! ! Students should be thoroughly convinced that a conditional

statement, such as 'if a man has red hair then he has a

temper', is not equivalent to its converse, 'if a man has

a temper then he has red hair', before taking up the preced-

ing proof.
]

T. C. 41B

(continued on T. C. 41C)
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= ab

Hence, since ^/a \fh > 0, \/a • \[h is the principal qth root of ab.

^^/i^^ _(W.
q,^,^

\/a ^ a
Hence, since 7=— > 0, 7;— is the principal qth root of t- .^ - ^ - b

5. [Proof is given in hint, but this is, of course, a place at which to

remind students that a conditional statement is equivalent to its

contrapositive

.

q__ q_
Statement: if a < b then \ja. < Vb

Contrapositive : if ^/a ^ \fh then a ;d b

Proof of contrapositive :

q q q q
If \fa. /. N/b then \/b < v/a (connectedness of < , see

q
Unit i, T. C. 22N), and < -V^ . (Definition of 'princi-

pal root'.)

(continued on T. C. 41B)
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3. For all non-negative real numbers a and b, and for every

positive integer q,

^ • ^ = fe .

[Hint: Use the theorem in the box on page 2-20.]

Here are several instances of this theorem. Make up six more.

\[2 IfS ^ nTTo nTS • \fZO = 10

sfZ ^m = 2 ^^54 = ^ IfZi = 3 n/I

o.. vu vi,
'p 'r- '(^

4. For all non-negative real numbers a and b such that b > 0,

and for every positive integer q,

Th

Here are instances. Make up six more.

= nTS = 2
srs ^f^ NTIe _ 3

^ " 5^^7 .^2

n/T24 4rH^ , n/4 _ rr 2^— = nTsI = 3 -
, -

^1, v'^ ^1^
'1^ 'I- '1^

5. For all non- negative real numbers a and b, and for every

positive integer q,

if a < b then ^ < ^ .

Qi q^ q^— q^

[Hint: Suppose -s/a f. \lh , that is, va > vb . Then, by the

theorem in the box on page 2-32, a > b, that is , a / b.
]

Use the theorem in Exercise 5 to prove that, for every

real number a such that < a < 1,

a < nTS .

TT T/^ r'-K ,f 1 C/L T^U4^J ^ ,
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Students should make certain that the restrictions stated in the

heading of each Sannple are sufficient to justify the steps.
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L. It is often convenient to transform a radical expression into other

radical expressions which are equivlent to the given one. Study

the samples until you can justify each step.

Sample 1. For all non-negative real nunnbers a and b.

N/54a b =N/27ab X2ab

3/ 2~3 2~
^(3ab ) X 2a b

N/pIbV X N/2a^b

3ab vZa b

Sample 2. For every real y, and for every real x > 0,

2x'v3xy = 'v(2x) n/ 3xy

= \/(2x)^(3xy^)

'n/i6x (3xy
)

= 'v48x y

Sample 3. For all real numbers x and y, and for all real num-

bers u and V such that uv
f- 0,

3 / 3xy _ \/ 3xy

8u\^
\/ 8u V

</3^y
2uv
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Sample 4. For all positive real numbers x and y.

2xy" 2xy~

2xy
2xy

6xy

(2xy^)^

n/ 6xy

2xy

Sample 5. For all real a, b, and c such that ac > 0,

12/^ 2, 4 10 12/7- K" -\v9a be = N (3ab c )

2 5,2

^/(3ab^c^^

•V 3ab c

or

12/_ 2,4 10 12/., ,2 5.2
N/9a be = v (3ab c )

\l 3a.h c

'sj 3a.h c

Sample 6. For all real x and y sueh that xy > 0,

3/7~2~ ^ 4/T 3
V 2x y X \f 3xy v2x A

12/:; 3
V 3xy

III,. 2.4^ ,, rj
= n/{2x y) X (3xy

)

12/,,, 8 4.,,_ 3 9,
= v(l6x y )(27x y )

= '^432x y

UICSM-2-56, Third Course
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Sample '!_. "Rationalizing the denominator. "

17 17 7 + A'^fT

7 - 4'n/T 7 - 4^y 2 1 ^ A^! Z

17(7 + 4\/~)

49 - 16{Nrr)^

17(7 + A-IT
)

17

= 7 + 4'vr2"

Sample 8. "Rationalizing the numerator. "

For every real number y > 0,

n/ y + 2 - 4~y' _ n/ y + 2 - NTy" ^ \J y + Z + 'sTy'
4 - 4 ^

,

—
n/ y + 2 + v y

_ (^/l^~2)^ - ('/y)^

4(^y y + 2 -h ^^7)

y + 2 - y

4(^/ y + 2 + '^y )

2

4('s/ y + 2 + ^)
1

Z(^] y +'2 + n/T )
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L. (Cont.)

1 . Syk'^m^NTZ^ 2. 3a b

3.
4/,, o 3
v 1 ox y

5. 5ab\/ 2ab

N/35ab
7 b

4. xn/ 1 + 3x y

6.
, 3/ 3 2
3x V X - xy

8
V 39xv

3xy'

9. 3yz_.J_2. 2

2a '^b

a bx yz 10. 4{x - y)N/(x - y)^

, , 2. 6r~~z
11. a D V 11 25aD ,2 9(3 - n/5)

^ • 4

13.
-14 - 4\/3

37
14.

4x -r 4x\/x
1 - X

15.
Ji

6 - ^JZ

16. 1

17. n/I ^ n/1 18. X J?T^

-„ 8/. 2 3 4
19. V 5x y zu

21. x(v3^.^^y7,t/7)

20
4/ 2
V(3abcx) and others
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Use the methods illustrated in the samples to transform each of

the following radical expressions into one or more equivalent

expressions

.

J IZSvVm^^ Z. N/3a^b X ^|^a.S1. NJ 128y km

5,

3 r.7 2 4 7
.7x y

8a\

,3 SfT 4rT
21. n/ X + Vx + n/x

UICSM-2-56, Third Course

5

3. 2x N/y N/xy 4. v x ( 1 + 3x"y'')
2 2.

•\/ 5ab^ X n/ lOa^b 6. 3\/x^ - x
4 2

7. /i^ . / 13

W 3xy

9. / ''Y,^ 10. ^64(x - y)^

. ^^/3A X V:-3.^ ,, 9
11. </3a b X -s/Sa b 12.

3 + si 5

13. --^ 14.
^^

7 - 2V 3 1 - n/IT

1 c 6 + \' 2 1 /L
"^ - ^^

15. ; lb.
1

17. 18.

7 - V x

X + V X - 1

24/,, c 6 9 3 12 ,_ - r^-u

—

19. Vl25x y z u 20. 's/ 3abcx
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2.06 Real rational numbers as exponents . - -We are now ready to ex-

plain powers with rational (non-integral) exponents. We want to do this

in such a way that our previous theorenas concerning exponents will,

insofar as possible, continue to hold when the exponents are rational

numbers.

With this in mind, how, for example, should we define '2'* '?

If the multiplication rule for exponents is to continue to hold, we must

define '2"^
' so that

2-^
) = 2^ ^ = 2 = 2

Hence, it is reasonable to assert that 2^^ is one of the two real roots

4
of the equation 'x = 2'. You have learned that this equation has just

one real root >. . It is n/ 2 . We shall define '
2*^

' to be a name for

*2.
3

For another example, consider '6^ '. If the multiplication rule

is to hold,

3 \5 3

6'
J

=
6^"^^

,= 6^

1 5/ 3 5/ 3 [5, ^^
Hence, we define ' 6 ^ ' to be a name for \l 6 . Since v 6 = \ Nf 6 J ,

then 6^ = 1 '\[6
J . This latter fact is consistent with the definition of

-- 5
' 6^ ' as a name for nTS because

Similar arguments could lead us to define '2"^ ' to be a name for

( -v/l ) , and ' 2** ' to be a name for [^fZ J . Since -r - -k • the defini-

1 A
tions of ' 2''' ' and ' 2^ ' must be consistent with the equation:

2* = 2S

UICSM-2-56, Third Course
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^ h.
1 T 4 >That is, ' 2'* ' and '28' should be names for the same number. By

the theorem on page 2-39,

4^. r r8^_Y^2; = ^^2; .

^ h.
and so we are assured that '

2"^ ' and ' 28 ' are names for the same
number.

We are now ready to state a general defining principle.

For every number a > 0, and

for every r

X
a =

ational num ber X,

where p an d q are any inte gers

such that q > and X = £ .

i

q

for every positive rational num-

ber X,

0'-^ -- 0;

and

0' - 1 .

The theorem stated on page 2-40 shows that for every real nunaber

a > 0, and for every rational number x, the number a is unique,

even though there is an unlimited number of choices for p and q.

For example,

because

gO-S
^ p

^°^^9

80

,100

^ 100
\80

^^l9; =

Does = 0^^? Does 0^ = 0^^?

UICSM-2-56, Third Course
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A. 1. 256

4. 4

7. 27

10. 52

13. 100

16. 9

2. 27 3. 8

5. 81 6. 16

8. 2 9. 8

11. 7776 12. 81

14. 100 15. 100,000,000

17. 9 18. 1024

19. 0.000 32 20. 25 21. 25
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[Note, furthermore, that for every real number a > 0, the foregoing

principle coincides with the explanation previously given for powers

with real integral exponents. This is because, for every real a > 0,

N/a = a. (Explain more fully.)]

EXERCISES

A. In each of the powers listed below write a simple name which is

neither an exponential nor a radical.

Sample. 49

Solution.

4

1. 16^

2

4. 16^

7. Z43^-6

2

10. 52^

I
13. 10000^

f tY
16. VsiV

19. (0.008)^-^^

49^ = {jf49J = 7^ = 343

3 3

2. 9^ 3. 16^*

4
3 4.

5. 27 6. 1024

J_
8. 1024^° 9. 1024°-^

5 2
11. 216^ 12. 81^

2 8

14. 1000000^ 15. 1000000^

17. VSlV^ 18. 256^-^^

2\5 / 5\2

20. V625^y^ 21. V625^y^

Find a rational approximation accurate to two significant digits

for each of the following.

i_

Sample .
10"^

Solution. 10'^ is the positive number whose 4th power is 10.

4 4
Since 1 is 1, 2 is 16, and 1 < 10 < 16, then, by

j_

the theorem in Exercise 5 on page 2-41, 1 < lO''' < 2.

UICSM-2-56, Third Course







B. (Cont.)

-, , , ^13 4. 128
1. 2.2 2. 3.3 -5. ^--5
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Thus, your first guess at an approximation might

be 1.5. We check this guess by calculating:

(1.5)^ = [(1.5)^]^ = [2.25]^ i 5.3.

Our guess was too small. Try 1. 8 and calculate

again

:

(1.8)^ = (3.24)^ t 10.2.

So, 1 . 8 is too large. We could try 1. 7 but since

we are looking for a rational approxinnation which

is accurate to two significant digits let us use 1. 75

and thereby be able to tell whether 1 . 7 or i . 8 is

the sought -for approximation [Explain].

(1.75)'^ i 9- 36 < 10

a -
Therefore, 1.8 = 10"'

, correct to two significant

digits

.

J_
3 2

3 4 5 3 5
1. 10 2. 5 3. 2 4. 4

C. Use the principle in the box on page 2-47 to prove each of the following.

2 4 22
3 5 15

Sample . 3-3 =3
2 4 iO 12

^ , . ,3 ,5 -15 ,15
Solution. 3-3 =3 -3

15^^10 f
MZ

^43
J

• r^

.15

UICSM-2-56, Third Course
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C. 5. For rational numbers x and y there exist integers p, q, r,

s such that q

every a > 0,

s such that q and s are positive, x = — , and y = — . For
q s

Hence,

(V.7 . (v-a7

(^?ra7^ . ("wf

X ya • a' =

^?ra
''''"

Since ps + qr and qs are integers, qs > 0, and x + y = H^—t-SI
qs

.ra7
s + qr^ X -f V

= a '
.

D. 1. a^ • a'^ = a^"^ = a =1. Therefore a''' / and a "^ =

—

~ X
a

a^ a^

T. C. 50

A

Third Course, Unit 2
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4=4
11
15

,0.5 ,0.6 .1. 1

2

5
2
4

TT • TT = TT

5

23
20

5. Prove the following theorem.

For every real nunnber a > 0, and

for all rational nunnbers x and y.

X
a . a^ = a-^ + y;

for all non -negative rationals X

and y.

0-^
• 0^ = 0^+y

.

D. The theorem in Exercise 5 of Part C has two corollaries which

are analogous to those you proved in Part D on page 2-19. Prove

each of these corollaries.

1. For every real number a > 0, and for every real rational

number x,

a = — and a p 0.

2. For every real number a > 0, and for all real rational numbers

X and y,
X

= a
x-y

E. Sinnplify each of the following.

Sample

.

J. J_

iili
2 3
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E. 1,

11
15

2. 7

n
30

59
120

1

.2

2^ + 2
2

or

2S1

2 I T
,3^/2 3" + 13+3 or ^

—

F. 1,

A,

N/a

Ni

%rJ =a^ 's/a aP = V^aP

(a / 0) 0^ = 0. [Since - > 0].

1^P
q

oP = Oifp>0, =lifp = 0. 0^=Oifp>0 [Since ^ > 0.],

1 if p = [Since ^^ = 0.]. oP = Oi£p>0, =lifp = 0.

- 1 1

q
— —

= 0^ = 0ifp>0, =l^=lifp = 0.Hence, I

V^y = N/lii =^^^;i A^^^/iy' =a^

\1

T. C. 51A Third Course, Unit 2
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4 1 /li +l-i.l
c 1 .• ^ ^ A 2^3 5 + 2
Solution . -^ :j- = 5\

5^ 5^
L4

= 5^5

2_J^ 4 1 i i
~

3 5 2
2. 7 7^71. 3^ 3535

1 2

3.

2
TT

3
TT

1 1

5 8
7r

1 2

5.
2^ X I'

1 2

2^ + 2^

9 5 18

A
^11^17 ^37

2 7 101

^5^8^102

1 2

6.
3^ + 3^

1 2

3^ X 3^

F. Use the theoreins in Part K on page 2-40 to prove the following

theorems

.

1. For every real number a > 0, and for all integers p and q

such that q > ,

IV p i
aV = a^ = (aP)^;

for all integers p > and q > 0,

i^p p i
0^; = 0^ = (oP)^ .

2. For every real number a > 0, and for all positive integers

q and s.

a^; = a^"

UICSM-2-56, Third Course
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(ab) - [^fIh
>x l<lr~ ^P

\[a. • \fh

P

qn:
^P. rq^^P^ • u^

X , X
a • b .

[The additional cases in which a = or b = are easily treated,

for X > 0. The second part of the boxed theorem is proved by

combining these results with the theorenri obtained by adding the

restriction that x > to the theorem just proved. The boxed

statennient is stated as it is in order to illustrate a mode of state-

ment different from that which we have previously used.
]

T. C. 52B Third Course, Unit 2
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3. (ab)'^ = i s/Tb ^ • ^^/b^ = (Y^yCThf - a^. b^

G. For rational numbers x and y there exist integers p, q, r, s such

that q and s are positive, x = ^, and Y = j • For every a > 0,

/ x.y
(a )^

s/( )P

.va.

V \fa.

'ir.y

- KO"

Since pr and qs are integers, qs > 0, and xy = El
qs

^Vi
pr

= a
xy

If X > and y > 0, then (0^)^ = (0)^ = = o'^'*^. If x > then

(OV = 0° = 1 = 0^°. If y > then (0°)^ . 1^ . 1 = 0° ' y.

H. For every rational number x there exist integers p and q such that

q > 0, and x = ^ . For a > and b >
q

(continued on T. C. 52B)
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For all non-negative real numbers a and b, and for every

integer q > 0,

(ab)<5

I 2.

a^b^

G. Prove the following theorem.

Foi every real number a > 0, and

for all rational numbers x and y.

(a
x^y

= a^V;

for all non -neg,ative rational num-

bers X and y.

(0
x^y

= o"y.

[Hint : Use the theorems in Exercises 1 and 2 of Part F.]

H. Prove the following theorem.

For all positive real numbers a and

b, and for every rational number x,

/ u\X X, X
(ab) = a b ;

and likewise for all non-negative

real numbers a and b and for every

non-negative rational number x.

L Apply the previous theorems to simplify each of the following.

Give answers without using symbols for negative exponents.
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L (Cont.)

1.
3

xy

3.

2

4a c

5. 27p

7.

3 1

2 2
X + X

9.
3

27a^

11.
9

a b

13.
1

2

2. a b

4. 8bc^

D. \X -r y

8. 2x

10. 9a^x^

6 12
12. --^^—

26 y

14. 2

T. C. 53A Third Course, Unit 2
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2 6-
Sample

J_.
(x y )•'

Solution. ,
2 6,

(x y )

1

3

= = (X^)3(y^)3

= f 2
x^ y •

3 3

Sample 2.
/ 2,10

f 5x5

3 3

Solution. (x^)^° + 5x5

6 3

= 10 ^X + 5x5

3 3

= x5 ,

3

. 5

5x5

[x > , y > ]

[Why ?
]

[Why?]

[x>0]

= 6x-

1.

3.

1 3\2

x^y^y , [x > 0, y > 0] 2.

4.

(a^b'^)^ [ a > 0, b > 0]

1 1

..4 3 M ,.4 3
4b c / \2b c

3 5

(81p^'

.iYX^ y + X^

, 3 ^ 6.6
(x + y )

f
+ V X

V^

3^

16a¥ -^'

L 9a^

,^ 2 4,2 , 6 12,2
10. {4a X ) + (a X )

11,

13.

(27a"\'^^)3

J.

2

,, .,, -4 6 -8"

2

IZ. (Zbx y z )

1

i ^ 2

14. V4.

(continued on next page)

UICSM-2-56, Third Course





54]



2. True

4. False

6. False

J. 1. False

3. False

5. True

7. True 8, False

9. False 10. False

11. True 12. True

T. C. 54B Third Course, Unit 2
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I. (Cont.)

15. i '' n

17. 4 or -^ 18- k

8^ Z'

27 5x'
19. ^ ^°- 7 2

21.

25x^

23. X

25.
_1_

8
a

") '7
b

/i / .

2 4
3 3

a c

1
29.

7

3
a

j_

1 1 a

22. 1

24.
1

3x

26.

I

1

3
a

28.

30.

a b

a + b

8a'

a ,, 5ii - 1 n+1
31. x^ 32. X y

(continued on T . C. 54B)
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15. 8
•2/3

17. 64"-'

19. 243"

21. I 125x

-2 -^
23. (x ) 2

25.

2.

6
^^^

16. 8-4/3

18. 81'^

20.

J.

(125x^)
'

22. (^132x\^ )']

24.

26. /

(27xV^

-3 -i
/b 'X 6

27.
r 3,-3
a b

L ac

-? -? -?
28. [^ ^ + h '^] ^

29.

i 1 i^ -4

2 3
' 4 ;

a a a / 30. (32a )

15.-4

31.

-b/a'
32.

2n+ 1 -n + 4
£E y

- 3n + 2 - 2n + 3
X y

J. Tell whether each of the following statements is true or false.

.0
2. 6'^6^ = 1

3. 7-'l-'
,15

5. -5 = -25

3
9 -5 3

7. -4- = 9 9
9^

5 2 5
6. (3^) = 3^

8.
4 5

3 + 2^
= 3-^ , Z-'

-3 -3 -3 -2
9. (tt + 7) ^ = TT + 7 ^ 10. 4

11.
A -3.-2
bTi 4

12.
,-1

7

IT

(continued on next page)





:-55]



(Cont.
)

13. False

15. True

17. False

19. True

21. True

23. False

25. False

27. True

29. True

31. False

33. True

35. False

37. False

14. False

16. True

18. False

20. True

22. True

24. False

26. True

2.8. False

30. True

32. True

34. False

36. True
_J_

38. False, not defined

T- C. 55A Third Course, Unit 2 j
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,, -3 5 -15
l->. IT TT = TT 14. 2

2

15. (-3)
-2 1

16.
9

17.

19.

21.

5° X 5^ = 5°

0^ + 0^ = 0^

7 - 3

3 - 7

18. 2^ X 2^ = 4^

20. 1^ X l2 = ilO

22. 3^ + 3"^ = 10(3"S

23.
5 5

= 1 24. 0° = 0^

25.
27

26.

N^

4z \5
TT

27. 2 2 =
2

?R 2 ^ 3 _ 5

29,

31

7

3

.4

30.

-3

(^/5)^ TT^

32. 7'^ X 72 = 1

33. 0^ = 34. (tt + 4Z)'^ ^ (tt + ^/^)"^ = 1

35. 10
0.3 _1_

10

i. 1
36. TT (tt +7r) = 7r +

n/tT

37. 10°-^ = 5°-^ 38. 0=0
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The case in which a > and b < can be handled in a

similar fashion. Suppose then that a < and b < 0. In

this case

£ P

(ab)'^ = ((-a)(-b))^

p p

= (-a)^- (-b)^

P P

= (-l)2P(-a)^(-b)^ [2p is even]

P P

. a^ • b^ . [Lemma 2]

This completes the proof that the three "laws of exponents" continue

to hold in the cases covered by the defining principle at the bottom of

page 2-56.

T. C. 56F Third Course, Unit 2
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On the other hand, if p and s are both odd then

a^J^^ Ki-lfi-SL)"^ J^ [Lemma 2 (q is odd)]

r\l
-(-a)^ J^ [p is odd]

= {-l)^\{-a)^ /^ [Lemma 2 (-(-a)'^ < 0, s is odd)]

pr

= (-l)^(-a)^^

pr

= (-l)P'^(-a)'l^ [p is odd]

pr

[Leixima 2 (qs is odd)]

in. Distributive law

For every a and b such that a < or b < and all integers p

and q such that q > and q is odd,

P P P

(ab)^ = a^ • b^ .

Proof: Suppose, first, that a < and b > 0. Then

(ab)^ = (-l)P(-ab)'^

(-l)P(-a)^- b^

= a^ . b^ .

(continued on T . C 56F)
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But {-i)P + " ^— = (.i)P(i-s) + p(i-q). 1,
(.l)PS + qr

since s and q are both odd. Hence

p r ps -r qr

q s qs
a^ • a = a ^

II. Multiplication rule

For every a < and all integers p, q, r, and s such that q > 0,

s > 0, q is odd, and s is odd if p is odd,

a^/ . a^" .

[The only case of the rule for multiplying exponents which is in question

is that in which a < 0, and q is odd. If p is odd then

P

a^ < 0, so we need only consider the case in which s is odd.
]

Proof: Suppose, first, that p is even. Then

\a^/^ = V(-l)P(-a)^/^ [Lemma 2 (q is odd)]

( -^7
= V(-a)^y [p is even]

^-^ [Rule for multiplying exponents
= (-a) in the case of a positive base]

El
\P^/_.Aqs= (-1)^ {-^) [pr is even]

[Lemma 2 (qs is odd)]

P£

(continued on T. C. 56E)
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In order to prove that the rules for adding and multiplying exponents

and the distributive law of exponentiation with respect to multiplication

still hold it is convenient first to prove the following.

Lemma 2: For every a < 0, every integer p, and every odd integer

q> 0,

E P

a^ - (-l)P(-a)^.

[Note that it is only after question (ii) has been answered

affirmatively that we are justified in writing

P

I
/ \p/ \p

Proof: By Lemma 1, a^= l-ly I '\pa ) , and by the defining

principle on page 2-47, I v-a j - \ -a.

J

I. Addition rule

For every a < and all integers p, q, r, and s such that q > 0,

s > 0, and q and s are odd,

£ 1 2. + -
a^ . a" = a^ ^

.

Proof: By Lemma 2, and the rule for adding exponents in the case

of integral exponents, and in the case of a non-negative base,

p £ P £. ps + qr

a^. a^ = {-l)P + ^(-a)^(-a)^ . (-l)P'"(-a) ^^ .

Again, by Lemma 2,

ps + qr ps +qr
1

(_1)PS +qr
(-a) ^^ . 1 a ^^

(continued on T. C. 56D)
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in computing a , An affirmative answer to question (ii) will show that, for

every integer x, the number a given by the defining principle is the same

as that given by the inductive definition on page 2-15. [The question cor-

responding to (ii) in the case a > was answered in the note at the top of

page 2-48.
]

An affirmative answer to (ii) is justified by the fact that, for every

a < 0,

sfa. - - 'sT-a = -(-a) = a .

In order to answer question (i) it is convenient first to prove the follow-

ing.

Lemma 1 : For every a < 0, every integer p, and every odd integer

q > 0,

Proof: [^"^ J =\^-^r^J =V."V v'^^y' ' t)y the distributive

law of exponentiation (for integral exponents) with respect

to multiplication.

Now, as to (ii), since — = —
, ps = qr; and, since q and s are both odd, it

q s

follows that p and r are either both odd or both even, so (-1)^ = (-1)''^.

Since -a > 0, it follows from the boxed theorem on page 2-39 that

^ ) = ( v"^)
. Hence,

and, by Lemma 1,

.,/?r-ar=r->yr?r-a^-^

/q^VYs^V
1^^; = (^^

(continued on T. C. 56C)
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On T. C. 37A, Part H, it is shown that, for every real number a <

and every odd integer q > 0, there is a unique real number x such that x^ = a.

q q,

—

In fact, it is there shown that the real number x such that x^ == a is - v -a :

For every real number a < and every odd integer q > 0,

Kfa. ~ - sT-a- .

[If a < then -a > 0, and '^T-a. is the principal qth root of the positive number

-a, as introduced on page 2-36. ]

For lack of time, we have not, in the text, established the consistency

of the defining principle at the bottom of page 2-56, nor have we proved

that the rules for adding and multiplying exponents and the distributive law

for exponentiation with respect to multiplication, still hold. [The following

discussion is for your background information and for any student who raises

questions .
]

As to the consistency of the defining principle, there are two questions

to be asked.

(i) Is it the case that, for every a < and all integers p, q, r and s

such that q > 0, s > 0, q and s are odd, and — = —
,

q s

Y. r -. (?yi)%

[Compare the above with the boxed theorem on page 2-39.
]

(ii) Is it the case that, for every a < and every integer p,

^ Y = aP ?

An affirmative answer to question (i) will affirm the internal consistency

of the defining principle, i. e. , it will assure us that a^ depends only on the

numbers a and x and not on the particular integers p and q which are used

(continued on T . C. 56B)
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RATIONAL NUMBER EXPONENTS AND NEGATIVE BASES

Consider powers with rational exponents. Up to now we have

explained powers with negative bases only when the exponent was an

integer. [We have also explained powers with positive bases and ra-

tional exponents, and we have shown that powers of cannot be con-

sistently defined except when they have non-negative exponents.] To

complete our discussion of powers with rational exponents we must

consider the case of powers with negative bases and non-integral

rational exponents such as :

You have seen [Part H on page 2-37] that, for every real number

a < 0, and for every odd integer q > 0, there is a unique real num-

ber X such that x < and x^ = a. That is, there is a unique number

*ya such that NTa < and [^fa. J
= a. [For example, nT-S = -2 be-

3
cause -2 < and (-2) - -8.] You have also seen that for every real

number a < 0, and for every even integer q > 0, there is no real num-

ber X such that x^ = a. [In a later unit we introduce a number system

(complex numbers) for which we shall be able to prove the following

theorenn:

For every complex number a / 0, and

for every integer n > 0, the equation:

n
a

has exactly n complex roots,
]

Just as we did on page 2-47, we give a general defining principle

which covers the case of negative bases

For every number a < 0, and

for every rational number x

for which there exists integers

p and q such that q > 0, q is

odd, and x = —
,

q

X ^
UTC.SM-2-56. Third Course
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The corollaries of the addition rule for exponents which are referred

to are stated in Exercises 1 and 2 of Part D, on page 2-50. Their proofs,

using the addition rule, I, on T . C. 56C, are the same as the proofs

given on T. C. 50A.

vl^ v'^ vl,
'1^ 'J^ '1^

1. If there Nwere an integer p and an odd q > such that yg = — then

the odd nunnber 3q and the even number 18p would be the same.

_3
1

8

But no number is both odd and even. Hence '(-8) ' is not defined

by the boxed principle.

1 fi 2
2. Since -jj ~ T ' 2 is an integer, and 3 is a positive odd integer,

(.9)24 ^ (^^y, [infact, (V^) ^
. (-2^/9 )^ = (^)^ = 9^ .]

3. Since = y , 2 is an integer, and 1 is a positive odd integer,

( -12
)

^° = {Imj = V "-^V ^ ^^^* ["^^^^ ^^ ^^ example of the

situation covered in answering question (ii) on T . C. 56A.]

4. As in Exercise 1, if there were integers p and q such that q >

and q odd, and — - y^ > then there would be an integer which is

21^

28
both odd and even. Hence '(-2) ' is not defined by the boxed prin-

ciple.

T. C. 57A Third Course, Unit 2



[2.07] [2-57]

Thus,
2 , .2

(-8)^ = (^^ J
= (-2)^ = 4 .

Although the defining principle does not entitle you to say that

4 4

(-8)^ = (y-a) ,

^1, 1
4 2nevertheless, since t = -^ ,

D i

(-8)^ = (-8)^ = 4.

By virtue of the boxed principle, the rule for adding exponents (and its

two corollaries), the rule for multiplying exponents, and the distributive

principle for exponentiation over multiplication continues to hold.

Exercise . Which of the following exponentials can be defined by using

the boxed principle.

_3_ 2i 120 21_

1. (-8)^^ 2. (-9)^^ 3. (-12) ^° 4. (-2)^^

[Hint for Exercise 1 : Since there do not exist integers p

and q such that q is odd ai

principle does not apply.]

and q such that q is odd and > and y^ = — (Why?), the

2.07 Irrational real numbers as exponents . --Let us draw the locus of

the equation:

y = 2
X

UICSM-2-56, Third Course





[2.07] [2-58]

The following table is useful in drawing the locus. Be sure you under-

stand the entries.

X
,x

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0.5

1

1.5

2

2.5

3

3.5

4

-4 11
2 = -T = TX = 0.0625

2^ 16

2-^-^
= 2^ . (-^-2)-'

'

(^^^)^ 841

^ ^ 0.1

2=0. 125

2-^-^ ^ 0.2

0.25

0.4 (approximately)

0.5

0. 7

1.4

2^-^ = 2^ - (-rZ)^ = 2^ t 2.

5. 7

8

11. 3

16
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through the points which are plotted in the figure on page 2-59,

a curve which has "humps" then it is easy to see that there is

a rational number x such that (x, 2 ) is not a point of this curve.

If one modifies the curve so that is passes through this point,

but still has huinps, then another point (x, 2 ), with x rational,

can be found which should be on the new curve, but isn't.

Ultimately, the fact that every interval, however short , of the

number line contains rational numbers, rules out the possibility

that there be two smooth curves which contain all points (x, 2 ),

X rational. The property of the rational numbers just referred

to is equivalent to the fact that there are rational numbers as

close as one pleases to any given irrational number. For

example, 3. 14 differs from tt by less than 0.002, 3. 14159

differs from jr by less than 0. 000003, etc.
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Correction : The points (2 . 5, 5.7), (3,. 8), and (3. 5, 1 1 . 3) are incor-

rectly plotted. Have students make corrections on figure.

A. [In so far as powers of 2 have been defined, the locus of 'y = 2 'is not

a curve in any accepted sense of the word 'curve', because there is

no point on the locus which has an irrational abscissa. However,

the locus is a subset of just one smooth curve. We shall use this

fact to define powers of 2 with irrational exponents. Students should

be aware that, previous to such a definition, the locus of 'y ^^ 2

consists of just the points (x, 2 ) for rational x.
]

1. Students have proved, in Exercise 1, Part D, on page 2-50,

that, for every a > 0, and every rational x, a / 0. So the

answer to the present exercise should be: No.

2. Here, again, t'ne answer should be: No. Students may justify

this by referring to the defining principle on page 2-47, the

fact that principal roots of positive nunabers are positive (see

page 2-36), and the fact that powers with positive bases and

integral exponents are positive. (The last follows, in the case

of positive integral exponents, from the boxed theorem on pa.ge

2-32. This together with the first part of Exercise 1, Part D,

page 2-19, settles the question for negative integral exponents.

And, ifa_>0, a =1>0.) This is a good exercise in tying

together known results to obtain a needed conclusion (i. e. ,

in proving a theorem).

3. A student's first answer may well be: Yes. However, he

should be led to see that it is at least unlikely that there should
be two such curves. (In fact, there is just one.) If one draws,

(continued on T. C. 59B)
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EXERCISES

A. Note that these points appear to lie on a smooth curve. Sketch a

smooth curve which passes through these points.

1. Do you think there exists a value of ' x ' for which the corres-

ponding value of ' y ' is ?

2. Do you think there exists a value of ' x ' for which the corres-

ponding value of ' y ' is negative ?

3. More than one smooth curve can be drawn through the given

points. Do you think that two smooth curves could be drawn

through all the points which belong to the locus ? [Remember

that only points with rational abscissas are under consideration.

There is no point such as (tt, 2 ) in this locus.]
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2 11
B. The easiest 10 points to plot are

("Y. 0.63), (-•^, 0.79), (rr, 1.26),

(|, 1.58), (|, 2.52), (|, 3.16), (|, 5.04), (|, 6.31), {^-, 10.08),

and (^-, 12.62).

C. Each of the loci in Exercises 1 and 3 is symmetric to the other with

respect to the y-axis. The locus in Exercise 5 is the same as that

in Exercise 2. The locus in Exercise 6 (like each of the other loci)

contains the point (0, 1); each of its remaining points is on the

X-axis

.

',.. .'!'*

Correction : In each of the figures at the bottom of the page, the scales

are intended to be the same on both axes. The locus of 'y = 2 'is

correctly drawn, but that of 'y = 0. 5' 'is not. The latter should be

symmetrical to the former with respect to the y-axis. Ask your students

to look at the two loci and see whether they "look right". Let thein

bring out the fact that if the same scale is intended for both x-axes, then

it can't be the case that both graphs are correct.
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B. Use the fact that \[Z = 1. 26 and plot at least 10 more points which
,x ,belong to the locus of 'y = 2 ''. Use the diagram in the text.

C. Draw the locus of each of the following equations.

,x
1 . y = 3 ; values of ' x ' between -3 and 3.

.X
2. y = . 5 ; values of ' x ' between -4 and 4.

-X
3. y = 3 ; values of ' x ' between -3 and 3.

4. y = 1 ; values of ' x ' between -5 and 5.

. -X
5. y = 2 ; values of ' x ' between -4 and 4.

vX
6. y = ; values of ' x ' from to 4.

You may have guessed from the preceding exercises that if,

for some number a > 0, you plot points belonging to the locus of

the equation:

y = a
x

(x rational),

then these points will appear to lie on a smooth curve which is like

one of the following:

y = 2^
y = 1

X

X

y = . 5
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Answer to question: Up to now only powers with rational exponents have

been defined.

v'^

In the discussion on this page we are hanapered by the fact that the

students who are at present studying this unit have not had experience

with the concept of a function as a set of ordered pairs, no two of which

have the same first component. If we could use this concept then we

would substitute, in the text, 'smooth function' for 'smooth curve',

and 'exponential function for the base a' for 'exponential curve for the

base a'. Then characteristic (i) would say that each exponential function

is a function (no two ordered pairs have the sanne first component), and

is defined for every real number.

As it is, 'smooth curve' is made to carry more than its share of

meaning. For example, a circle is, intuitively, about as smooth as

a curve can be, yet it does not have characteristic (i). If students bring

this up (and it might be well if they did), explain to them that for some

purposes one might want to define 'smooth curve' in another way, omitting

characteristic (i), (and perhaps adding other characteristics), but that

we are interested here in curves which do have characteristics (i) and

(ii), and couldn't think of a better phrase to apply to them than 'smooth

curve'. We're sorry.
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[Question: Why can you use only rational values of ' x ' ?]

It can be proved that, for every real a > 0,

(I) there is at least one smooth curve which for every rational

number x, contains the point (x, a ), and

(Z) there is at most one smooth curve which, for every rational

number x, contains the point (x, a ).

You will find proofs of (1) and (2) in more advanced mathematics courses.

For the present we shall accept them. For each real a > 0, we shall

speak of the curve whose existence is insured by (1) and whose unique-

ness is insured by (2) as the exponential curve for the base a.

The proofs of (1) and (2) depend on giving a precise meaning to the

phrase 'smooth curve'. Although we shall not give a precise definition

we can give a sufficiently clear idea of the concept by stating two of the

characteristics of a smooth curve, as illustrated by the exponential curve

for the base 2.

(i) For every real number x, there is a unique y such that the point

(x, y) is on the exponential curve. [This means, in geometric

terms, that every line perpendicular to the x-axis intersects

the exponential curve in one and only one point.
]

(ii) A second characteristic of a smooth curve can, like the first,

be described by saying that a certain property holds for every

real number. Rather than expressing the property itself we

shall tell you what we mean when we say that the property holds

for the real number \[1> :

There is a number y such that (sj 3 , y)

is a point in the exponential curve for

the base 2. This number y is approxi-

mated as closely as you wish by 2' if

x is any rational number sufficiently

close to \f3 .
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The points A and B nnight have been chosen farther from M. In

fact, for A we might have taken the projection A' (not shown on figure),

of the intersection of the exponential curve with the lowest of the three

horizontal dotted lines, and for B the projection B', of the intersection

of the curve with the highest of these lines. The point is that we want

to show that there are points A and B such that M belongs to the interval

AB and such that, for every rational number x for which (x, 0) belongs

to AB,

1

2^ - m(Mp')
1
< 0. 25.

Any point A in A'M and any point B in MB' will do. We hope that students

will see that this is the case. We feared that using A' and B' might tend

to hide this from them.
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In geometric terms, this means the following:

X

In view of (i) there is a point P in the locus of 'y - 2 ' whose abscissa
o—

o

is \/3. Our job is to approximate the ordinate of P [that is, nn(MP)].

Suppose we want to approximate this number with an error less than

0. 25. We can draw a horizontal band which is "centered on" P and

which is . 50 wide. We wish to find a rational number x such that

|2^ - m{°MP)
I

< 0.25.
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The boxed defining principle and characteristic (ii) make it possible

to find decimal approximations to powers with irrational exponents. For

example,

so

Now

and

Hence,

^^^3a ^1.7 ^(10^^^^^

^'^4~2 = 1.0718,

10^^2Y'^ 3.24.

2'^^ t 3.24.

[A closer approximation to nTS is 1. 732 and the corresponding approxi-

mation to 2 is, approximately, 3.323.]

^1, vi, J,

We have seen that a power with a negative base and a rational ex-

ponent can be defined only if the exponent is the quotient of an integer

by an odd integer. If, in this case, it is not even possible to use all

rational numbers as exponents there is obviously very small likelihood

that we could use irrational exponents with negative bases. [Even in

the complex number system, where any rational number can be used

fairly simply as an exponent for any real base, irrational exponents

lead to complications.
]
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Characteristic (ii) of a smooth curve tells us that the above inequa-

lity will be satisfied by every rational number x for which

|x - \f3
I

is sufficiently small.

To say that |x - \f3 |
is sufficiently small means that points with abscissa

X lie in a sufficiently narrow vertical band centered on the locus of 'x - \[3\

You can see such a vertical band in the diagram. It is "sufficiently narrow"

because the locus of 'y = 2 ' does not intersect the horizontal edges of

the rectangle formed by the two bands. Clearly, any rational value of
o—

o

'x' in AB satisfies the inequality:

[2^ - m(°MP)
I

< 0. 25.

o— o

If we want to ensure a smaller error in approximating m(MP) by values

of '2 ' we need only pick a narrower horizontal band; characteristic (ii)

assures us that we can find a vertical band which will give appropriate

rational values of 'x'.

Characteristic (ii) of an exponential curve will be of use to us in a

later section of this unit. At present we want to use characteristic (i).

That every exponential curve has characteristic (i) suggests the following

explanation of powers with real exponents (including irrational exponents).

For every real a > and every real

X, a is the real number y such that

the point (x, y) is in the exponential

curve for the base a.

Thus, for example, '2 ' is a name for m(MP) [See above diagram].

Since the exponential curve for the base a contains the point (x, a ) for

every rational number x, the boxed explanation agrees with our previous

explanation of powers with rational exponents [See page 2-47].

For obvious reasons we shall not consider powers with negative bases

and irrational exponents [What are the reasons ?]. However, it is con-

venient to complete the boxed statement by adding:
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Students should be warned that not everyone defines '0 ' to be a

name for the number 1. [In the usual treatments of differential cal-

culus, the symbol '0 ' is used in an entirely different way, not as a

numeral at all, but to refer to a type of problem which is treated under

the subject heading: Indeternninate forms. This use of '0 ' in this

sense, as well as the phrase 'indeterminate form', is inexcusable except

on historical grounds. ] However, those who do use '0 ' as a numeral

use it as a name for 1, and many textbook writers (including all those

who write about infinite series) use '0 ' as a name for 1; often, appar-

ently, without realizing that they are doing so.

The proofs that the laws of exponents hold in the case of irrational

exponents are usually delayed until students are at the graduate college

level. At any rate, we won't try to give them here! (Maybe next year--
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For every real num

0;

ber X > 0,

and

0° = 1.

By using characteristic (ii) of exponential curves one can show that

the rule for adding exponents •a^a^ = a^ + y' together with its corolla-

ries. <x — • ^-^ — d
X Va 3.'

, the rule for multiplying exponents

... x.

y

xy,,
"(a )" - a ^

, and the distributive principle for exponentiation over

nnultiplication

principles above

(ab)"^ = aV^" hold in all cases covered by the defining
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Your students will need to use the following theorem when they

solve these equations.

For every real number a, and every real

number b.

if 5^ = 5^ then a = b.

This theorem is proved on pages Z-88 and Z-99. You should assume

this theorem here. Of course, if your students want to prove the

theorem at this point it is all right for them to do so.
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You will realize that interchanging abscissas and ordinates changes

an exponential curve into a logarithm curve (if y = 10 , then x = log y).

Students will use the exponential curves on pages 2-65 and 2-67 as sub-

stitutes for tables of logarithms to the bases 5 and 7, respectively. Of

course, they should not , at this point, be told anything about logarithms.

The whole point of our use of exponential curves is to furnish a painless

and effective approach to logarithms. This approach would be spoiled if

students were told (before page 2-85) that they are "really using lo-

garithms". If some of your students have heard about logarithms from

elder brothers or parents, you may have to do some judicious "sitting

on them" lest they "corrupt" the others.

EXERCISES

1. 2 2. 1.78

3. 9.5 4. 1.9

5. 0.84 6. 0. 84

7. 0. 62 [See Sample 3.
]

8. No root

9. 91 [n = 25 X 5°-^.] 10. 625

11. 157 [g^l25X5°-l^] 12. 9.8

13. 1. 7

14. -2 r2z - z - 2.1

[Note that Exercises 5

and 6 have the sanae
answer. Ask students
why this is so.^.
Answer : If 5 =3

2k k
then 5 = 3. 5, so 25 =

and conversely.]
15,
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EXERCISES

A. The drawing on page 2-65 represents a part of the exponential curve

for the base 5. Use the curve to find an approximation (not in expo-

nential or radical form) to the root of each of the following equations,

Sample j_- 5 = u

Solution . Find the ordinate of that point on the curve whose

abscissa is -0.2. The ordinate is approximately

0.75. Therefore, 5"°'^
= 0.75.

Sample 2^.
5^ = 10

Solution . Find the abscissa of the point whose ordinate is

10. The abscissa is approximately 1.43. There-

f ,1.43 a
fore, 5 = 10.

.r
Sample 3. 25 = 75

Solution.

1. 5^ . 25

3. 5^-4 . c

5. 25^ = 15

7. 125"^ = 20

9.
,2. 8
5 = n

1. 5 - g

3.
625^""'^ = 18

(5^)^ zz 75

5^^ = 75

5^^ 75

5^ 5^

,2r - 2
— 3

2r - 2
a

0.68

2r
a

2.68

r
a

1. 34

2. 5"^ . 17.5

4. 5°-^ = d

6.
32k- 1

__ 3

8. 5^ = -2

10.

12. 5^^ . h

.8 14. 25^ =
5^-^
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B. 1. 1.8 2. 19

3. 1 4. 0.95

5. 2.4 6.

7. -0.2 8. I

[Students can obtain exact answers for Exercises 3, 6, 7, and 8

without using the curve. In using the picture of the exponential curve

for the base 7 students will not obtain so accurate results as in Part A.

This is due largely to the difference in scales on the y-axes.]
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i
The Exponential Curve for the Base 7

y = 7

[2-67]

1 1.21.41.61.8 2
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1. 7^ = 30

3. 7^ . 49-^

5. 7^ = 98

7. 7- = i

[2.07] [2-68]

B. The drawing on page 2-67 represents a part of the exponential curve

for the base 7. Proceed as in Part A.

Z. 1 = m

4. 49^ = 40

6. 7^"^^^ = 49

8.
49^-^^

=
7^"-^

C. You can use the drawing on page 2-65 to reduce the labor of multiply-

ing and dividing. Your answers will be approximate but quite frequently

an approximate answer is all that is required in solving a problem.

[You could improve the accuracy of your answers by using a drawing

made to a larger scale.] The first three samples do not show a reduc-

tion in the labor of computing. They show you a use for an exponential

curve

:

Sample j_. 7X3
e 1 * -7 V o a j.1. 21 ^ ^0.68
Solution . 7x3=5 X 5

^1. 21 + 0.68

= 51-89

a
21

Sample 2. 7. 2 -f 3. 5

Solution.
7. 2

3.5
a

3I.23

^0.78

=
3I.23.0.7

= ^0.45

a
2. 1
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C. 1. 25.2 2. 9.1

3. 3.2 4. 2.5

5. 3750 6. 2.64

7. 55.6 8. 7.35

[As to Exercise 5, Part C, 15.4 =
5^'"^, so (15.4)^ = 5^" ^

^5.1 ^5 .0.1 r4 .1.1 .3 .2.1 ^ ci- A ^Now 5 =5-5 ,5-5 ,5-5 , etc. Students may-

obtain somewhat different results according to which of these

expressions they use.]

D. [As noted on T . C. 68A, answers obtained in Part D will, in general,

be less accurate than those obtained in Part C. ]
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Sample 3. 9.7^

Solution . 9.
7"^

=
(5^"'*^)'^

. 34.23

= 5^ X 5°-"

= 625 X 1.4

= 875

98.6 X 84.7
Sample 4.

Solution.

3. 89

98.6 X 84.7 9.86 x 8.47 X 10
2

3.89 3.89

a 5^-^^ X 5^-^^ X 10^

^0.85

_ 3I. 42.1.33-0. 85 ^ ^^2

=
5^-9° X 10^

t 21.4 X 10^

= 2140

Use the methods illustrated in the samples to sinnplify each of the

following expressions.

1. 7. 2 X 3. 5 2. 18.6 X 0.49

3. 20.2 V 6.4 4. 58.8 v 23.6

,3
5. (15.4) 6. ^/18.6

35. 8 X 143.7 1521 X 87.2
927S 638 X 28. 3

D. Use the drawing on page 2-67 and repeat Part C.

E. Parts C and D illustrated the fact that you can use an exponential

curve for the base 5 or for the base 7 as an aid in carrying out com-

putations. There is a quicker method for using an exponential curve

to assist in computations. We illustrate this method for a simple

case, that of finding the product of 2 by 3.
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E. Note that the base is not given for the exponential curve shown in

the figure. All that one needs to know in order to use the curve to

assist in computations is that it is an exponential curve.

Granting that the figure does represent an exponential curve,

(actually, it is not a very accurate drawing) it is impossible to

determine from the figure what its base is. This depends entirely

on the scale which is used for the x-axis. For example, if the

projection of B on the x-axis is taken to represent the point (1, 0)

then the figure pictures the exponential curve for the base 2. If

the same point is taken as representing (Z, 0) then the base is \fZ .

[ If b > 0, and b =2, then b = -/Z . ] The arrow at the end of the

x-axis indicates that the base for the curve is > 1. If, however,

we disregard this and take the projection of D on the x-axis to re-

present the point (-1, 0) then the figure represents the exponential

curve for the base -y .

Try to bring out this information in class; for example, by ask-

ing students if they can guess what the base of the pictured expo-

nential curve is, or asking what they would need to know in order

to find this out. After it has become clear that it is the scale for

the X-axis which is in question, students can estimate from mea-

surements made on the picture what the base is if the scale for

the X-axis is the same as that indicated for the y-axis. [in this

case the base is 1.13, approximately.]
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>- X

The diagram represents a piece of an exponential curve. Suppose

b is the base for this exponential curve. Then

.m(AB) , ^ , ,m(CD) ,b ' - 2 and b = 3. n

Therefore,

2 X 3 = b

= b

UICSM-2-56, Third Course
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li Z is the point such that

m(XZ) = ^ m(XY) then

m(XZ) _ 3

Then by jumping from Z to the curve, and then over to the y-axis

you can find the number corresponding to the cube root of 7. Here

is a good chance to review the ruler and compass construction for

dividing a segment into any number of congruent segments.
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This geometric method may also be used to simplify any

exponential which has a rational exponent.

Here is a sample which shows how the method is used.

1
Suppose you want an approxinriation for ^T? . If b is the base of the

exponential curve shown above then

j^ml'xY)
^ ^

(continued on T. C. 71C Supplement)
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As pointed out on T . C 70A, one does not have to know the base

for the exponential curve in order to use the geometric method of com-

puting. Of course one could not use the exponential curve for the base

1 (except for multiplying and dividing 1 by 1), but whatever the base of

the curve pictured on page 2-70 nD.ay be it is not 1.

2. 21

5. 24

8. 4

10. 3 11. 4 12. [But Exer-
cise 12 cannot

1. 20

4. 18

7. 3

3. 15

6. 48

9. 0.5

12.

be solved by using
an exponential curve!]
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o—

o

If m(DE) = ra(AB) then m(CE) is the abscissa of the point F on the

o—o

u J .. • , m(AB) +m(CD) ^, ,, , ,, j.curve whose ordinate is b . You see that the ordinate

of F is 6. Therefore,

2X3 = 6.

O— O — o

By "adding" the segment AB to the segment CD, jumping to

the curve, and then over to the y-axis, you can find the product of

the numbers corresponding to the points A and C.

Do you have to know the base for the exponential curve in order

to use this geometric method of computing? [Could you use the expo-

nential curve for the base 1 ?]

Use this geometric method with one or the other of the two ex-

ponential curves (pages 2-65 and 2-67) to simplify the following ex-

pressions .

1. 4 X 5

4. 2 X 9

7. 6 ^ 2

0. 6 X 0. 5

2. 3X7 3. 5 X 3

5. 8X3 6. 6 X 8

8. 20 V 5 9. 7 ^ 14

1. 20 X 0. 2 12. 3 X

F. You have seen how exponential curves may be used in carrying out

computations. Of course, when you use exponential curves you must

be satisfied with approximate answers. You can improve the accura-

cy of your answers by using an exponential curve which has been

drawn to a larger scale. For example, let us use the exponential

curve for the base 5 to find the product of 7. 5 by 2. 6.

7.5 X 2.6 ^ S'-^' X 5°-^9

= 51.84

= 19.3

Actually, 7.5 X 2.6 = 19.5. Now, if you had available a larger

-

scale drawing of the exponential curve for the base 5, you could carry

out the computation as follows :
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The table referred to is actually a four -place table of common

logarithms, except that it is headed:

Coordinates of points in the exponential curve for the base 10,

y - lO""

and the left-hand coluinn on each page, which is usually labelled

'N', is labelled 'y'. Again, do not refer to this table as 'a table

of logarithms*.

T. C. 72A Third Course, Unit 2
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7.5 X 2.6 t s'-^''"^ X 5°-^9^^

^1. 8456
- D

- 19.50

A picture of an exponential curve for the base 5 would have to be quite

1 2519
large to pernnit you to obtain 5 ' as an approximation to 75. Even

a table which listed the coordinates of points on that curve would have

to be quite long. Probably no one has ever made such a drawing or

such a table.

Fortunately, however, mathematicians have constructed very

extensive (and accurate) tables of coordinates for points contained in

the exponential curve for the base 10 . Since, as you have seen in

Parts D and E, the base of the exponential curve does not affect the

computational nnethods we can use such a table to improve the accu-

racy of our answers. We give a table of coordinates of points in the

exponential curve for the base 10 on the last three pages of this unit.

The table lists the ordered pairs corresponding to points on or very

close to a point on the locus of 'y = 10 ' for 900 values of 'x' from

0.0000 to 0.9996.

Here is how you read the table. Suppose you want to find an ap-

proximation to the abscissa of that point on the locus of 'y = 10

whose ordinate is 6. 23. In the columns headed 'y' search for '6. 2'.

You will find '6. 2' on the second page of the table. Place your right

index finger on '6. 2' and move your hand to the right until your finger

is touching the numeral '. 7945' which is in the column headed '3'.

Now you know that the point (6. 23, 0. 7945) is very close to a point

on the exponential curve. In other words,

6.23 ^ I00-^945

Study the table until you understand how to use it. To check your

understanding, see if you obtain the following results from the table.
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2.00 ^ 10°-^°^°

2.01 I 10°-3°3^

2.02 f 10°- ^05^

4.37 t 100-6405

10°-9^90 a
g_^g

10°-°^^8 a
^_Q3

vl^ vl^ vl^
'1^ '(^ '1^

Use the table to solve the following equations.

3 5527
Sample j_. 10 = k

Solution . The exponent 3. 5527 is not listed among the

abscissas in the table. However, we know

,, ^,_3.5527 ,_3 ^ ,-0.5527 , ^,that 10 =10 X 10 and the ex-

ponent 0. 5527 is listed in the table. Since

10°-^^^^ I 3.57

then

3 5527 a 3
10 = 3. 57 X 10 = 3570 .

The root of the given equation is approximately

3570.

Sample 2. 853 = 10^^

Solution . The power 853 is not listed amiong the ordi-

nates in the table. Since

853 = 8.53 X 10^

and since

8.53 ^ 10°-9309

then

853 I 100-9^°9 ^ jo2 _ ^o2.9309_

So the root of the given equation is approxi-

mately 2.9309.
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(c,ont.
)

1. 2. 50

3. 25,000

5. 2.9284

7. 9.95

9. 2, 1335

11. 2.0414

13. 3.0334

2. 25.0

4. .9284

6. 4.9284

8. 5.06

10. 3.6395

12. 2.0043

14. 3.2553

~.i, ^1, ^1.
'1^ 'f -1-

Note, in connection with Sample 3 and Sample 4, that we do not

now expect students to use interpolation in finding values not listed in

the table. The process of linear interpolation is explained on pages

2-79 and 2-80 and students are told on page 2-81 that they are to use

this process, whenever appropriate, from then on.
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- ,^1.3979 .

2. 10 = b

4. 8.48 = 10^

6. 84800 = 10^

8.
10°-^°^^

- b

10. 4360 - 10^

12. 101 = lo"^

14. 1800 = loP

Co 1 -i
,p,0.7453Sample 3. 10 - 4

Solution . The exponent 0. 7453 is not listed among the

abscissas in the table. However, 0.7451 is

listed. Since

0.7453 a 0.7451

1. 10°- 3979
— a.

3. 10^- 3979
= c

5. 848 -- 10^

7. 10°- 9978 _ ^— a.

9. 136 = 10^

1. 110 = lo"^

3. 10 80i = 10"

then

10°-^^" I 5.56.

So, the root of the given equation is approxi-

mately 5.56.

Sample 4. 9.5492 = 10^

Solution . The power 9. 5492 is not listed among the ordi-

nates. We note that

9.5492 = 9.55.

Therefore, since

9.55 I ioO-9800

we can say that

9.5492 ^ ioO-9800

and conclude that 0.9 800 is an approximation

to the root of the given equation.
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15. 4.27

17. 10. 1

19. 3

21. 0. 6355

23. 6. 8048

16. 5.77

18. 309

20. 0.8035

22. 2.7177

24. 6

T. C. 75A Third Course, Unit 2
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15. 10
0. 6308

17.
10l-°°^^

= r

19. 100-4^^9 -

21. 4.3152 = 10

23. 6382419 10

16. 10«-^^1° - s

18.
10^-4«99 ^ ^

20. 6.3592 = 10'

22. 10

24. 10

521. 62

1000010

G. Use the table for the exponential curve for the base 10 to make com-

putations easier in the following problems .

Sample l_. Find the area of a rectangle which is 5. 64 feet wide and

18. 32 feet long.

Solution. We need to find the product of 5. 64 by 18. 32.

Sample 2.

5.64 X 18. 32 = 5.64 X 18. 3

5.64 X 1. 83 X 10
1

a ^^0.7513 ^ ^qO.2625
^ ^^1

10

10

(0. 7513 + 0.2625 + 1)

2.0138

Solution

. 10°-°138^ 10^

= 1.03 X 10^

= 103

The area is approximately 103 square feet.

Find the area of the circle the length of whose radius

is 6.08 inches

.

We need to simplify the expression '7i-(6.0 8) '.
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1. (a) 9. 19 X 10 square feet

2
(b) 1. 57 X 10 square inches

(c) 1.72 X 10 square miles

(d) 9.12 square yards

(e) 1. 80 X 10 square meters

3
Z. (a) 5. 22 X 10 square inches

(b) 11.6 square feet

3
(c) 3. 78 X 10 square centimeters

43
(d) 5. 56 X 10 square miles

3. (a) 25. 3 inches (b) 12.1 feet

(c) 1.95 X 10^ centimeters (d) 2. 64 X 10^^ miles
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7r(6.08)^ t 3. 14 X (6.08)^

I 10°-^969 ^ (^^00.7839^

= 10^-0^47

= 10°-0^^^ X 10^

t 1.16 X 10^

= 116

The area is approximately 116 square inches.

1. Find the area of each of the rectangles whose dimensions are:

(a) 326 feet and 282 feet

(b) 18.7 inches and 8.40 inches

(c) 184000 miles and 9. 371 miles

(d) 3.01 yards and 3.03 yards

(e) 1342 meters and 1342 meters

2. Find the area of a circle the length of whose radius is:

(a) 40.2 inches (b) 1.92 feet

(c) 34. 7 centimeters (d) 4.21 X 10 ^ miles

3. Find the circumference of each of the circles described in Ex-

ercise 2

.

H. The table for the exponential curve for the base 10 lists coordinates

of points in the first quadrant only. But just as it is possible to use

the table to find abscissas for points whose ordinates are greater

than 9.99, it is also possible to use the table to find coordinates of

points in the second quadrant, that is, points with negative abscissas.
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H. 1. 6. 72 X lo"^ 2. -1.2660

3. 1.47 X 10"^ 4. -2.0159

5. 9.90 X lO"''' 6. -5.9586

7. 3.97 X 10'^
8. 0. 306

9. -5 10. -13.5031

11. no solution 12. no solution
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Sample 2^. Solve the equation

,t

Solution.

10 0.000397.

We note, first of all, that since 0.000 397 < 1, the

abscissa corresponding to that point whose ordinate

is 0.000397 is a negative number. Now,

0.000397 = 3.97 x 10
-4

I 10°-^988 ^ ^Q-4

= 10

10

0. 5988-4

3.4012

So, the root of the given equation is approxinaately

-3.4012.

[Note: You will find in later computational work

that the expression '0.5988 - 4' is more useful than

'-3. 4012' even though it is not as simple -looking.
]

Solve the following equations. Find a decimal approximation to each

root.

1.
10-^-^^^9

= y 2. 0.0542 = 10'

3. 10
4.8331 - t

^ ,„-6.0044
5. 10 = u

4. 0.00964 = 10'

6. 0.00000110 = 10

7. 10-^-^0^^ = k 8.
10-°-^^^^

= k

9. 10 = 0.00001 10. lo'' = 0.0314 X lO"^^

11. 10 = -100 12. 10 0. 1931

I. For each of the following write a scientific numeral which stands

for a number which is approximately equal to the given number.
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Answer to 'Why this step?': If the name of the exponent is written

in the form :

«0 • --- + n',

in which 'n' stands in the place of a name for an integer, then that integer-

nun-.eral is the exponent symbol in the exponential which makes up part

of the scientific name of the power.

1. 1.53 X 10"^ 2. 4. Z5 X lO"^

3. 3.06 X 10'^ 4. 1.27 x lO""^

5. 1.72 x 10"*^ 6. 4.93 x lo"^
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Sample

.

0.0312 X 0.000846

Solution . 0.0312 X 0.000846 = (3. 12 X lO'^) X (8.46 X lo"^)

= 3. 12 X 8.46 X 10"^

I 10°-49^^ X l0°-92''^ X 10-^

10
1.4216 - 6

= 10°-^^^^ "^ [Why this step?]

- 2.64 X 10'^

1.

3.

5.

6.

0.00781 X 1.92

0.0000678 X 4510

2.

4.

0.000624 X 0.0681

0.00362 X 0.0182 x 19. 3

5.26 X 10 X 3.27 X 10

1.11 X 10^° X 4.44 X 10"^^

LINEAR INTERPOLATION

We can obtain approxinnations to the coordinates of more points than

are listed in the table by a method called linear interpolation . If you se-

lect two points in an exponential curve which are sufficiently close together,

the chord ("linear" segment) which joins these points lies very close to

the curve. [This is a consequence of characteristic (ii) of exponential

curves. See page 2-61.] Here is an enlarged picture of a small piece

of the exponential curve for the base 10.

B(0.5378, 3.45)

(0.5366, 3.44)
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EXERCISES

In connection with the solution of the sample students should, as

suggested on page 2-81, make a sketch like the following.

B(0.5378, 3.45

(0.5366, 3.44)

m(PD) ^ m(AD)

m(BC) m(°AC)

(So if X = m(PD) then the ordinate of ? is 3. 44 + x and this is also,

approximately, the ordinate of Q.

)

^1, vl.

Students should aiake a sketch like the above, or like that on

page 2-79, whichever is appropriate, for each interpolation problem
until they are certain that they understand the process of linear inter-

polation.

T. C. 80
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Suppose we want to find the abscissa of the point Q on the curve whose

ordinate is 3.443. This ordinate is not listed in the table. However,

the coordinates of points A and B are listed. Now, if P is the point on
o—

o

the chord AB whose ordinate is 3.443, the same as that of Q, then the

abscissa of P is an approximation to that of Q. By similar triangles it

is easy to find the abscissa of P and, hence, to approximate the abscissa

of Q. Since AAPD ~ AABC, we have :

— —

o

m(AD) ^ m(PD)
O — o '

m(AC) m(BC)

or

m(AD) =
3.443 - 3.44
3.45

0.003

3.44

X (0.0012)

X (0. 5378 - 0. 5366)

0.01

= 0.3(0.0012)

= 0.0004

Therefore, the abscissa of P is approximately

0.5366 + 0.0004

or

0.5370

So, the abscissa of Q is approxim.ately 0.5370.

EXERCISES

A. Use linear interpolation to approximate the missing coordinate for

each of the points in the exponential curve for the base 10.

Sample . (0.5374, )

Solution. No point Q with this abscissa is listed in the table.

However, it is clear that the point in question lies

between the listed points A and B.

1 A: (0.5366, 3.44)-.

0.0008 X
I Q: (0.5374, )

—

'

0.01

0.0012
1 B: (0.5378, 3.45)
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A. (cont.
)

1. 0.8053 2. 6.982

3. 0.5420 4. 9.852

5. 0.8924 6. 6.693

7. 1.7658 8. 32.52

9. 0. 8832 - 1 10. 0.4243

T. C. 81
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From similar triangles,

X a 0.0008

so

0.01 0.0012 '

0.007.

Therefore, the ordinate of Q is approximately 3.447.

[You should make a diagram similar to the one on

page 2-79 and interpret the above procedure geome-

trically.
]

)
1.

[ , 6.387) 2. (0. 8440,

3. , 3.483) 4. (0.9935,

5. , 7. 805) 6. (0. 8256,

7. ( , 58. 32) 8. (1. 5121,

9. < , 0.7642) 10. (-0. 3723,

Note: Use linear interpolation hence-

forth in this unit when you are looking

for coordinates of points (in the expo-

nential curve for the base 10) which

are not listed in the table.

B. Use the table of coordinates for the exponential curve for the base

10 to reduce the computational work in finding approximate answers

to the following problems.

Sample. Find the area of the triangle whose base is 0.00652 feet

long and whose height is 0.0 532 feet.
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B. 1. 4.439 X lO"^ sq. ft. 2. 2. 31 8 X 10
"^

cu. M.

3. 1. 751 X 10'^ cu. M. 4. 3. 182 X 10'^ cu. ft.

5. 1.046 X 10"^ sq. ft. 6. 1.937 X lo"^ cu. ft.

7. 1.411 sq. ft. 8. 1. 885 sq. ft.

9. 1. 313 X 10"^ sq. km. 10. 1 . 395 X 10
"^

cu. cm.
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Solution . - X 0.0065Z x 0.0532

= (5 X 10"^) X (6.52 X 10"-^) X (5.32 x lo"^)

= 5 X 6.52 x 5.32 X lo"^

t 10°-^990 ^ ^q0.8142 ^ ^qO.7259
^ ^^-6

jq2.2391 -6

__ io0.239l-4

^ 1.73 X lO'"*

-4
The area of the triangle is approximately 1. 73 X 10

square feet (or 0.000173 square feet).

1. Find the area of the parallelogram which has a base 0.00 5624

feet long and a height of 0.0789 3 feet.

2. Find the volume of the rectangular solid whose dimensions are

0. 7802 meters, . 009905 meters, and . 30 1 meters .

3. Find the volunne of the cone whose base has a radius of 0.09 86

meters and whose height is 0. 172 meters. [Recall ; V = rr-TT r h.
]

4. Find the volunne of the sphere the length of whose radius is

0.009124 feet. [Recall: V=j7rr^.]

5. Find the surface area of the sphere in Exercise 4.

2
[Recall: A = 47r r .

]

6. Find the volume of the cylinder which has a base of radius

0. 2745 feet and a height of 0. 8183 feet. [Recall: V=7rr\.]

7. Find the lateral area of the cylinder in Exercise 6.

[Recall: L = Zw rh.
]

8. Find the total area of the cylinder in Exercise 6.

[Recall: T - 27r rh + 27rr^, or: T = 27rr(h + r).]

9. Find the area of the trapezoid which has bases 0.00003768 and

0. 000005892 kilometers in length, and a height of 0. 0006014

kilometers. [Recall: A = j^C^ + b) . ]

10. Find the volume of a cube which has an edge of length 0.00 5185

centimeters

.
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C. The exercises in the preceding part were basically multiplication

problems. You can use the exponential curve for the base 10 to

reduce the computational work in dividing and in simplifying expo-

nentials .

Sample 1. Simplify: 8790 f 324.

„ , ,. 8790 8. 790 x lO"^
Solution.

^^^
3.24 X 10^

loQ-9-^^0 X 10^

10°-^^°^ X 10^

= 10°-^^^^ X iqI

= 2. 71 X lo\ or 27. 1

Sample 2. Simplify: 421 v 89600

c. 1 . 421 4.21 X 10^
Solution . -qqTnn- = T

a IqO-^^^^ X 10^

[Note that if we subtract 0.9523 from 0.6243 we

shall obtain a negative exponent which will have

to be treated as in Sample 1 of Part H. To avoid

this bit of work we proceed as follows:
]

10^-^2^^ X 10^

10°-9"3 X 10^

10°-^^^° X 10-^

= 4. 70 X 10'^ (or 0.00470)
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Sample 3^. Simplify: \r962

Solution . ^962 = (962)^

= (9.62 X 10^)^

= (10^-9832^5

(2.9832x1)
= 10

^

^qO. 59664

= 3.95

Sample 4. Simplify: \/0. 000962

Solution . ^0.000962 = (0.000962)^

:- (9.62 X 10""*)^

I (10°-9832 ^ ^^-4^3

[We could write as the next expression:

^^^0.3274 ^ ,0-^-^^^^.

On adding exponents we would obtain a negative

exponent and proceed as in Sample 1 of Part H.

We can avoid this bit of work by using the follow-

ing trick:
]

= (102-9832 ^ 10-6^3

= 10°-9944 ^ 10-2

= 9.87 X lo"^', or 0.0987

UICSM-2-56, Third Course





rZ-85]



they may not feel certain that the equation '2 =16' has only one root.

The situation is more serious in the case of:

0. 3010 = the logarithm to the base 10 of 2

.

A student may admit that 10 ' =2, but not be certain that there

is any number x such that 10 - Z, exactly . And again, granting that

there is one such x, can he be sure that there is only one ?

If you are lucky enough to have a student who asks such questions

at this point, tell him that these questions are eminently proper.

Logically, before using the phrase 'the logarithm to the base 5 of 25'

one should prove that there is just one number x such that 5 = 25.

On pages 2-88 through 2-91 we do what we can at this stage to prove

that this is so. Pedagogically it seems better to introduce the word

'logarithm' first and then justify our use of it after the student has

had a chance to become accustomed to the word.
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C. 1. 8.447 X 10"^ 2. 1.843 X lO"^

3. 2.893 X 10"^ 4. 1.542 X 10^

5. 2.42 X 10"^ 6. 9.862 x 10°

7 1.77

9. 1.013 X 10"^

11. 1. 33

13. 1.65

15. 1.28

8. 3. 184 X 10'^

10. 1.46

12. 1.23

14. 1.40

16. 1.22

18. 19.017. 1.005 X 10^

19. .684 20. .641

The remaining sections of this unit, 2.08 and 2.09, deal with

logarithms. Students are first shown, by examples, the meaning of the

word 'logarithm', i.e. , that, for all x, b, and y, x is the logarithm

to the base b of y just if b = y. [Note that we say 'x is the logarithm

to the base b of y', parodying the notation 'log, y', rather than, as

some say, 'x is the logarithm of y to the base b'. ]

Students who have thoroughly understood our earlier insistence

that the use of phrases of the form 'the such that ' requires

a preliminary proof that there is one and only one such that

may boggle at such a statement as :

4 = the logarithm to the base 2 of 16.

4 X
Although they may grant that 2 =16 (there is one x such that 2' =16),

(continued on T. C. 85B)
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Use the table for the exponential curve for the base 10 to find

approximations (in decimal numieral or scientific numeral form)

for the numbers listed below.

1. 310 V 3670 2. 0.07316 v 3962

3
3. (0.01425) 4. 0.00631 X 1760 v 0.0720

5. (0.01425)2 6. (3.141)^

7. (3.141)2 8. 1 V 3.141

9. 1 V 9. 872 10. V3.141

11. ^3.141 12. ^ 3 . 141

13. sjl.lZb 14. ^2.726

15. t/2. 726 16. ^2. 726

17. 5l758 X ^n^TOT 18. t/0. 09705 -f ^0.006908

19. 5/17. 23 -f ^17.23 20. n/0. 06912 ^ \/0. 06912

2.0 8 Logarithms. --The coinputations you have carried out in the pre-

ceding exercises with the help of exponential curves are commonly called

computations with logarithms. A logarithm is an exponent, the abscissa

of a point on an exponential curve. For example, since the point (2, 25)
2

is a point on the exponential curve for the base 5 [because 5 = 25], the

number 2 is often called

the logarithm to the base 5 of 25.

Similarly,

4 = the logarithm to the base 2 of 16

1 = the logarithm to the base 7 of 7

3 = the logarithm to the base 4 of 64

0. 3010 = the logarithm to the base 10 of 2

= the logarithm to the base tt of 1

-4 = the logarithm to the base y of 1 6

u^ = 16]

[7' = 7]

[ Why? ]

[10°- 3010 a
2]

U'- 1]

[(^)- 4.16]
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1. 10 = 100

J.

5.

7.

9.

11.

13.

5 = 125

-13
= y

IC-^ = 13

X = 5

3>' ^ 26

10^" = 125.6

Z. S^-'^S I 3.5

4. x^-^ . 17

6. loO-O"^" a
^_^g

8. 5 = 0.04

10. 96° = 1

/ \-0.85
12. {^jj = 3.89

14. 9'^ = 13
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1. 3 = the logarithm to the base 5 of 125

2. 3 = the logarithm to the base 6 of 216

3. 1 = the logarithm to the base 3 of 3

4. 0.477 = the logarithm to the base 10 of 3

5. 10 = the logarithm to the base 2 of 1024

6. 0.0780942 = the logarithm to the base 10 of 1.1970

7. = the logarithm to the base 5 of 1

8. -2 = the logarithm to the base 5 of 0. 04

9. -3 = the logarithm to the base 10 of 0.001

10. a = the logarithm to the base 10 of 50

11. a = the logarithm to the base 3 of b

12. b = the logarithm to the base a of c

[It may be worth-while to set variations of Exercises 7 and 9 as

a basis for generalizations which, if verbalized, might read:

For every b > 0, is the logarithm to the base b of 1

and:

For every integer n, n is the logarithm to the base 10 of 10 .
]

a
13. 2 = log„ 81 14. 4 = log^ ^910

15. 3 i logi3
J
2250 16. -2 = log.7O.O2O4

17. x = log., 104 18. 5 = log 5.12

19. 9.06= log X 20. X = log 328

21. 10 -- log b

-,:. nI- vi.

Correction: In Exercises 6, 7, and 1 3 of Part B the base is 10.

(continued on T . C. 86B)
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EXERCISES

A. Translate each of the following equations into one which contains the

word 'logarithm':

1. 5^ - 125 2. 6^ = 216 3. 3^ - 3

4. 10°-^^^ 13 5.
2^0 . 1024 6. 10°

"
^^^^^^M i . 1970

2. 6^ = 216

5.
2^0 = 1024

8.
5-^

= 0.04

11. 3^ = b

7. 5° - 1 8.
5"^

= 0.04 9. lO"^ = 0.001

10. 10^ - 50 11. 3^ = b 12. a^ = c

5Note : Instead of translating '3 = 243' into '5 is the logarithm to

the base 3 of 243' we can abbreviate by writing '5 = log, 243'

Use the abbreviated translation for each of the following

expressions

.

13. 9^ - 81 14. 5.5^ = 910 15. 13.1^ = 2250

16. 7'^ = 0.0204

19. 49-°^ = x

B. Translate each of the following equations into one which contains an

exponential

:

1. log^Q 100 = 2 2. log^3.5 = 0.78

3. log^ 125 =3 4. log 17 = 2.

3

5. log y = 13 6. log 1.19= 0.0755

7. log 13 = X 8. log^ 0.04 = -2

17. 7^ = 104 18. x^ = 5. 12

20.
X

a = 328 21. a^O - b

9. log^ 5=1 10. logg^ 1 =

a
11. log 26 = y 12. log! 3.89 = -0.85

13. log 125.6 = m 14. logg 13 = x
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C. Logarithms to the base 10 are frequently called common logarithms.

The statement:

2 = log^Q 100

is sometimes read:

2 is the common logarithm of 100

and is sometinnes abbreviated:

2 = log 100.

Solve the following equations.

Sample
J_.

log 59 = k

Solution . This equation is equivalent to:

10^ = 59.

Use the table of coordinates for the exponential

curve for the base 10 (frequently called a table

of common logarithms ). Since

59 = 5.9 X 10^

then

59 I lO^-^'^^ X 10^

. ioi-^^°9

Therefore,

log 59 = 1. 7709.

So, the root of 'log 59 = k' is approximately

1.7709.

Sample 2. log t = -2.7

Solution. We seek the root of:

Since

-2 7
10

'^^
- t

10-^-^
=

10°-^-^

= 10°-^ X 10-^

= 2 X 10'^

= 0.002 ,

the root of 'log t = -2.7' is approximately . 00 2.
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C. 1. 0.4771 2. 0.5384

3. 1.5384 4. 5.5384

5. 0.5384 - 3 6. 0.7910 - 2

7. 2.506 X 10^ 8. 6.897

9. 3.61 X 10'^ 10. 4.59 X lo'^

11. 0.0282 - 6 12. 0.7751 - 1

13. 3 14. 1

^j-. ^p ^,.

We take up here the questions discussed on T . C. 85:

Given numbers b and y can there be more than one number x
X

and:

such that b = y?

Given numbers b and y must there be a number x such that

b"" = y?
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1. log 3 = s 2. log 3.455 = r

3. log 34.55 = m 4. log 345500 = n

5. log 0.003455 = p 6. log 0.0618 = q

7, log a = 2.3990 8. log b = 0.8386

9. log c = -1.4425 10. log d = 3.6618-5

11. log 0.000001067 = f 12. log 0.5959 = g

13. log 1000 = h 14. log t =

RULES FOR LOGARITHMS

You have seen that, for example, '2 is the logarithm to the base 5

of 25' is another way of saying that 25 is the power with base 5 and ex-

ponent 2

:

'2 = log- 25' is equivalent to '5 = 25'.

Similarly, since 5=1, log- 1 - 0, and, since 5 =0.2, log^O.2 = 1.

There is one thing which we must check before going further: We know,

for example, that 5^ = nTs , and so we would agree that log^ '^/5 = -j .

'5
"-^

2

1 a
But perhaps there exists a number a. /- -j such that 5 = ^/5 . If so we

would be equally inclined to agree that log^.'sTS / -j . [Why should the

possibility of this be disturbing?]

Before reading further, look at the picture, on page 2-65, of the

exponential curve for the base 5 and see if you have reason to think that

the equation '5^ = n/S ' has at most one root.

As suggested above, if we are to avoid inconsistencies in defining

logarithms to the base 5, we need to know that there do not exist two

real numbers a and b such that 5 = 5 , [Why would knowing this con-

vince us that no number can have two logarithms to the base 5?] In

order to prove that for every a and b, if 5 =5 then a = b, let us con-

sider the equation:

5^ = 5^
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Since, for every number r, 5^ / 0, this equation is equivalent to:

5^ •
5'^

. 5^ •
5"^

[Why?].

That is, it is equivalent to:

5^ "'^
= 1 [Why?].

Hence, in order to prove:

For every a and b, 5 =5 only if a = b,

it is sufficient to prove :

('=) For every x, 5^ = 1 only if x = [Why?].

Now, if X / and 5 =1 then [by characteristic (i) of exponential curves,

page 2-61]

5" = l".

,X ,

or, since 1 = 1,

5 = 1,

Since 5 / 1, it follows that there is no number x / such that 5 =1.

Hence, if 5 =1 then x = 0. Since we have proved {*), there do not

exist two numbers a and b such that 5 = 5 . Consequently, every num-

ber has at most one logarithm to the base 5.

We come now to a second thing which must be checked before we

make much use of logarithms : What numbers have logarithms to, say,

the base 5? For exannple, do you think that, for every real number y,

there is at least one real number x such that 5 = y?

You know that, for every real number x, 5 / 0, and that

X f k/Z^^ X
5 = \5 '

J
>0. Hence, if there exists an x such that 5 = y, y > .

In other words, a number which has a logarithm to the base 5 must be

positive. This suggests the question: Does every positive number have

a logarithm to the base 5? Look now at the drawing on page 2-65 and

guess the answer to this question.

In more advanced mathematics courses it is proved that

for every y > there is an x such that 5 = y.
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A neater treatment if one wants to take care at once of each base

a > 1 is to use the fact that, if a > 1 and n > ^ then y < a . This
a - 1

is a consequence of Bernovilli's Inequality, for which see the Review

Exercises.

Once one has proved that, for every a > 1 and every y > 0, there

is an X such that a = y, one can handle the case in which < a < 1

as follows: If < a < 1 then — > 1, so, as previously proved, for
a

every y > there is an x such that (
—

j
- y- 'B>\xt then a = y

(i.e. , there is a number z such that a = y) .
]
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To prove that, for every positive integer n, n < 5 , requires the

use of mathematical induction. The property in question is expressed

by:

... < 5'
* .

Since 1 < 5, 1 has the property. Suppose then, that, for a given positive

integer k,

k < 5 .

Then k + 1 < 5^ + 1 .

But 5^^ + 1 < 5^ + 5^ • 4 [Since 1 < 5^ • 4]

^k+ 1

k k + 1
Hence, for every positive integer k, if k < 5 then k + 1 < 5 , i.e. ,

the property is hereditary. As a consequence of the Principle of Mathe-

matical Induction for positive integers, for every positive integer n,

n < 5 .

[The following material suggests how cases in which the base / 5

might be handled. You probably will not need it in your teaching. The

inequality 'n < a ' holds for every positive integer n and every a > 1.7

(the critical step in the above proof depended on the fact that

1 < 5 • (5 - 1), and it is the case that 1 < a (a - 1) if a > 1 . 7). Hence

the same argument which shows that, for every y > 1 there is a number

X such that 5 = y will also show, for every a > 1.7, that, for every

y > 1 there is a number x such that a = y. Moreover, for any a > 1

and every sufficiently large integer n, n < a , so the argument can be

made to apply to each a > 1 if we choose not only > y, but also large

enough so that n < a (how large we must choose this integer will depend

on how close a is to 1).

(continued on T . C. 90B)
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The proof depends on the following theorem, which is a consequence of

characteristics (i) and (ii) of exponential curves :

For every number y, if there

exist numbers x and Xp such

that

5 < y < 5

then there is a number x such

that

5 = y

(and x is between x and x ).

We shall not prove this theorem. But by using it we shall prove that

every positive number has a logarithm to the base 5.

We shall begin by proving this for every number y > 1. The theo-

rem just quoted tells us that, for every y > 1, there is an x such that

5 = y if, for each y > 1, there are numbers x and x such that

5 < y < 5

Since 5 =1, and 1 < y, all that remains to be done is to show that there

is a number x^ such that

^2
y < 5

Now, it is easy to see that, for every positive integer n, n < 5 . Hence,

if n is the smallest integer greater than y then y < n and n < 5 , so

y < 5 .

The theorem now tells us that, for every y > 1 there is a number x >

and < the smallest integer greater than y such that

5 = y.

On the other hand, for every y such that <y< 1, — > 1, so, as

has just been proved, there exists a number x > such that

y

But this equation is equivalent to:

5 = y.
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Summarizing

For each number y > 0, there is just one number x such that

5 = y. If < y < 1 then the x such that 5 = y is < 0. The x such

that 5 = 1 is 0. If 1 < y then the x such that 5^ = y is > 0.

Or

Every positive number has a unique logarithm to the base 5.

For every y > 0, if y < 1 then log^ y < 0; logj. 1 = 0; if y > 1 then

log^y >0.

In the same way one can show, for each real number a > 1, that

every positive real number has a logarithm to the base a, and that, for

every y > 0, log y < if y < 1; log 1=0; log y > if y > 1 . [A simi-
a a a

lar result holds for every real number a such that < a < 1. State it!

What can you say about the possibility of defining logarithms to the base

1?]

We are now justified in stating the following defining principle:

F or every real number a such that

< a/ 1, and ever y real number

y > 0, 1 og^y is the number x such

that
X

a = y

Before stating it we had to be sure that if < a / 1 and y > then (1)

X
there is a number x such that a = y, and (2) there are not two numbers

X such that a^ = y. If either (1) or (2) were not the case for some num-

ber a and some number y, then it would be nonsense to speak of t_he num-

ber X such that a = y.

An immediate consequence of the defining principle is that

For every real number a such that

< a / 1, and every real number

y > 0,

log^y
= y-
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A. 1. 3

4. -1

7,
2

3

EXERCISES

2. -2 3. 2

5. 2 6.
I

2

8.
4

9. 2

B. log a = 1 because a = a.— °a
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F or every real number a such that

< a/ 1, and every real number x.

log^a = X.

A. Sinnplify.

1. log 125

^- l°g0.5^

EXERCISES

2. log 0.04

5. log^-^
4

3. log-

9

6. logioo^O

V. logg4 8. loggl6 9. logg64

B. Because logarithms to any base are defined as exponents of powers

with that base, rules for calculating with exponents can be trans-

formed into rules for calculating with logarithms. For example:

For every re al numiber a such that

< a / 1,

1og^^l = and log a
^a

= 1.

Proof: You know that, for every real number a, a =1. Hence,

by the defining principle, if < a / 1 then log 1=0.
a

Prove the second part of the boxed theorem yourself.

Here is a second rule.

F or every re al numbe r a such that

< a / 1, fo r every x > 0, and for

every y > 0,

log^f^y) = log X +
''a

log^y.
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B. (cont.)

1. 71.24 2. 127.8 3. 376.3

[It is worth a student's while to learn to outline the solution of a

problem before working out the details.]
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Proof: By two uses of the defining principle,

log^x log^y
X • y = a -a

By the addition rule for exponents it follows that

log^x + log^y
X • y = a

So, by the defining principles

Use the boxed theorenn above and the chart on page 2-65 to sinnpli-

fy each of the following.

1. (5.2)(13.7)

[Note: Arrange your work in a tabular form as shown below.

^ log(5.2)(13.7) -- log5.2 + logl3.7

to the
log 5. 2 =

base 5 ^ (+) log 13.7 t

log(5.2)(13.7) =

{5.2)(13.7) =

{21.3)(6) 3. (8.73)(43.1)

C. You can find logarithms to the base 10 by using the table of coordi-

nates for the exponential curve for the base 10. Logarithms to the

base 10 are often called comnaon logarithms and a table such as that

just referred to is called 'a table of common logarithms'. Such a

table lists approxinnations to the common logarithnns of certain num-

bers > 1 and < 10. For example, referring to the table on the last

three pages of this unit, the entry '.5224' in the twenty-fourth row

and fifth column tells you that

logj^Q 3. 33 = 0. 5224.

You have learned that you can use linear interpolation to find approxi-

mations to the common logarithms of other numbers > 1 and < 10.

For example,

log^Q 3. 332 t 0. 5227,
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C. One answer to 'Why 'n'?' is to refer to the boxed statement at the

top of page 2-92.

v'^ xl, vl.-
•"4"- '4^ 'i^

One answer to 'Why?' is that the mantissa of log.^x = log,-.x
10 ^10 1

where 1 < x. < 10.

-c 'r 'j^

1. 45.43 2. 8.906 X lo"^

3. 801.8 4. 1.7925 x lo'^

5. 0.6826 6. -8664
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because 0.5227 is, approximately, "^ of the way from . 5224

to 0. 5237". [Explain more fully. ] With the help of scientific notation

you can find an approximation to the common logarithm of any positive

number. For example, since

33.32 = 3.332 x lo\
the boxed theorem at the bottom of page 2-92 tells you that

log^Q33.32 =logjQ3.332 + log^QlO^

Similarly,

= 0.5227 + 1.

0.003332 = 3. 3332 X lo'^.

or

log^gO. 003332 = 0.5227 - 3.

In general, for every x > 0, there is an integer n and a nunnber

x, such that 1 < x < 10 and

x^ 10^

Then

log^Q X - log^Q x^ + n [Why 'n' ?].

The number log. x. is called the mantissa of log. x, and n is called

the characteristic of log x. Evidently, for every x > 0,

0< mantissa of log X < 1 [Why?];

and the characteristic of log.^x is an integer.

Simplify each of the following using the theorenns proved in Part B

and the table of common logarithms in the text. For each exercise make

a tabular outline as you did for the exercises in Part B.

1. (35.5)(1.28) 2. (0.0235)(3.79)

3. (1.732)(463) 4. (52. 74)(0. 00034)

5. (log27)(log3) 6. (-265){32.7)

[Note: From now on we shall often write 'log' as an abbreviation for

vl^ ^1, »'-
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)

7. If the characteristic of log,_xis negative, zero, or positive,

then 0<x<l, orl< x< 10, or 10 < x, respectively.

8. Since we use a base ten system of numeration, it is natural

to use what we have called 'scientific numerals'. Such a

numeral shows that the number it names is the product of

one factor which is > 1 and < 10 and a second factor which

is a power of 10. The common logarithm of the original num-

ber is the sum of the common logarithm of the first factor

and the exponent of the second factor.

D. 1. Since -^ = |- • Y> l°ga^ ^
''^^a ( y ' ^ )

"^ ^°^ay "^ ^°^a^'
^^^^^'

1 1 X - NX - 1

X - NX - 1

X - NX - 1

X + Vx - 1 X + -Vx - 1 1

= X - NX - 1 .

Hence,

log (^x - n/x^ - 1 j = log^ /
1

\ = -log^i^x + Jx^ - 1
J

\x + Nx - 1 /
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7. What can you say of a number if the characteristic of its common
logarithm is negative? Zero? Positive?

8. Why are common logarithms easier to use than logarithms to a

base other than 10 ?

p. Here is another rule for calculating with logarithms.

For every real number a such that < a / 1,

for every x

log
^a

> 0, and for

= log^x

every y >

- log^y.

1. Prove the above theorem. [Hint: One proof makes use of the

second boxed theorem in Part B and the fact that, for every x,

and for every y>0, x=— -y.]

2. Prove the following corollary of the above theorem.

For every real number a such

that < a / 1, and for every

X > 0,

log
a V X

-log^x

3. Use Exercise 2 to show that, for every a such that < a / 1,

and every x > 0,

log. i X - vx - 1 ) = -log i X + NX. - 1 J

UICSM-2-66, Third Course





[2-96]

~n.

I \



E. [The way of exhibiting the work in the Samples is intended to suggest

to students that they should first outline the solution (typescript)

and then fill in the blanks (hands cript) .
]

vl^ vl, vl^
'1^ 'l- 'I--

1. 1.717 2. .1362

3. 7.942 4. 2.660

5. 1.253 6. -6.264

7. 68.23 8. .3105
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E. Use a table of common logarithms to find the root of each equation.

165
3.2

Sample 1

.

^j-^ = x

Solution.
165logx = log Y~T = log 165 - log 3. 2

iogi65 = ^-^n-^

(-) log 3. 2 I ^•5'^^''

log^t /.7/Z4-

An approximation to the root of the equation is 51. 57.

Solution . log y = log 27. 3 - log 0.024

3

log27.3 t V.43^3 -2

(-) log.0.024 t (i), 38oZ-Z

logy t 3. o$ (yO

y I l.iJ>J K lo^

I, /37

The root is approximately 1, 137.

29.2 , 4.63
-17- = ^

.027
0034

m

log 125 _

log47

(327)(4.8) _ g23 ^ ^-
-3657.
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1. The multiplication rule for exponents,

log^x y y • log X
2. x^ = \a J - a. , Hence, log (x'^) = y • log x

G. 1. 6.517 X 10^ 2. 2.546

3. 1.717 X 10"^ 4. 0.8278

5. 8.22 X 10'^ 6. 1491

7. -2.32 8. 458.1

T. C. 97A Third Course, Unit 2
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F. Another rule for calculating with logarithms is.

For every real number a such that

< a / 1, for ever y X > 0, and for

every y > 0,

log^(xy) =
= y • log^x.

2.

The second boxed theorem in Part B is like the addition rule

for exponents. What rule for exponents does the above theorem

suggest ?

Prove the above theorem. [Hint: Use the proof of the second

boxed theorem in Part B as a guide in constructing the proof.
]

G. Use a table of common logarithms and simplify:

1. (86.7)- V265

3. (0.362)

5. (23)"^

7. '^ -362

Sample.
(27 )(\/0. 362)

(0.0259)

4. n/O. 567

6. (0.0259)

8. ^(39. 5)'

Solution . log ^^\q^q%1)^ ^ -- log(27^)('s/0362) - log(0.0259)

log 27 + log-v/O. 362 - logO.0259

= 3 log 27 + y logo. 362 - log 0.0 259

(continued on next page)

UICSM-2-56, Third Course





[2-98]



G. (cont.
)

9. 85.92 10. 18.90

11. 0.Z458 12. 1.620 X 10^

H. 1. 2.444 2. -1.2970

3. 1.5729 4. I

T. C. 98A Third Course, Unit 2
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31og27 = 4.2.^^1Z

(+) ilogO.362 I 0.71^4- 'I

log(27^){^/07362) t 5'. ^ 73^ -/ = ^-^734 -Z

0.4I5Z-1 = 0.4/32.-Z

log

logo. 0259 =

(27-^)(Nyo. 362) a
(0.0259)

5''.U0^

(27^)(n/07362) a 4 575- k \o
(0.0259)

4-57,5'(90

9. n/(27.9)(265)

11,

(46. 5)(n/3.249)

(734)(26.3)

10.

12.

(0 156)(3. 62)^

^/918

(- 265)^27
J

9)

<r33

H. Solve each equation.

Sample.
tU

116

Solution. 7^ = 116

log 7- = logll6

ulog 7 = log 116

u =
logll6
log 7

a 2.0645
0. 8451

2.44

An approximation to the root is 2. 44.

15
,x+2

265

15
3y -4

4. logg27 = t

UICSM-2-56, Third Course





[2.09] [2-99]

EXPLORATION EXERCISES

4 I Z\Z
Since 3 ^ 81, 1^3 ^ =81 [Why?]. Another way of saying the fore-

going is: Since logg 81 = 4, log ^ 81 = | (that is, log 81 = 2). Similarly,

log 81 = 4 V 4 . and log 81 = 1 [(3^^)'^ = 3^].

Use a table of common logarithms to verify each of the following.

1- i°gioo^ "" °-^5°^ 2. log 2 = 0.6020
-v/TO

3. log 34 = 1.0831

10^^
^- ^^^1000 2^^ = °-^9"

5. log ^ 378 = -2.5775 6. log 7. 5 = 1. 2873

[Hint for Exercise 6: What is the exponent of that power of 10 which

equals 4?]

2. 09 Comparing logarithms to two bases . - -The preceding Exploration

Exercises suggest that if you know the common logarithm of each positive

number then you can find the logarithnn to any base of any positive number.

We shall prove the following more general result.

For every a such that < a / 1,

for every b such that < b / 1,

and for every x > 0,

log. x
log X

°a

log b
*a

Proof: By the defining principle.

log X
^a

log^b
X, and a = b.

UICSM-2-56, Third Course



.UTiiriC-:

. 1





[2.09] [2-100]

o
I—

I

II
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By the multiplication rale for exponents, since log b / [Why?],
Si

log^x

log X
^a

log^bN^ log^b

Consequently,

X = b

and, by the defining principle.

^loggjc

log^b

log^x

[Another proof of the same theorem goes as follows

log, X log X
»b '=a

, so log^^l, b

log^x
= l02

log^x"
a 1 . Consequently,

logj^x • log^b = loga^-"< • l°ga^- Hence ....

The first proof shows how the theorem is related to the rules for

exponents. The second proof shows that the theorem is a consequence

of those rules which we have already established for logarithms. One

proof of a theorem is sufficient to establish the theorem, but knowing

alternative proofs may improve your understanding of a theorem.
]

The theorem just proved has the following corollary.

F or every a and b sue h that

< a/1 and < b /I,

log^a = 1/1 og b.
a

EXERCISES

A. 1. Show how the corollary above follows from the preceding tlieorem.

(continued on next page)
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2. Use a table of cominon logarithms to find a decimal approximiation.

(a) log3 5 (b) logj3 2

(c) log^265 (d) logQ 5I3

(e) loggg36 (f) log^64

B. Several logarithm curves are shown on page 2-100,

1. Why do all the curves pass through the point (1, 0)?

2. Fill in the blank so as to make the following sentence true.

For each positive abscissa, the ordinate to the

log - curve is the ordinate to the

log - curve.

3. Why is it the case, for each of the log curves drawn on page 2-100,

that points on the curves which are to the right of (1, 0) are above

the X-axis ?

4. State a sentence Hke that in Exercise 2 but with 'log ' in place

of 'log *.

4~2

5. Sketch, on page 2-100, the log„ ^ - curve.

C. The figure on page 2-100 illustrates the fact that all log curves have

much the same shape. One can distinguish between two log curves

by comparing how steep they are at ( 1 , 0). Fill the blank in such a

way as to make the following sentence true.

For every two numbers a and b, both greater than 1,

the log_^ - curve is steeper at ( 1 , 0) than the log^^ - curve

just if

v'x v'^

On the figure on page 2-100 there is shown (dotted) a portion of the

< >
line, [(1, 0){2, 1)] which bisects one of the angles formed by the line

whose equations are 'x = 1" and 'y = 0'. Since both (1, 0) and (2, 1)
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. , , ,
< >

belong to the log - curve, you can see that the line (I, 0)(2, 1) is less

steep at (1, 0) than is the log - curve and it is more _steep at (1, 0) than

is the log_ - curve. You nnay guess that there is a number b (between
^ < >

Z and 3) such that the line (1, 0){Z, 1) and the log. - curve are equally

steep at (1,0). This is correct, and the number b which has this pro-

perty is always denoted by 'e'. vV e have seen that Z < e < 3. Like the

n\amber tt, e is not a rational number, but can be approximated as closely

as we wish by rational numbers. For example,

e I Z.718Z8

Logarithms to the base e are called natural logarithms , and it is cus-

tomary to abbreviate 'log ' by 'In'. When you study calculus you will
e < .>

see that the fact that the In-curve and the bisector (1,0)(Z, 1) are equally

steep at (1,0) is a sufficient reason for calling e the "natural " base for

a system of logarithms.

D. Use the fact that e = Z. 718 and find rational approximations,

(a) In Z (b) In 10 (c) In ZO (d) In 1 . 35

(e) In (e^) ( f ) In 0.95 (g) In 1 (h) ln(-Z.4)

< >
An equation of the line (1,0)(Z, 1) is 'y = x - 1\ You can see that

as you go from left to right along any log curve (and, in particular, the

In-curve) the curve becomes less steep. It follows from this that, for

every x > 0,

(*) In x < X - 1.

[In fact, for every x such that 0<x/l, lnx<x-l.] Since -In x = In-

and, from (>:=), In- < 1, it follows that -In x < 1. Hence, for

every x > 0, In x > 1 - -7 . We can combine these two inequalities for

'In x' and say that,

for every x > 0,

1- — <lnx<x-l,
X — —

that is,

X - 1

X —< In X < X - 1
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Now replacing, for convenience, 'x' by ' 1 + x', we see that

For every x > - 1

X
1 + X -< ln{l + x) < X .

Another way of saying part of what the boxed statement says is

For every x > -1 and / 0,

— In ( 1 + x) is between
X X V 1 + X / X

that is, it is between -; and 1
1 + X

Since, for every x and y, if x < y then e" < e'.

for every x > -1 and / 0,

; is between e and e .

1
ln(l +x)

Since, for every x; e
ln(l +x)

J.

(1 + X)'' ,

for every x > -1 and /- 0,

1_
1

/, >x.,^ 1+X^jl
(1 + x) is between e and e .

Now, it is clear that, for x sufficiently close to 0, . will differ

from 1 by as little as we please. Hence, by characteristic (ii) of a smooth

1

1 + X 1

curve, if x is sufficiently close to then e will differ from e by as

J.

little as we please. Hence, the same is true of (1 + x) . For example,
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X

1^

(1 + X)''

0. 50 2.250

0. 10 2. 594

0.01 2.705

0.001 2. 717

e = 2.718

-0.001 2.720

-0.01 2.732

-0. 10 2. 868

-0.50 4.000

Mathematicians abbreviate this statement (that, for x sufficiently

1

>x
close to 0, ( 1 + x) differs as little as we please from e) by writing;

lim ( 1 + x)

X—
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REVIEW EXERCISES

Geometric progressions .

You have learned [pages 1-26, and 1-21, 1-22] that a progression

is a sequence of numbers which is ordered by some relation in the same

way that < orders the counting numbers. On page 1-37 you learned

about progressions of a special kind called 'arithmetic progressions'.

An arithmetic progression is a progression for which the difference

between successive terms is constant. Now you will study another

kind of progression.

(1) 2. 4, 8, 16, 32, 64, ...

(2) 1, -3, 9, -27, 81, -243, .. .

(3) 2, 1, 2, ^, g, jg-, ...

(4) 1, -1, 1, -1, 1, -1, ...

(5) TT , n , IT , -n , IT , TT , ...

Progressions such as these are called geometric progressions . Notice

that a characteristic property of geometric progressions is this :

The quoti ent obtained by dividing any term of

a gejometric progression into its follower is

the same as the quotient obtained by dividing

any other te trm into its follower.

This is usually abbreviated to:

The quotient of successive terms of a G. P.

is constant. This quotient is the common

ratio of the G. P.
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['ratio' is often used in place of 'quotient'; for every number a and every

b / 0, the ratio £f ^ ^ b^ is the quotient obtained by dividing a by b. ] For

example, for the G. P. (1) the common ratio is 2, and for the G. P.

(2) the common ratio is -3. What are the common ratios for the G. P. 's

(3). (4) and (5)?

For all real numbers a and r, the successive terms of the G. P.

whose first term is a and whose common ratio is r are the values of:

X - 1
ar

for the values 1, 2, 3, etc. of 'x'.

1. Fill in the blanks in each of the following so that the result gives a

geometric progression.

(a) 1,2, ,8, , , . . .

(b) 3, , , 81,

(c) -2, ,
- y , , , , ... [(c) has two solutions,

]2
•

(d) 3, 3^/2,

(e) ^f3, , . 9, _

(f) ^f^. , , -9.

2. In filling the blanks between '3' and '81' in part (b) of Exercise 1

you "inserted two geometric means between 3 and 81''. In part

(c) you inserted one geometric mean between -2 and - j- (and found

that there were two ways in which you could do this).

(a) Insert two geometric means between 2 and 4.

(b) Insert three geometric means between 1 and 8.

(c) Insert four geometric means between -1 and 32.

(d) Insert three geometric means between -1 and 8.

3. When can you insert three geonnetric means between two numbers ?

Any odd number of geometric means ?
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4. If three numbers, all positive or all negative, are consecutive terms

of a G. P. then the second is called the geometric mean of the first

and third .

(a) Find the geometric mean of 2 and 4.

(b) Find the geometric naean of -1 and -9.

(c) Prove the following generalization:

For every X > and every y > 0,

the geomet ric mean

v/xy.

of X and y is

5. Suppose that the passing grade in your class is 63 and that you have

taken two examinations on one of which your grade was 40, on the

other 90. vVhen "averaging" these grades, would you rather that

your teacher used their arithmetic mean (page 1-39) or their geo-

metric mean ?

6. Prove that the arithmetic mean of two positive numbers is always

greater than their geometric mean, i.e. , prove :

For every X and y such that X >0,

y > 0, and X / y,

X + y
2

> -x/xy .

[Hint: If X > and y > then x + y - 2'/xy = (\/x - sfy ) (Why?). ]
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7. Since the successive terms of the G. P. whose first term is a
X - 1and whose common ratio is r are the values of 'ar ' for the

values 1, 2, 3, etc. of *x'.

For every counting number n, the sum of the

first n terms of the G. P. whose first ternn

is a and whose common ratio is r is

n

Z ar
x=l

X- 1

X- 1
For example, 3 + 3n/^ + 6 + b'sfZ = T 3(\r2

)'

x='l

We sometimes need a simple way to conmpute the sum of a

given number of consecutive terms of a G. P. Since

^
- 1

^
- 1

y ar = a y r , what we need is a simple fornnula for
xHl

• n

x=l

r . Now, for every r, and for every counting number n,

x=l

n , n n ,X-1 V'X vx-1
r(-')E/"' = Z,'"- Z,

x=l x=l x=l
[Why?]

But
n n+1

,

Z'" - Z'"
x=l y^2

[Why?]

r Z ^^"^V ^"^ [Why?]

(' |;ry^V r°l + r" [Why?]
-\ v=l ^

^ r^"^ + (r"" - 1) [Why?].
y=l

Hence,
n

(r - 1) Z;
x= 1

X - 1

Z
''"' Mr"-1) - I

L y=l J X=i

X- 1

^ 1r - 1

.
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Consequently:

For every r / 1, and every counting

number n,

n

x=l

X- 1 r - 1

1

For every a, everyr/ 1, and every counting

number n. the sum of the first n terms of the

G. P whose fi rst term is a and whose common

ratio is r IS

r

- 1)

- 1 ( or :

a(l - r

1 - r=')

(a) Use the second boxed theorem to compute

(i) 2 + 4 + 8+16 + 32 + 64

,.., , 1 1

(11) 1-2 + 4
1^ J_
8 "^ 16 32 ^ 64

(iii) 1-1 + 1-1 + 1-1 + 1

(b) What is the sum of the first n terms of the G. P. whose first

ternn is a and whose common ratio is 1 ?

-(c) Use mathematical induction to prove the first of the boxed

theorems above.

(a) Find the 9th terin in the G. P. VT ' TT » "q • • • • •

(b) If the 8th term in a G. P. is y and if the common ratio

1 ~~
is y, find the first term.

(continued on next page)
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(c

(d

(e

(f

Find the 20th term of the G. P. S-v/l , 9, 9\r3 , . . . .

- 3 -9
If the third term of a G. P. is 2 and the sixth ternri is 2 ,

find the first term.

Find the sum of the first 10 terms of the G. P. 1000, 100,

10, . .. .

What is the suin of the first 15 terms of the G. P. whose

second term is 5- and whose fifth term is -pT ?
^ lb

Find a forniiula for the sum of the first 10 terms of the G. P.

, 2 2 4.3

12 23
S 'i ^i 20

(h) Which term of the G. P. -5 , 5 , -5 , . . . is 5 ?

(i ) True or False ?

(1) If each term of an arithmetic progression is multiplied

by a real number, the resulting progression is an A. P.

(2) If each term of a geometric progression is multiplied

by a real number, the resulting progression is a G. P.

(j ) Are there progressions which are both arithmetic progressions

and geonnetric progressions ?

B. Factoring.
2 2

You know that, for every a and b, a - b = (a - b)(a + b)

.

3 3 2 2
1. Prove that, for every a and b, a - b = (a- - b)(a + ab + b ),

4 4
and a - b

3 2 2 3
(a - b)(a + a b + ab + b ).

Use the first boxed theorem of Exercise 7 of Part A to factor

each of the following expressions.
7

Sample. r - 1

Solution. For every r / 1,

r'- 1

x= 1

X - 1

2 3 4 5 6
= 1+r+r ^r +r +r +r.

(continued on next page)
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Thus, for every r / 1,

r"^ - 1 = (r - 1)(1 + r + r^ + r^ + r* + r^ + r^).

Since the foregoing equation is satisfied by each real
7number, including 1, the factored form of 'r - 1'

is '(r - i)(l + r + r^ + r^ + r'^ + r^ H- r^)'.

(a) r^ - 1 (b) x^ - 1 (c) 1 - y^

(d) a - b [Hint: For every a and b/ 0, a^ - b^ = b^

(e) X - y

3.. (a) Prove that, for every r and every counting number n,

n-1
r - 1 = (r - 1) ) r .

(b) Prove that, for every a and b, and every counting number n,

a^ - b" = (a - b) yV^- b"-l-^.
x=0

4. One consequence of the result of Exercise 3(b) is that if 'n' in

'a - b ' is replaced by a name for any counting number then

the resulting expression has *a - b' as a factor, [in order to

explain the notion of a factor of an expression, we need the notion

of a polynomia l in 'a' and 'b^' with integral coefficients . Such

polynomials are expressions of a certain kind. The following

are examples :

, 2 2, „ 2, 4 T o u u2 -> . 5 4 , 4
-2, a, b , a b, 3a b , 2 - a, 3ab h b - 2ab , a - b .

A polynomial in 'a' and 'b' with integral coefficients is an expression

which can be constructed in the following way: We start with the

letters 'a' and 'b', and numerals for integers, and with exponentials

each of which has either 'a' or 'b' as base symbol and a numeral

for a positive integer as exponent symbol. We then form "products"

by connecting two or more of these by tiines signs (as usual, we
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most often use as a times sign a very narrow blank space). A
polynomial in 'a' and 'b' with integral coefficients is either one

of the expressions already described, or is an expression obtained

by connecting two or more of them with plus or minus signs.

You should now check to see that each of the expressions

given as examples above is a polynomial in 'a' and 'b' with in-

tegral coefficients.

Other kinds of polynomials can be defined in a manner similar

to the above. (An essential point is that, for any polynomial, the

exponent symbols are always numerals for positive integers.)

Give some examples of polynomials in 'x' with real coefficients,

and then formulate an appropriate definition.

(From here to the end of the bracket, 'polynomial' is short

for 'polynomial with integral coefficients'.)

We can now explain the notion of a factor of a polynomial.

First, an example:

2 2
'a - b' and 'a + ab + b ' are factors of the poly-

3 3
nomial 'a - b ' because the first two expressions

are polynon^ials and, for every a and b,

a^ - b"^ = (a - b)(a^ + ab + b^).

In general, if we use 'P' and *F' as abbreviations for some two

polynonnials then the second of these polynomials is a factor of

the first if there is a polynomial such that, using 'C as an abbre-

viation for it,

P = F • G

for all values of the variables which occur in the three polynomials.]

Factor each of the following expressions,
4

Sample . x - 16

Solution . Since, for every a and b,

a - b = (a - b)(a + b), for every x,

x^ - 16 = (x^ - 4)(x^ + 4).

(continued on next page)
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Hence, 'x" - ic" has 'x~ - 4* and 'x~ - 4' as fac

3ii -C i c isHowever, 'x~ - 4' has, for :

factors 'x - 2' and 'x - 2'. so it is easily seen max

each :: h.ese is a factor of 'x" - 16". v^rr ins-ance

for every x,

x"^ - 16 = (x - 2)[(x - 2)(x^ - 4)j

= {x - 2)(x^ ^ 2x- - 4x - S)

5 ^
and 'x -r 2x~ 4 4x -*- 8' is a pol\Tio—.ial in 'x' with

integral coefficients. Hence 'x - 2' is a fac:cr cf

4
*x - 16". ) On the other hand, it can be proved that

->

'x"" - 4' has no factors (except itself, '1*, and '-I'l.

The most convenient form o£ aasvrer for this

Sample is :

x'* - 16 = (x - 2)(x ^ 2)(x^ ^ 4).

(a) x^ - 25 (b) 1 - y^

(c) x^ - 3 (d)
, 3

->

(e) x~ - 2.v^- -r Y~ (f ) u." - 5,1 4 6^223 '' '

(g) r" 4 t w - t\v - w (h) 2a - 5-a.b - 3b

3 ^ 7 ^ ? 7

[Hint for (g) : t -^ t~Nv - t\v~ - w" = t^U t- w) - (t 4 \v)\v~. J

Most simple factoring problenis can be solved by appl\-ing the follow-

ing theorems :

I. For every a, b, and c, ab -^ ac = a(b -^ c).

> ->

II. For everv a and b, a~ - b~ - (a - b)(a + b), and
3 3 2 '

a - b" = (a - b)(a - ab - b ).

T > ?

III. For every a and b, a~ -r 2ab - b" = (a - b)".

>

IV. For every a, b, and c, a" -r (b + c)a + be = (a + b)(a + c).
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You probably used II in solving parts (a), (b), (c), and (d) of

Exercise 4, III in solving part (e), and IV in solving part (f).

In solving part (g) you might have used I, and then II.

You may have solved part (h) by guess work based in part

on the methods used to solve parts (e) and (f). One attack is to

guess that if '2a - 5ab - 3b ' has any factors then it has two,

one of which begins '2a ' and the other 'a '. In fact, the

first must be one of the four polynonaials :

2a -1 b, 2a - b, 2a + 3b, 2a - 3b,

and the second must be one of the polynomials:

a + b, a - b, a + 3b, a - 3b.

A little experimentation shows that the proper choices are '2a + b'

and 'a - 3b'. Theorem III, on the previous page, is a special case

of IV and this, in turn, can be generalized to obtain a theorem

which will handle exercises like (h).

V. For every a, b, c, d, x, and y,

2 2
acx + (ad + bc)xy -f bdy = (ax + by)(cx + dy)

.

Factor each of the following.

(a) 64a^ + 80ab + 25b^

(c) 7 - 7x^

(e) 20s^ - 41st + 20t^

2 2
(g) 36 - X - 2xy - y

2 2 2
(k) X + 2xy + y - a - 2ab

(1) (x + 1)^ - (y + 1)^

(b) 16 - y^

(d) 21x + xy - lOy

(f) 8k^ - 27

(h) lOy^ + 29y^x^ + lOx

(J) (.^^T - (vO^

b^
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C. Bernoulli 's Inequality.

As an application of mathematical induction we shall prove that

for every integer n > 1, and every h such that -1 < h -/- 0,

(1 + h)^ > 1 + nh.

[This is called 'Bernoulli's Inequality'. The theorem above has many

important consequences, among them that of Exercise 4 which we need

for Part D.
]

Proof: We are concerned with the property expressed by:

for every h such that -1 <^h / 0,

(1 + h)' > 1 + . . .h,

and wish to show that every integer > 2 has this property.

(i) 2 has the property.

For (1 + h)^ = 1 + 2h + h^ > 1 + 2h, if h / 0.

(ii) Suppose, for some integer k, it is the case that

for every h such that -1 < h /^ 0,

(i + h)^ > 1 + kh.

Then, for this k, it is the case that, for every h such that

-1 < h / 0,

( 1 + h)^^
^^

= ( 1 + h)^ 1 + h)

> ( 1 + kh)( 1 + h) [( 1 + h)^ > 1 + kh and

1 + h > 0]

2
= 1 + (k + l)h + kh

> 1 + (k + l)h, if k > [kh^ > if k > 0.

since h / 0].

Hence, the property is hereditary over the set of positive

integers. Since it holds for 2 it follows by mathematical

induction that it holds for every integer n > 2.
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1. Prove that, for every integer n > 0, and every number h > -1,

(1 + h)'^ > 1 + nh.

2. Prove that, for every integer n > 0, and every number h < 1,

(1 - h)"" > 1 - nh.

3. Prove that, for every b > 1, every y, and every integer n > 0,

b" > y if n > ^ .

[Hint: By Exercise 1, b^ > 1 + n(b - 1) if b - 1 > -1 and n > 0.]

4. Prove that, for every r such that < r < 1, every t > 0, and

every integer n > 0,

< r'^ < t if n > ff^, .

t(l - r)

' 1
'

' 1
'

[Hint: In Exercise 3, substitute — for 'b' and — for 'y'-l
r t ' "

[What conclusion can you draw if r = 0?]

D. Geometric Progressions and Repeating Decimals .

You have learned tha.t the repeating decimal:

0. 333 . . . 3. . . (or: 0.3)

is a name for the number :r- . Why should this be so? To answer

this question, we begin by noting that, for example, the "finite"

decimal '0.568' is a name for

5 6 8

10 100 1000 •

So, perhaps the "infinite" decimal '0.3' is a name for

3^3.3
10 100 1000 • '

where '.
. .

' means that we are supposed to keep on adding one number

after another, each number being one-tenth of the preceding. But, if

3
this is so, '0.3' is a name for the sum of infinitely many numbers, yp- ,

3 3

TfTrT' innn ' ^^^* ' ^^'^ what can it mean to add infinitely many numbers ?

Until now you have only added numbers two at a time (remember, for
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example, that '2 + 3+7' means '(2 + 3) + 7', so in order to simplify

'2 + 3 + 7' you first note that 2 + 3 = 5 and then that 5 + 7 = 12). Per'

3 3haps, the best we can do is to add up a few of the numbers -r^, ttttt.

3

,QQQ , etc. and see what happens.

il^

3

10

3

10

1 3

3 10

1

30

3 + ^ =
10 100

33
100

1 33
3 100

1

300

3.3,3
10 ' 100 ' 1000

333
1000

1 333
3 1000

1

3000

3.3. 3 -
100 1000 10000

3333
10000

1 3333
3 10000

1

30000

If you compare the first number, the sum of the first two, the sum of

the first three, etc. , each with -r-f you see that each of these sums is

1
^

a closer approximation to rr than the preceding sum is, and that,
^

1
apparently, you can get as close an approximation to rr as you wish

3 3
by adding sufficiently many of the nunnibers -rjr, . _ . , etc.

3 3
In fact, the numbers 777, . . form a G. P. whose10' 100' 1000'

3 1
first term is -r-r- and whose connmon ratio is t-t- . Consequently,

n

for any counting number n, the sum of the first n terms, 2
x=l 10

is

J_
10

n

-).
' -To

[vVhy?].

That is.
1

,n
[Why?].

3X10

You now know that, for every counting nunnber n.

(*)
1

n -

7 -^ =

x^l 10^ 3X10^^
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From Exercise 4 of Part C you know that, for every t > and every

n > 0,

< j)t if n >
10" 3t(l - ^)

^''

Consequently, for every t > 0, < t for these same values of

3X10"

'n', and, by equation (-•),

J- E,^<'
x=l 10

if n is sufficiently large. Since, for t > 0,

?^ 3
-t < <

^1
^

i- I.3 .^1 10='

we can say that, for every t > there exists an integer N such that

4-7 -^- < t if n > N.
' 3 x^=l 10^

'

Mathematicians abbreviate this by:

"-
" \J-=i 10'= ; ^

and also by:

x^l 10^ ^

Getting back now to the repeating decimal, '0. 3', this is just a further

' oo

abbreviation for Y which is a name for the number which is

x=l 10

approximated arbitrarily closely by the successive values of
^j

n
3

x-1 lo""

Since this number is - , '0. 3' is one of the many names of y
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We have discussed above the G. P. whose first term is .3 and whose

common ratio is yr- , and have seen how to make sense of 'the suitl

of all the ternns' of this G. P. Let us now consider a more general

situation. For every a / and r / 0, there is a G. P. whose first

term is a and whose coinmon ratio is r. For every counting number

X, the xth terna of this G. P. is

X- 1
ar

and for every counting number n, the sum of its first n terms,

X - 1Ex - 1
ar , IS

x=l

that is.

Hence,
^ ~ '

x^l

r
t. u 1 - r

= —r— , say, where b = .

b a

Now, if < r < 1
, you know froin Exercise 4 of Part C that, for

every t > 0, and every n > 0,

a(l -r^)
1 - r '

n
a ar

1 - r 1 - r

a Y X - 1
n

ar

1-r L,"-^
x=l

1 - r

r^ < lb ,,,£,> f(l- 1^1^!
b|t{l - r)

Consequently, for every t > 0,

^ x-1, lalr^

1t4t -Z-^"M1 - r L- 1 ^ 1 - r
x=l

n
r

-'

IbT

< t if n is sufficiently large.

As before (in the case a -.3, r -- y^ ), wo ran abbreviate this statcii.<'nt to:

liin^ )
'iJ^ - "in-"*^ Li^ 1-r

x= 1
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or, further, to:

x=l

X - 1

1 - r

It is not very difficult, now, to carry through the argument of the

preceding paragraph under the less restrictive hypothesis ' |r
|
< 1',

instead of '0 < r < 1'. Consequently,

For every a and ever y !• such that r < 1,

OO

Z""
x=l

- 1 a
>

1 - r

i. e. , for every t > there exists an N

such that

a
n

x=l

X - 1
< t

1 - r

if n > N.

Find a simpler name for the number named by each of the following

repeating decimals.

Sample 1. 0.23^ (i.e.: 0.236236236...)

Solution . This decimal is a name for the sum of all the terms

of the G. P.

2 36 236
1000 ' 1000000 •

whose first term is

1

2 36
and whose common ratio

is
1000

1000

Another name for this nunnber is

V 236/ 1
\^-^

L, 1000 i 1000 )

x=l \ /

and, by the boxed theorem above, the number in

question is , ^,

1000
or

2 36
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Sample 2. 1. 245

Solution . 1.245 = 1.2 + 0.045

45

11 1000
10 , 1

1

12 ^ 45

100

10 990

5 22

137
110

[Check this answer by dividing 110 into 137.]

1.' 0.6

4. 1.6348

2. 0.07

5. 0.142857

3. 92.8

6. 9.0035

that

From your work in solving these exercises above you can see

each repeating decimal is a name for some

rational number.

From your experience with the process of "long division" you can

see that

each rational number has a repeating decimal

as one of its names.

E . Factorials .

There is a very useful progression, whose ternns are called factorials ,

which can be defined recursively [see page 1-15] as follows.

0! = 1 >

and, for every inte ger k > 0.

(k + 1)! - k! • (k + 1).
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For example, 5! = {4 + 1)!

['0! ' is read 'zero factorial',

'5! ' is read 'five factorial',

'(4 + 1)! ' is read 'four plus

one factorial', etc.]

= 4! • 5

- (3 + 1)! • 5

= 3! • 4 • 5

= (2 + 1)! • 4 • 5

= 2! • 3 • 4 • 5

= (1 -r 1)! • 3 • 4 • 5

= 1! • 2 • 3 • 4 • 5

= (0 + 1)! • 2 • 3 • 4 •

=0!-l-2'3-4-5

= 1 • 2 • 3 • 4 • 5

1. Fill in the following table.

X

- -

1

... . ,.^

2 3 4 5 6 7 8

x! 6

2. Simplify.

5'
(b)

12!

11!
(c)

3!

0!

(d)
9!

13!
(e)

(8 - 2)!

8! 6! (O
5!

1! 2! 3! 4! 5!

(g)
(3 T 2)!

(3 - 2)!
(h)

19!

10! 9! (O
9!

6! 3!

3. In Part F of these Exercises we shall find an important use for the

following defining principle.

For every integer n > 0, and every

integer p such that < p < n,

n!

p! (n - p)!
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is read: the binomial coefficient five over three. [The reason

for the phrase 'binomial coefficient' will appear in Part F. ]

Simplify each of the following,

5\ ,.. /6
(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

<j) (k)
10

6
(1)

12

12

4. Fill the blanks in the following table so that the number

is listed at the intersection of "row n" and "column p".

n

5. Prove that, for every integer n > 0,

= 1 =
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6. Prove that, for every integer n > and every integer p such

that < p _< n,

n \ / n

7. Prove that, for every integer n > 1, and every integer p such

that 1 < p < n,

[An instance of this generalization is (n)'^(il~li)' ^^'^

this is the case because 1 -:• 2 = 3 (see row 2 and row 3 of the

table above. Use the table to check other instances.
]

[Hint: To solve Exercise 7, note that, by the defining principle,

n\/n\_ n!
,

n!

p - 1^ "
[^pj (p - 1)! (n - p + 1)! p! (n - p)

!

and that, for example,

n! _ n ! • p -i

(p - 1)! (n - p + 1)! p! (n - p + 1)!

F . The Binomial Theorein .

Each of the following equations holds for all values of 'a' and 'b'.

(a + b)° = 1

(a 4 b)^ = a + b

2 2 2
(a + b) = a + 2ab -( b

(a + b)'^ = a^ + 3a^b + 3ab^ + b"^

A. A '\ ? ? 3 4
(a + b) ' = a + 4a b + 6a b + 4ab + b

1. Check the last of the above formulas by simplifying

'(a + b)(a + b)(a + b)(a + b)" in two ways.

2. Compare the polynomials on the right sides of the equations above

with the table of Exercise 4, Part E.

(continued on next page)
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3. Guess a polynomial which, when you write it on the right side of;

(a + b)^ =

will yield an equation which holds for all values of 'a' and 'b'.

4. Prove that your guess is correct by simplifying:

(a + b)(a'^ + 4a^b -r 6a^b^ -f 4ab^ + b^).

5. Notice that the fourth of the equations which precede Exercise 1

could be rewritten:

(a + b)^ = 1 • a^b° + 3a^b^ + 3a^b^ + la°b^

or :

(a + b)
3\.3.a-b" + i r U^b^ + fV\a.^b^ + { : U"b

V'

3\.0, 3

or

or

(a + b)-

(a + b)"

3\ 3-0, ^
Q V b +

3\ 3- 1, 1 ^ /

hC>"'''

3\ 3-2^2
2 V b

3\ 3 - 3^3

3/ ^

Rewrite the other four equations preceding Exercise 1 in this

last way, and do the sanie for the equation you wrote in answer to

Exercise 3. [You may have more trouble with the equation

'(a + b) =1' than with the others. If so, then rewrite some or all

of the others first and then come back to this one.
]

6. Exercise 6 suggests that the following is a theorem.

For every a and b, and every integer n > 0,

(a+b)^= I
p=0

n\ n-p,p
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This is the case. The boxed statement is called 'the binomial

theorem' ['(a + b)' is a binomial ]. V/ e shall prove the binomial

theorem later. At present, you should get acquainted with it.

In each of the following problems you are to write a statement

equivalent to an instance of the binomial theorem, but not containing

the symbol 2 •

Sample . (x - y)

Solution . (x - y)* = (x + (-y))*" = T ( ''\k'' ' <"{

p=0\P/
y)"

cV^rty'-v)^r^v<v

-ftv^v^(^y(V^r5V(V

(-y)'

6 ,5. ,,6-54, ,2 ,
6- 5-

4

3, ,3
= X + 6x (-y) -r —2^ (-y) -^

I. I. 3
^ (-y)

6 - 5-4- 3 2, ,4 ^ 6- 5- 4- 3-2 , .4 . , A
+ r-2^Tl^^-y) + 1.2.3-4.5'"^^-y) -^^-y)

= x^ + 6x^(-y) + 15x^{-y)^ + 20x^{-y)^

+ 15x^(-y)^ T 6x(-y)^ + (-y)^

6 .5 ,,^42 ,„33^,.24=x -oxyTl5xy - 20x y + Ibx y

- Dxy T y .

[Recall that, for every integer n > 0, [

"
)

= 1. Notice, also.

that, ifn>l,(]=n. In general, if n > p > then

^,j fn\ __ "<"^:^)-;-p<"-^^^) [Why?].
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Note that if numerals are substituted for 'n' and 'p' in the expression

suggested by the right side of equation (-'•) then the resulting fraction

has the same number of factors in its numerator and denominator.

Finally, recall Exercise 6 of Part E, which tells you that, when

you use the binomial theorem to "expand" a binomial exponential,

you need calculate the values of only about half of the binomial

coefficients which occur in the expansion [Why "about half "?]. ]

(a) (a + b)^ (b) (x - y)'' (c) {2a + b)^

(d) (3x - 2y)^ (e) {|-x + iy)^ (f ) (7a - 1)^

(g) UsTZ -^ y41)^ (h) (3 - ^^3)'^ (i) {x+;^)'^, [x/0]
X

' 19

7. The expression /
(

)x (3y) is called the binomial ex-

P=o \ ^ y

r u ^ 1 xl9, „, V19\ 19 - 11,, >ir
pansion of (x 4- 3y) The expression ., jx (3y)

is called the 12th term of this expansion. For each of the following

binomial exponentials, write, and simplify the indicated term.

Sample . 7th term of '(2x - y) '

„ , ,. /12\-, vl2-6, ,6 12' 11- 1 0-9-8-7 ,6 6 6
Solution . I ^ \ (2x) (-y) -

1 • 2 • 3 • 4- 5-

6

^ ^ V

= 2 • 3- 7- llx y

g
[2 • 3- 7- 1 1 = 59136. However, it is often simpler,

particularly in the case of large numbers, to use

a numeral which shows how the number is decom-

posed into its prime factors. (Recall that a prime

integer is an integer, other than 1 or -1, which

has no positive integer factors other than itself

(or its opposite) and 1.)]

(a) 6th term of '(1 - 2x)^^' (b) 4th term of '{3x + y)
^°'

(c) 8th term of '(a^ + bc)*^' (d) 10th term of '( 3u - 6v)
^^^'

(e) middle term of
f y + -^

(continued on next page)
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97
(f ) second from last term of '(p + 2q)

1 8
(g) constant term of '(x + — ) '

(h) 17th term of '(6 + lOx)^^'

vO vl- v'r
'1^ '1^ '1-

We shall now use mathematical induction to prove the binomial

theorem. In the proof we shall use methods like those used in the

proof of the first boxed theorem in Exercise 7 of Part A. We shall

also use the results of Exercises 5 and 7 of Part E. It will help if

you review these things before reading further.

We wish to show that the property expressed by:

for every a and b,

<^-^b)- = I ("-^a-'-PbPkP
p-0 \ P

holds for every non-negative integer. To do this we shall show that

both and 1 have the property and that the property is hereditary

over the set of positive integers.

Proof: (i) has the property.

For, for every a and b, (a + b) =1 and

1 has the property.

For, for every a and b, (a + b) = a + b and

11 pY ^ - )^ ^ M 1
^^ b =

a + b
p-OvP

(ii) The property is hereditary over the set of positive

integers

.

For, suppose that, for a given integer k > 1, it is the

case that for every a and b,

k
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Then (for this k), for every a and b,

(a + b)^^-^ = (a + b) • (a + b)^

,a..,. E^a-V

-loy-'''''-k
/k\ k - p, p
' ^ a *^b^

lliy^-^'-'^^^tay-%^^' 'pa7e"'-34.1

P

k

p=0\'

p=0

k+1/k\ (k+ l)-p p ^ V / k\k-{q-l).q
p=uvpy q^A^-^

[In the second V -expression in the preceding step,

replace 'p' by 'q - 1'.]

r^jy^-^^b^ y Q^a(^^^)-PbP

r k

[I,(,^)-"^^"-''^^<l:w^^

[It is in this step that we need the assumption
that k > 1 [Why?].

]

k\ k+ LV b
" |(pV^"'-^)-PHP

^^^^^^k^^^(k.I)-p,p /k\ 0,k+l

k + l\.k+ 1.
a^ -b^ 4- I

p = l

k

P - 1

,{k.l)-Pj^P

^ /k + 1\ 0. k+ 1

+ ' k+ l)^ •^

/k

[By Exercise 5, Part E,

k + 1

^V) ^"""^ (t)--{Ziiy' ^y^'
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page 1-34, the br^tcketed expression in the
preceding step can be condensed, as shown.]

/
^u\k+l /k+l\k+LO

.
v^k-;l\ {k + l)-Lp

(a + b) = ( > "" " E^( p )
^ ""

+ f^l J^a^b^""
^

[By Exercise 7, Part E.]^k + 1

k+1
|Vi^ + ^y<^+i>-PbP

That is, for every k > 1, if, for every a and b.

then, for every a and b,

(a + b)^^i. Y^^yy^^'^-^^^

.

In other words, the property in question is hereditary over the set of

positive integers. Since the property holds for 1, and is hereditary

over the set of positive integers, it holds for every positive integer.

Since it also holds for 0, it holds for every non-negative integer.

G. The Binomial Series.

You have seen that the binomial formula

<-^'""= Ul)-"'^^^
p =

holds for all real numbers a and b and for every integer n > 0. This

suggests the question as to whether the fornnula (or some similar for-

mula) holds for values of 'n' other than non-negative integers. For

example, can we find a similar formula whose left side is '(a + b) ',

or '(a + b)^ '?
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The first difficulty to occur to one is that an expression which

• 2

begins with V or y is nonsense, and it is hard to see how
p=0 p=0

the meaning of V-notation could be extended so that such expressions

would make sense.

The boxed theorem on page 2-121 will suggest how this difficulty

might be overcome. The theorem in question has the following con-

sequence.

For every x such that |x| < 1,

(1 + x)-^ = y (-i)PxP
.

p=0

[Hint: On page 2-121, replace *a' by '1', 'x' by 'p + 1', and 'r' by

'-x'.] For one thing, this suggests that we may be able to find

"expansions" for those binomial exponentials in which the exponent

symbol is a numeral for a number other than a non-negative integer,

if we use infinite series rather than finite series. This suggestion

will gain more force when we notice that the binomial formula itself

can be replaced by an equation whose right side is an infinite series.

To see this, recall that for every integer n > and every integer p

such that < p < n,

,... /n\ _ n(n - 1) . . (n - p + 1)
^"^

[^pj - 1 • 2 • ... p

K we use (*) to define binomial coefficients corresponding to all

positive integers n and p it is clear that, for p > n,

viN _ _ [One of the factors in the/.i"\ _ _ [One of the factors in the
i p )

' numerator has value 0.]

Hence, with this new definition of binoinial coefficients (augmented

by requiring, as before, that [ _ j
= 1 for every integer n > 0), the

binomial fornnula can be replaced by:

CO

(a + b)" = y
( j;

V"" P bP. [Note * « ' in place of 'n'. ]p=0\P/
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[2.09] [2-133]

This formula, as we know, holds for all values of 'a' and *b' and all

non-negative integer values of 'n'.

Referring now to the result that, for |x| < 1,

(1+x)-^. I (-l)PxP,

we see that this can be incorporated into the Binomial Theorem if

we define binomial coefficients in such a way that, for every integer

p > 0,

But this is precisely what formula (*) gives us if in it we replace 'n'

by '- T!

-1\ _ (-l)(-2) (-P)

p J
- 1-2-...-P

= {-1)P.

This now suggests that if we define binomial coefficients for every

real number y and every integer p > in such a way that

V) . . and. fo. p > 0.

(J^
- v(y-^l)...(y-p^l)

,

then the formula

may hold rather generally. [We know, at any rate, that it holds for

all values of 'a', 'b' and 'y' such that the last is a non-negative integer,

and for the value 1 of 'a' and - 1 of 'y' if the value of 'b' is between -1

and 1 . ]

As a matter of fact it can be proved that for every a, b and y,

such that |b
I

< |a |,

[as well as for every a, b and y such that y is a non-negative integer].
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[2.09] [2-134]

The Binomial Theorem is, of course, a special case of this

result. Aside from this, the most important consequence is the

following.

For ever y X and y sue h that X < 1.

CO

(1 + x)^
%?o

{

^

y.

For example, for every x such that |x| < 1,

P^OVP

That is, for every x such that |x| < 1, there is an N such that if

n > N then

n ,1

is as close as you please to 'vl+x . Since
[ ^ )

= 1 and, for every

integer p > 0,
J

|(i-l)(i-2)...(i-p.l)

P!

i(.i)(.l) (
- ^P - 3

)

Hence,

4n~x. 1 4.
1 12^13 54^

's/1.02 = 1+0.01-0.00005

= 1.00995 .
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[2. 09] [2-135]

A better approximation is given by:

's/1.02 I 1.00995 + 0.0000005-0.000000006

= 1.009950494

[This approximation is, actually, correct to 9 decimal places.

You can get as close an approximation as you wish to 'vTV02 by eva-

luating more terms of the binomial series.]

As another example let us find a decimal approximation to l/ ^9

1/n/9 = 9"^ = (8 T 1)'3

-i 1 _1
= 8 Ml + -^) ^

a 1 /, 1 1 , (-i)(-T - 1) ,1,^
= 2 ^ "

3
' 8" 2 ^8^

i-iH-i - i)(-i - ^) .1.
2-3 ^8'

'^l- Jr ^ '
'

3

2 1 24 288 3328

= 0.480 8 .

[This approximation is correct to 4 decimal places.]

1. Use the binomial series to find decimal approximations,

(a) ^^Tol (b) \fo798 (c) l/. 996

(d) nA29 (e) l/^IZ9 (f) (1.05)'^

2. Formulate a recursive definition of the binonr'ial coefficients.
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