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PREFACE.

rriHE present work has two main objects. One of these, the proof
J- that all pure mathematics deals exclusively with concepts definable

in terms of a very small number of fundamental logical concepts, and
that all its propositions are deducible from a very small number of

fundamental logical principles, is undertaken in Parts II.—VII. of this

Volume, and will be established by strict symbolic reasoning in Volume ii.

The demonstration of this thesis has, if I am not mistaken, all the

certainty and precision of which mathematical demonstrations are capable.

As the thesis is very recent among mathematicians, and is almost

universally denied by philosophers, I have undertaken, in this volume,

to defend its various parts, as occasion arose, against such adverse

theories £is appeared most widely held or most difficult to disprove.

I have also endeavoured to present, in language as untechnical as

possible, the more important stages in the deductions by which the

thesis is established.

The other object of this work, which occupies Part I., is the

explanation of the fundamental . concepts which mathematics accepts

as indefinable. This is a purely philosophical task, and I cannot flatter

myself that I have done more than indicate a vast field of inquiry, and

give a sample of the methods by which the inquiry may be conducted.

The discussion of indefinables—which forms the chief part of philosophical

logic—is the endeavour to see clearly, and to make others see clearly,

the entities concerned, in order that the mind may have that kind of

acquaintance with them which it has with redness or the taste of a

pineapple. Where, as in the present case, the indefinables are obtained

primarily as the necessary residue in a process of analysis, it is often

easier to know that there must be such entities than actually to perceive

them ; there is a process analogous to that which resulted in the discovery

of Neptune, with the difference that the final stage—the search with a

mental telescope for the entity which has been inferred—is often the

most difficult part of the undertaking. In the case of classes, I must

confess, I have failed to perceive any concept fulfilling the conditions
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requisite for the notion of class. And the contradiction discussed in

Chapter x. proves that something is amiss, but what this is I have

hitherto failed to discover.

The second volume, in which I have had the great good fortune

to secure the collaboration of Mr A. N. Whitehead, will be addressed

exclusively to mathematicians ; it will contain chains of deductions,

from the premisses of symbolic logic through Arithmetic, finite and

infinite, to Geometry, in an order similar to that adopted in the present

volume ; it will also contain various original developments, in which the

method of Professor Peano, as supplemented by the Logic of Relations,

has shown itself a powerful instrument of mathematical investigation.

The present volume, which may be regarded either as a commentary

upon, or as an introduction to, the second volume, is addressed in equal

measure to the philosopher and to the mathematician ; but some parts

will be more interesting to the one, others to the other. I should advise

mathematicians, unless they are specially interested in Symbolic Logic,

to begin with Part IV., and only refer to earlier parts as occasion arises.

The following portions are more specially philosophical : Part I.

(omitting Chapter ii.); Part II., Chapters xi., xv., xvi., xvii.; Part III.

;

Part IV., §207, Chapters xxvi., xxvii., xxxi.; Part V., Chapters xxi.,

xLii., XXIII.; Part VI., Chapters l., li., lii. ; Part VII., Chapters liii.,

LIv., Lv., Lvii., Lviii. ; and the two Appendices, which belong to Part I.,

and should be read in connection with it. Professor Frege's work, which

largely anticipates my own, was for the most part unknown to me when
the printing of the present work began ; I had seen his Grundgesetze

der Arithmetik, but, owing to the great difficulty of his symbolism,, I had
failed to grasp its importance or to understand its contents. The only

method, at so late a stage, of doing justice to his work, was to devote

an Appendix to it ; and in some points the views contained in the

Appendix differ from those in Chapter vi., especially in §§71, 73, 74.

On questions discussed in these sections, I discovered errors after passing

the sheets for the press ; these errors, of which the chief are the denial

of the null-class, and the identification of a term with the class whose

only member it is, are rectified in the Appendices. The subjects

treated are so difficult that I feel little confidence in my present

opinions, and regard any conclusions which may be advocated as

essentially hypotheses.

A few words as to the origin of the present work may serve to

show the importance of the questions discussed. About six years ago,

I began an investigation into the philosophy .of Dynamics. I was

met by the difficulty that, when a particle is subject to several forces,
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no one of the component accelerations actually occurs, but only

the resultant acceleration, of which they are not parts ; this fact

rendered illusory such causation of particulars by particulars as is

affirmed, at first sight, by the law of gravitation. It appeared also that

the difficulty in regard to absolute motion is insoluble on a relational

theoi-y of space. From these two questions I was led to a re-examination

of the principles of Geometry, thence to the philosophy of continuity

and infinity, and thence, with a view to discovering the meaning of the

word any, to Symbolic Logic. The final outcome, as regards the

philosophy of Dynamics, is perhaps rather slender ; the reason of this

is, that almost all the problems of Dynamics appear to me empirical,

and therefore outside the scope of such a work as the present. Many
very interesting questions have had to be omitted, especially in Parts

VI. and . VII., as not relevant to my purpo.se, which, for fear of

misunderstandings, it may be well to explain at this stage.

When actual objects are counted, or when Geometry and Dynamics

are applied to actual space or actual matter, or when, in any other way,

mathematical reasoning is applied to what exists, the reasoning employed

has a form not dependent upon the objects to which it is applied being

just those objects that they are, but only upon their having certain

general properties. In pure mathematics, actual objects in the world

of existence will never be in question, but only hypothetical objects

having those general properties upon which depends whatever deduction

is being considered ; and these general properties will always be

expressible in terms of the fundamental concepts which I have called

logical constants. Thus when space or motion is spoken of in pure

mathematics, it is not actual space or actual motion, as we know them

in experience, that are spoken of, but any entity possessing those abstract

general properties of space or motion that are employed in the reasonings

of geometry or dynamics. The question whether these properties belong,

as a matter of fact, to actual space or actual motion, is irrelevant to pure

mathematics, and therefore to the present work, being, in my opinion,

a purely empirical question, to be investigated in the laboratory or the

observatory. Indirectly, it is true, the discussions connected with pure

mathematics have a very important bearing upon such empirical questions,

since mathematical space and motion are held by many, perhaps most,

philosophers to be self-contradictory, and therefore necessarily different

from actual space and motion, whereas, if the views advocated in the

following pages be valid, no such self-contradictions are to be found in

mathematical space and motion. But extra-mathematical considerations

of this kind have been almost wholly excluded from the present work.
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On fundamental questions of philosophy, my position, in all its chief

features, is derived from Mr G. E. Moore. I have accepted from him

the non-existential nature of propositions (except such as happen to

assert existence) and their independence of any knowing mind; also

the pluralism which regards the world, both that of existents and

that of entities, as composed of an infinite number of mutually

independent entities, with relations which are ultimate, and not

reducible to adjectives of their terms or of the whole which these

compose. Before learning these views from him, I found myself

completely unable to construct any philosophy of arithmetic, whereas

their acceptance brought about an immediate liberation from a large

number of difficulties which I believe to be otherwise insuperable.

The doctrines just mentioned are, in my opinion, quite indispensable

to any even tolei'ably satisfactory philosophy of mathematics, as I hope

the following pages will show. But I must leave it to my readers to

judge how far the reasoning assumes these doctrines, and how far it

supports them. Formally, my premisses are simply assumed ; but the

fact that they allow mathematics to be true, which most current

philosophies do not, is surely a powerful argument in their favour.

In Mathematics, my chief obligations, as is indeed evident, are to

Georg Cantor and Professor Peano. If I had become acquainted

sooner with the work of Professor Frege, I should have owed a

great deal to him, but as it is I arrived independently at many
results which he had already established. At every stage of my work,

I have been assisted more than I can express by the suggestions, the

criticisms, and the generous encouragement of Mr A. N. Whitehead

;

he also has kindly read my proofs, and greatly improved the final

expression of a very lai'ge number of passages. Many useful hints

I owe also to Mr W. E. Johnson ; and in the more philosophical parts

of the book I owe much to Mr G. E. Moore besides the general position

which underlies the whole.

In the endeavour to cover so wide a field, it has been impossible to

acquire an exhaustive knowledge of the literature. There are doubtless

many important works with which I am unacquainted; but where the

labour of thinking and writing necessarily absorbs so much time, such

ignorance, however regrettable, seems not wholly avoidable.

Many words will be found, in the course of discussion, to be defined

in senses apparently departing widely from common usage. Such

departures, I must ask the reader to believe, are never wanton, but have

been made with great reluctance. In philosophical matters, they have

been necessitated mainly by two causes. First, it often happens that
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two, cognate notions are both to be considered, and that language has

two names for the one, but none for the other. It is then highly

convenient to distinguish between the two names commonly used as

synonyms, keeping one for the usual, the other for the hitherto nameless

sense. The other cause arises from philosophical disagreement with

received views. Where two qualities are commonly supposed inseparably

conjoined, but are here regarded as separable, the name which has

applied to their combination will usually have to be restricted to one

or other. For example, propositions are commonly regarded as (1) true

or false, (2) mental. Holding, as I do, that what is true or false is not

in general mental, I require a name for the true or false as such, and

this name can scarcely be other than proposition. In such a case, the

departure from usage is in no degree arbitrary. As regards mathematical

terms, the necessity for establishing the existence-theorem in each case

—

i.e. the proof that there are entities of the kind in question—has led to

many definitions which appear widely different from the notions usually

attached to the terms in question. Instances of this.are the definitions

of cardinal, ordinal and complex numbers. In the two former of these,

and in many other cases, the definition as a class, derived from the

principle of abstraction, is mainly recommended by the fact that it

leaves no doubt as to the existence-theorem. But in many instances of

such apparent departure from usage, it may be doubted whether more

has been done than to give precision to a notion which had hitherto

been more or less vague.

For publishing a work containing so many unsolved difficulties, my
apology is, that investigation revealed no near prospect of adequately

resolving the contradiction discussed in Chapter x., or of acquiring a

better insight into the nature of classes. The repeated discovery of errors

in solutions which for a time had satisfied me caused these problems to

appear such as would have been only concealed by any seemingly satis-

factory theories which a slightly longer reflection might have produced
;

it seemed better, therefore, merely to state the difficulties, than to wait

until I had become persuaded of the truth of some almost certainly

erroneous doctrine.

My thanks are due to the Syndics of the University Press, and to

their Secretary, Mr R. T. Wright, for their kindness and courtesy

in regard to the present volume.

London,

December, 1902.





TABLE OF CONTENTS

Preface

PA.RT I.

THE INDEFINABLES OF MATHEMATICS.

CHAPTER I.

DEFINITION OF PURE MATHEMATIC-'S.

1. Definition of pure mathematics ........ 3

2. The principles of mathematics are no longer controversial ... 3

3. Pure mathematics uses only a few notions, and these are logical

constants ........... 4
4. All pure mathematics follows formally from twenty premisses . . 4

5. Asserts formal implications......... 5

6. And employs variables . ....... 5

7. Which may have any value without exception ..... 6

8. Mathematics deals with types of relations 7

9. Applied mathematics is defined by the occurrence of constants which

are not logical .......... 8

10. Relation of mathematics to logic........ 8

CHAPTER II.

SYMBOLIC LOGIC.

11. Definition and scope of symbolic logic 10

12. The indefinabjes of symbolic logic 10

13. Symbolic logic consists of three parts 11

^•1. The Propo.iitional Calculus.

14. Definition ... 13

15. Distinction between implication and formal implication ... 14

16. Implication indefinable 14

17. Two indefinables and ten primitive propositions in this calculus . . 15

18. The ten primitive propositions 16

19. Disjunction and negation defined 17



xu Table of Contents

20.

21.

22.

23.

24.

26.

26.

27.

28.

29.

30.

31.

32.

33.

34.

3.5.

36.

B. The Calculus of Classes.

Three new indefinables

The relation of an individual to its class

Prepositional functions

The notion of such that

Two new primitive propositions .

Relation to prepositional calculus

Identity .....
C. The Calculus of Relations.

The logic of relations essential to mathematics

New primitive propositions.....
Relative products ......
Relations with assigned domains....

D. Peano's Symbolic Logic.

Mathematical and philosophical definitions .

Peano's indefinables ......
Elementary definitions .....
Peano's primitive propositions ....
Negation and disjunction .....
Existence and the null-class ....

PAGE

18

19

19

20

20

21

23

23

24

25

26

26

27

28

29

31

32

CHAPTER III.

IMPLICATION AND FORMAL IMPLICATION.

37. Meaning of implication ......... 33

38. Asserted and unasserted propositions ......". 34

39. Inference does not require two premisses ...... 36

40. Formal implication is to be interpreted extensionally .... 36

41. The variable in a formal implication has an unrestricted field . . 36

42. A formal implication is a single propositional function, not a relation

of two 38

43. Assertions ............ 39

44. Conditions that a term in an implication may be varied ... 39
45. Formal implication involved in rules of inference .... 40

CHAPTER IV.

PROPER NAMES, ADJECTIVES AND VERBS.

46. Proper names, adjectives and verbs distinguished

47. Terms
48. Things and concepts .....
49. Concepts as such and as terms

50. Conceptual diversity .....
61. Meaning and the subject-predicate logic

52. Verbs and truth ......
53. All verbs, except perhaps is, express relations

.54. Relations per se and relating relations

55. Relations are not particularized by their terms

42

43

44

45

46

47

47

49

49

60



Table of Contents xiii

CHAPTER V.

DENOTING.
PAGE

56. Definition of denoting.......... 53

57. Connection with subject-predicate propositions ..... 54

58. Denoting concepts obtained from predicates ..... 55

59. Extensional account of all, every, any, a and ^ome .... 56

60. Intensional account of the same ........ 58

61. Illustrations ........... 59

62. The difference between all, every, etc. lies in the objects denoted, not

in the way of denoting them ....... 61

63. The notion of the and definition ........ 62

64. The notion of the and identity ........ 63

65. Summary ............ 64

CHAPTER VI.

CLASSES.

66. Combination of intensional and extensional standpoints required . 66

67. Meaning of clajis .......... 67

68. Intensional and extensional genesis of classes ..... 67

69. Distinctions overlooked by Peano ....... 68

70. The class as one and as many . ^ ...... 68

71. The notion of and 69

72. All men is not analyzable into all and men ...... 72

73. There are null class-concepts, but there is no null class ... 73

74. The class as one, except when it has one term, is distinct from the

class as many .......... 76

75. Every, any, a and some each denote one object, but an ambiguous one . 77

76. The relation of a term to its class 77

77. The relation of inclusion between classes 78

78. The contradiction 79

79. Summary .
80

CHAPTER Vn.

PROPOSITIONAL FUNCTIONS.

80. Indefinability of such that 82

81. Where a fixed relation to a fixed term is asserted, a propositional

function can be analyzed into a variable subject and a constant

assertion ........... 83

82. But this analysis is impossible in other cases . ... 84

83. Variation of the concept in a proposition 86

84. Relation of propositional functions to classes 88

85. A propositional function is in general not analyzable into a constant

and a variable element 88



XIV Table of Contents

CHAPTER VIII.

THE VARIABLE.

86. Nature of the variable

87. Relation of the variable to any .

88. Formal and restricted variables .

89. Formal implication presupposes any

90. Duality of uny and some

91. The class-concept propositionalfunction is indefinable

92. Other classes can be defined by means of such that

9.3. Analysis of the variable .....

PAGE

89

89

91

91

92

92

93
9.3

CHAPTER IX.

RELATIONS.

94. Characteristics of relations .....
9.5. Relations of terms to themselves......
96. Hie domain and the converse domain of a relation

97. Logical sum, logical product and relative product of relations

98. A relation is not a class of couples .....
99. Relations of a relation to its terms .....

9.5

96

97

98

99

99

CHAPTER X.

THE CONTRADICTION.

100. Consequences of the contradiction . ...
101. Various statements of the contradiction .....
102. An analogous generalized argument ......
103. Variable propositional functions are in general inadmissible

104. The contradiction arises from treating as one a class which is

many ... . . . . . .

10.5. Other primafacin possible solutions appear inadequate .

106. Summary of Part I ........ .

only

101

102

102

103

104

10.5

106



Table of Contents xv

PAET II.

NUMBER.

CHAPTER XI.

DEFINITION OF CARDINAL NUMBERS.

PAGE
107. Plan of Part II .-* Ill
108. Mathematical meaning of definition ....... Ill
109. Definition of numbers by abstraction 112
110. Objections to this definition . . . . . .

'
. . 114

111. Nominal definition of numbere 115

CHAPTER XII.

ADDITION AND MULTIPUCATION.

112. Only integers to be considered at present . . . . . .117"
113. Definition of arithmetical addition ....... I17
114. Dependence upon the logical addition of classes . . . . .-lis
115. Definition of multiplication . ........ 119,

116. Connection of addition, multiplication and exponentiation . . .lift

CHAPTER XIII.

FINITE AND INFINITE.

vll7. Definition of finite and infinite . . . . . . . .121
118. Definition of oq ........... 121
"119. Definition of finite numbers by mathematical induction . . .123

CHAPTER XIV.

THEORY OF FINITE NLiMBERS.

120. Peano's indefinables and primitive propositions ..... 124

121. Mutual independence of the latter 125

122. Peano really defines progressions, not finite numbers .... 125

123. Proof of Peano's primitive propositions 127



XVI Table of Contents

CHAPTER XV.

ADDITION OF TERMS AND ADDITION OF CLASSES.

ill24. Philosophy and mathematics distinguished .....
¥125. Is there a more fmidamental sense of number than that defined above }

VJ126. Numbers must be classes ......
y.27. Numbers apply to classes as many .....
M28. One is to be asserted, not of terms, but of unit classes

129. Counting not fundamental in arithmetic

130. Numerical conjunction and plurality ....
131. Addition of terms generates classes primarily, not numbers
132. A term is indefinable, but not the number 1

PAGE
129

130

131

132

132

1.33

133

13.5

135

CHAPTER XVI.

WHOLE AND PART.

133. Single terms may be either simple or complex
134. Whole and part cannot be defined by logical priority .

135. Three kinds of relation of whole and part distinguished

136. Two kinds of wholes distinguished .....
137. A whole is distinct from the numerical conjunction of its parts

138. How far analysis is falsification ......
139. A class as one is an aggregate . . ...

137

137

138

140

141

141

141

CHAPTER XVn.

INFINITE WHOLES.

140. Infinite aggregates must be admitted .

141. Infinite unities, if there are any, are unknown to us

142. Are all infinite wholes aggregates of terms ?

143. Grounds in favour of this view ....
143

144

146

146

CHAPTER XVin.

RATIOS AND FRACTIONS.

144. Definition of ratio ••...... 149
145. Ratios are one-one relations ....... 150
146. Fractions are concerned with relations of whole and part . . 1.50

147. Fractions depend, not upon number, but upon magnitude of divisibility 151
148. Summary of Part II ....... _

i so



Table of Contents xvii

PART III.

QUANTITY.

CHAPTER XIX.

THE MEANING OF MAGXITUDE.

149. Previous views on the relation of number and quantity

150. Quantity not fundamental in mathematics .

151. Meaning of magnitude and quantity

152. Three possible theories of equality to be e.xamined

153. Equality is not identity of number of parts

154. Equality is not an unanalyzable relation of quantities

155. Equality is sameness of magnitude
156. Every particular magnitude is simple

157. The principle of abstraction

158. Summary .....
Note

PAGE
1.57

158

15!)

159

160

162

164

164

16(i

167

168

CHAPTER XX.

THE RANGE OF QUANTITY.

159. Divisibility does not belong to all quantities ..... 170

160. Distance 171

161. Differential coefficients 173

162. A magnitude is never divisible, but may be a magnitude of divisibility

.

173

163. Every magnitude is unanalyzable ....... 174

CHAPTER XXI.

NUMBERS AS EXPRESSING MAGNITUDES: MEASUREMENT.

164. Definition of measurement ......... 176

165. Possible grounds for holding all magnitudes to be measurable . . 176

166. Intrinsic measurability . ....... 177

167. Of divisibilities 178

168. And of distances . ... . . . . . . . 179

169. Measure of distance and measure of stretch...... 181

170. Distance-theories and stretch-theories of geometry .... 181

171. Extensive and intensive magnitudes ....... 182

CHAPTER XXII.

ZERO
172. Difficulties as to zero .

173. Meinong's theory

174. Zero as minimum
175. Zero distance as identity

176. Zero as a null segment

177. Zero and negation

178. Every kind of zero magnitude is in a sense indefinable

184

184

185

186

186

186

187

62



XTIU Table of Contents

CHAPTER XXIII.

INFINITY, THE INFINITESIMAL, AND CONTINUITY.

179. Problems of infinity not specially quantitative

180. Statement of the problem in regard to quantity .

181. Three antinomies .......
182. Of which the antitheses depend upon an axiom of finitude

183. And the use of mathematical induction

184. Which are both to be rejected .....
185. Provisional sense of continuity .....
186. Summary of Part III

PAGE

188

188

189

190

192

192

193

194

PART IV.

ORDER.

CHAPTER XXIV.

THE GENESIS OF SERIES.

187. Importance of order ....
188. Between and separation of couples

189. Generation of order by one-one relations

190. By transitive asymmetrical relations .

191. By distances .....
192. By triangular relations

193. By relations between asymmetrical relations

194. And by separation of couples . ...

199

199

200

203

204

204

205

205

CHAPTER XXV.

THE MEANING OF ORDER.

195. What is order ? 207
196. Three theories of between ......... 207
197- First theory 208
198. A relation is not between its terms ....... 210
199. Second theory of between . . . . . . . . .211
200. There appear to be ultimate triangular relations . . . . .211
201. Reasons for rejecting the second theory ...... 213
202. Third theory of between to be rejected ...... 213
203. Meaning of separation of couples ....... 214
204. Reduction to transitive asymmetrical relations ..... 215
205. This reduction is formal ......... 216
206. But is the reason why separation leads to order ..... 216
207. The second way of generating series is alone fundamental, and gives

the meaning of order ......... 216



Table of Contents XIX

CHAPTER XXVI.

ASYMMETRICAL RELATIONS.

208. Classification of relations as regards symmetry and transitiveness

209. Symmetrical transitive relations .

210. Reflexiveness and the principle of abstraction

211. Relative position .....
212. Are relations reducible to predications ?

213. Monadistic theory of relations

214. Reasons for rejecting this theory

215. Monistic theory and the reasons for rejecting it

216. Order requires that relations should be ultimate

PAGE

218

219

219

220

221

222

222

224

226

CHAPTER XXVH.

DIFFERENCE OF SENSE AND DIFFERENCE OF SIGN.

217. Kant on difference of sense ........ 227
218. Meaning of difference of sense ........ 228

219. Difference of sign 228

220. In the cases of finite numbers ........ 229

221. And of magnitudes .229
222. Right and left 231

223. Difference of sign arises from difference of sense among transitive

asymmetrical relations ........ 232

CHAPTER XXVIII.

ON THE DIFFERENCE BETWEEN OPEN AND CLOSED SERIES.

224. What is the difference between open and closed series .''

22.5. Finite closed series ......
226. Series generated by triangular relations

227. Four-term relations ......
228. Closed series are such as have an arbitrary first term

234

234

236

237

238

229.

230.

231.

232.

233.

CHAPTER XXIX.

PROGRESSIONS AND ORDINAL NUMBERS.

Definition of progressions ......... 239

All finite arithmetic applies to every progression .... 240

Definition of ordinal numbers . . • . • • • • •
-^-^

Definition of "nth" 243

Positive and negative ordinals ........ 244



XX Table of Contents

234.

235.

236.

237.

238.

239.

240.

241.

242.

243.

CHAPTER XXX.

DEDEKIND'S THEORY OF NUMBER.
PAGE

Dedekind's principal ideas 245

Representation of a system......•• 245

The notion of a chain .....•• 246

The chain of an element 246

Generalized form of mathematical induction 246

Definition of a singly infinite system 247

Definition of cardinals ....... 247

Dedekind's proof of mathematical induction ..... 248

Ohjections to his definition of ordinals 248

And of cardinals 249

CHAPTER XXXI.

DISTANCE.

244. Distance not essential to order ........ 252

245. Definition of distance......••• 253

246. Measurement of distances 254

247. In most series, the existence of distances is doubtful .... 254

248. Summary of Part IV 255

PAET V.

INFINITY AND CONTINUITY.

CHAPTER XXXII.

THE CORRELATION OF SERIES.

249. The infinitesimal and space are no longer required in a statement of

,
principles ........

250. The supposed contradictions of infinity have been resolved

251. Correlation of series ......
262. Independent series and series by correlation

253. Likeness of relations ......
254. Functions ........
255. Functions of a variable whose values form a series

256. Functions which are defined by formulae

257. Complete series .......

259

260

260

262

2^2
263

264

267

269



Table of Contents xxi

CHAPTER XXXIII.

REAL NUMBERS.
PAGE

258. Real numbers are not limits of series of rationals .... 270
259. Segments of rationals ......... 271
260. Properties of segments 272
261. Coherent classes in a series ........ 274

Note 274

CHAPTER XXXIV.

LIMITS AND IRRATIONAL NUMBERS.

262. Definition of a limit ......
263. Elementary properties of limits ....
264. An arithmetical theory of irrationals is indispensable

265. Dedekind's theory of irrationals .

266. Defects in Dedekind's axiom of continuity

267. Objections to his theory of irrationals

268. Weierstrass's theory ....
269. Cantor's theory .....
270. Real numbers are segments of rationals

276

277

277
278

279
280

282

283

285

CHAPTER XXXV.

CANTOR'S FIRST DEFINITION OF CONTINUITY.

271. The arithmetical theory of continuity is due to Cantor . . . 287

272. Cohesion 288

273. Perfection 290

274. Defect in Cantor's definition of perfection ...... 291

275. The existence of limits must not be assumed without special grounds . 293

CHAPTER XXXVI.

ORDINAL CONTINUITY.

276. Continuity is a purely ordinal notion

277. Cantor's ordinal definition of continuity

278. Only ordinal notions occur in this definition ....
279. Infinite classes of integers can be arranged in a continuous series

280. Segments of general compact series ......
281. Segments defined by fundamental series

282. Two compact series may be combined to form a series which is not

compact ...........

296

296

298-

298

299

300

303



XXll Table of Contents

CHAPTER XXXVII.

283.

284.

285.

286.

287.

288.

289.

TRANSFINITE CARDINALS.
PAGE

Transfinite cardinals differ widely from transiinite ordinals . . . 304

Definition of cardinals .......•• 304

Properties of cardinals ......••• 306

Addition, multiplication and exponentiation ..... 307

The smallest transfinite cardinal a,, 309

Other transfinite cardinals .......•• 310

Finite and tran.sfinite cardinals foim a single series hy relation to

greater and less ......... 311

CHAPTER XXXVIII.

TRANSFINITE ORDINALS.

290. Ordinals are classes of serial relations ...... 312

291. Cantor's definition of the second class of ordinals .... 312

292. Definition of o) 314

293. An infinite class can be arranged in many types of series . . . 315

294. Addition and subtraction of ordinals ....... 317

295. Multiplication and division......... 318

296. Well-ordered series 319

297. Series which are not well-ordered ....... 320

298. Ordinal numbers are types of well-ordered series .... 321

299. Relation-arithmetic .......... 321

300. Proofs of existence-theorems ........ 322

301. There is no maximum ordinal number ...... 323

302. Successive derivatives of a series........ 323

CHAPTER XXXIX.
THE INFINITESIMAL CALCULUS.

303. The infinitesimal has been usually supposed essential to the calculus

304. Definition of a continuous function ......
305. Definition of the derivative of a function .....
306. The infinitesimal is not implied in this definition

307. Definition of the definite integral ......
308. Neither the infinite nor the infinitesimal is involved in this definition

325

326

328

329

329

330

CHAPTER XL.

THE INFINITESIMAL AND THE IMPROPER INFINITE.

309. A precise definition of the infinitesimal is seldom given
310. Definition of the infinitesimal and the improper infinite

311. Instances of the infinitesimal . ...
312. No infinitesimal segments in compact series

313. Orders of infinity and infinitesimality ....
314. Summary .........

331

331

332

334

335

337



Table of Contents XXIU

CHAPTER XLI.

PHILOSOPHICAL ARGUMENTS CONCERNING THE INFINITESIMAL.

PAGE

315. Current philosophical opinions illustrated by Cohen .... 338

316. Who bases the calculus upon infinitesimals...... 338

317. Space and motion are here irrelevant ....... 339

318. Cohen regards the doctrine of limits as insufficient for the calculus . 339

319. And supposes limits to be essentially quantitative .... 340

320. To involve infinitesimal differences ....... 341

321. And to introduce a new meaning of equality ..... 341

322. He identifies the inextensive with the intensive ..... 342

323. Consecutive numbers are supposed to be required for continuous

change 344

324. Cohen's views are to be rejected........ 344

CHAPTER XLH.

THE PHILOSOPHY OF THE CONTINUUM.

325. Philosophical sense of continuity not here in question

326. The continuum is composed of mutually external units

327. Zeno and Weierstrass ......
328. The argument of dichotomy

329. The objectionable and the innocent kind of endless regress

330. Extensional and intensional definition of a whole

331. Achilles and the tortoise ....
332. The arrow

333. Change does not involve a state of change .

334. The argument of the measure

335. Summary of Cantor's doctrine of continuity

336. The continuum consists of elements

346

346

347

348

348

349

350

350

351

352

353

353

CHAPTER XLIII.

THE PHILOSOPHY OF THE INFINITE.

337. Historical retrospect 3S5

338. Positive doctrine of the infinite 356

339. Proof that there are infinite classes 357

340. The paradox of Tristram Shandy 358

341. A whole and a part may be similar 359

342. Whole and part and formal implication 360

343. No immediate predecessor of <a or oq 361

344. Difficulty as regards the number of all terms, objects, or propositions . 362

345. Cantor's first proof that there is no greatest number .... 363

346. His second proof 364

347. Every class has more sub-classes than terms 366

348. But this is impossible in cei-tain cases 366

349. Resulting contradictions 367

350. Summary of Part V . . 368



XXIV Table of Contents

PAET VI.

SPACE.

CHAPTER XLIV.

DIMENSIONS AND COMPLEX NUMBERS.
PAGE

351. Retrospect 371

352. Geometry is the science of series of two or more dimensions . . 372

353. Non-Euclidean geometry ......... 372

354. Definition of dimensions ......... 374

355. Remarks on the definition ......... 375

356. The definition of dimensions is purely logical ..... 376

357. Complex numbers and universal algebra ...... 376

358. Algebraical generalization of number ....... 377

359. Definition of complex numbers ........ 378

360. Remarks on the definition ......... 379

CHAPTER XLV.

PROJECTIVE GEOMETRY.

361. Recent threefold scrutiny of geometrical principles

362. Projective, descriptive and metrical geometry
363. Projective points and straight lines

364. Definition of the plane

365. Harmonic ranges

366. Involutions....
367. Projective generation of order

368. Mobius nets

369. Projective order presupposed in assigning irrational coordinates

370. Anharmonic ratio ........
371 > Assignment of coordinates to any point in space

372. Comparison of projective and Euclidean geometry

373. The principle of duality . . ....

381

381

382

384

384
385

386

388

389

390

390
391

392

CHAPTER XEVI.

DESCRIPTIVE GEOMETRY.

374. Distinction between projective and descriptive geometry
375. Method of Pasch and Peano ....
376. Method employing serial relations

377. Mutual independence of axioms ....
378. Logical definition of the class of descriptive spaces

393
394

395

396

397



Table of Contents XXV

PAGE
379. Parts of straight lines 397
380. Definition of the plane 398
381. Solid geometry ........... 399
382. Descriptive geometry applies to Euclidean and hyperbolic, but not

elliptic space . . . . , 399
383. Ideal elements 400
384. Ideal points 400
385. Ideal lines 401
386. Ideal planes 402
387. The removal of a suitable selection of points renders a projective space

descriptive ........... 403

CHAPTER XLVII.

METRICAL GEOMETRY.

388. Metrical geometry presupposes projective or descriptive geometry . 404
389. Errors in Euclid 404

390. Superposition is not a valid method . 405
391. Errors in Euclid (continued) 406

392. Axioms of distance .......... 407

393. Stretches 408

394. Order as resulting from distance alone 409

395. Geometries which derive the straight line from distance . . . 410
396. In most spaces, magnitude of divisibility can be used instead of

distance ........... 411

397. Meaning of magnitude of divisibility . . . . . . .411
398. Difficulty of making distance independent of stretch .... 413

399. Theoretical meaning of measurement ....... 414

400. Definition of angle 414

401. Axioms concerning angles ......... 415

402. An angle is a stretch of rays, not a class of points .... 416

403. Areas and volumes .......... 417

404. . Right and left 417

CHAPTER XLVni.

RELATION OF METRICAL TO PROJECTIVE AND
DESCRIPTIVE GEOMETRY.

406. Non-quantitative geometry has no metrical presuppositions

406. Historical development of non-quantitative geometry

407. Non-quantitative theory of distance

408. In descriptive geometry ....
409. And in projective geometry

410. Geometrical theory of imaginary point-pairs

411. New projective theory of distance

419

420

421

423

425

426

427



XXVI Table of Contents

CHAPTER XLIX.

DEFINITIONS OF VARIOUS SPACES.

412. All kinds of spaces are definable in purely logical terms

413. Definition of projective spaces of three dimensions

414. Definition of Euclidean spaces of three dimensions

415. Definition of Clifford's spaces of two dimensions .

PAGE

429

430

432

434

CHAPTER L.

THE CONllNUITY OF SPACE.

416. The continuity of a projective space .....•• 437

417. The continuity of a metrical space .....•• 438

418. An axiom of continuity enables us to dispense with the postulate of the

circle . 440

419. Is space prior to points?.......•• 440

420. Empirical premisses and induction ....... 441

421. There is no reason to desire our premisses to be self-evident . . 441

422. Space is an aggregate of points, not a unity ..... 442

CHAPTER LI.

LOGICAL ARGUMENTS AGAINST POINTS.

423. Absolute and relative position

424. Lotze's arguments against absolute position .

42.5. Lotze's theory of relations ....
426. The subject-predicate theory of propositions

427. Lotze's three kinds of Being

428. Argument from the identity of iudiscernibles

429. Points are not active ....
430. Argument from the necessary truths of geometry
431. Points do not imply one another .

445

446

446

448

449

451

462

454

454

CHAPTER LII.

KANT'S THEORY OF SPACE.

432. The present work is diametrically opposed to Kant .... 466
433. Summary of Kant's theory ......... 456
434. Mathematical reasoning requires no extra-logical element . . . 467
435. Kant's mathematical antinomies ........ 458
436. Summary of Part VI ......... . 401



Table of Contents XXVll

PAET VII.

MATl^ER AND MOTION.

CHAPTER LIII.

MATTER.
PAGE

437. Dynamics is here considered as a branch of pure mathematics . . 465

438. Matter is not implied by space ........ 466

439. Matter as substance 466

440. Relations of matter to space and time....... 467

441. Definition of matter in terms of logical constants .... 468

CHAPTER LIV.

MOTION.

442. Definition of change .......... 469

443. There is no such thing as a state of change...... 471

444. Change involves existence ......... 471

445. Occupation of a place at a time ........ 472

446. Definition of motion 472

447. There is no state of motion......... 473

CHAPTER LV.

CAUSALITY.

448. 'The descriptive theory of dynamics

449. Causation of particulars by particulars

460. Cause and effect are not temporally contiguous .

461. Is there any causation of particulars by particulars ?

462. Generalized form of causality ....

474

476

476

477

478

463.

454.

CHAPTER LVI.

DEFINITION OF A DYNAMICAL WORLD.

Kinematical motions

Kinetic motions.....•.• 480

480



XXVlll Table of Contents

CHAPTER LVII.

NEWTON'S LAM'S

455. Force and acceleration are fictions

456. The law of inertia

457. The second law of motion .

458. The third law . .

459. Summary of Newtonian principles

460. Causality in dynamics

461. Accelerations as caused by particulars

462. No part of the laws of motion is an a priori truth

OF



T'able of Contents xxix

PAGE
/ 482. Recapitulation of theory of propositioual functions .... 508
^ 483. Can concepts be made logical subjects ? 510

484. Ranges 610
485. Definition of e and of relation 512
486. Reasons for an extensional view of classes ...... 513

487. A, class which has only one member is distinct from its only member . 513
488. Possible theories to account for this fact 514
480. Recapitulation of theories already discussed ..... 516
490. ITie subject of a proposition may be plural 516
491. Classes having only one member........ 517
492. Theory of types . 518
493. Implication and symbolic logic ........ 518
494. Definition of cardinal numbers ........ 519
i495. Frege's theory of series ......... 620

0496. Kerry's criticisms of Frege......... 520

APPENDIX B.

THE DOCTRINE OF TYPES.

\ 497. Statement of the doctrine 523
\498. Numbers and propositions as types ....... 526
W:99. Are propositional concepts individuals}...... 526

feoo. Contradiction arising from the question whether there ai-e more classes

of propositions than propositions....... 527

Index .............. 529





PART I.

THE INDEFINABLES OF MATHEMATICS.





CHAPTER I.

DEFINITION OF PURE MATHEMATICS.

1. Pure Mathematics is the class of all propositions of the form'
"p implies g," where p and q are propositions containing one or more
variables, the same in the two propositions, and neitherp nor q contains
any constants except logical constants. And logical constants are all

notions definable in terms of the following : Implication, the relation

of a term to a class of which it is a member, the notion of mch that,

the notion of relation, and such further notions as may be involved
in the general notion of propositions of the above form. In addition
to these, mathematics uses a notion which is not a constituent of the
propositions which it considers, namely the notion of truth.

2. The above definition of pure mathematics is, no doubt, some-
what unusual. Its various parts, nevertheless, appear to be capable of
exact justification—a justification which it will be the object of the
present work to provide. It will be shown that whatever has, in the
past, been regarded as pure mathematics, is included in our definition,

and that whatever else is included possesses those marks by which
mathematics is commonly though vaguely distinguished from other

studies. The definition professes to be, not an arbitrary decision to

use a common word in an uncommon signification, but rather a precise

analysis of the ideas which, more or less unconsciously, are implied in

the ordinary employment of the term. Our method will therefore be

one of analysis, and our problem may be called philosophical—in the

sense, that is to say, that we seek to pass from the complex to the

simple, from the demonstrable to its indemonstrable premisses. But
in one respect not a few of our discussions will differ from those that

are usually called philosophical. We shall be able, thanks to the labours

of the mathematicians themselves, to arrive at certainty in regard to

most of the questions with which we shall be concerned ; and among
those capable of an exact solution we shall find many of the problems

which, in the past, have been involved in all the traditional uncertainty

of philosophical strife. The natiu-e of number, of infinity, of space,

time and motion, and of mathematical inference itself, are all questions

1—2
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to which, in the present work, an answer professing itself demonstrable

with mathematical certainty will be given—an answer which, however,

consists in reducing the above problems to problems in pure logic,

which last will not be found satisfactorily solved in what follows.

3. The Philosophy of Mathematics has been hitherto as con-

troversial, obscure and unprogressive as the other branches of philosophy.

Although it was generally agreed that mathematics is in some sense

true, philosophers disputed as to what mathematical propositions really

meant : although something was true, no two people were agreed as to

what it was that was true, and if something was known, no one knew

what it was that was known. So long, however, as this was doubtful,

it could hardly be said that any certain and exact knowledge was to be

obtained in mathematics. We find, accordingly, that idealists have

tended more and more to regard all mathematics as dealing with mere

appearance, while empiricists have held everything mathematical to be

approximation to some exact truth about which they had nothing to

tell us. This state of things, it must be confessed, was thoroughly

imsatisfactory. Philosophy asks of Mathematics : ^Vhat does it mean ?

Mathematics in the past wgis unable to answer, and Philosophy answered

by introducing the totally irrelevant notion of mind. But now
Mathematics is able to answer, so far at least as to reduce the whole

of its propositions to certain fundamental notions of logic. At this

point, the discussion must be resumed by Philosophy. I shall endeavour

to indicate what are the fundamental notions involved, to prove at

length that no others occur in mathematics, and to point out briefly

the philosophical difficulties involved in the analysis of these notions.

A complete treatment of these difficulties would involve a treatise on

Logic, which wiU not be found in the following pages.

4. There was, until very lately, a special difficulty in the principles

of mathematics. It seemed plain that mathematics consists of deductions,

and yet the orthodox accounts of deduction were largely or wholly

inapplicable to existing mathematics. Not only the Aristotelian

syllogistic theory, but also the modem doctrines of Symbolic Logic,

were either theoretically inadequate to mathematical reasoning, or at

any rate required such artificial forms of statement that they could not

be practically applied. In this fact lay the strength of the Kantian

view, which asserted that mathematical reasoning is not strictly formal,

but always uses intuitions, i.e. the a priori knowledge of space and
time. Thanks to the progress of Symbolic Logic, especially as treated

by Professor Peano, this part of the Kantian philosophy is now capable

of a final and irrevocable refutation. By the help of ten principles

of deduction and ten other premisses of a general logical nature

{e.g. " implication is a relation "), all mathematics can be strictly and
formally deduced; and all the entities that occur in mathematics can
be defined in terms of those that occur in the above twenty premisses.
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In this statement, Mathematics includes not only Arithmetic and
Analysis, but also Geometry, Euclidean and non-Euclidean, rational
Dynamics, and an indefinite number of other studies still unborn or in
their infancy. The fact that all Mathematics is Symbolic Logic is one
of the greatest discoveries of our age; and when this fact has been
established, the remainder of the principles of mathematics consists in
the analysis of Symbolic Logic itself.

5. The general doctrine that all mathematics is deduction by
logical principles from logical principles was strongly advocated by
Leibniz, who urged constantly that axioms ought to be proved and
that all except a few fundamental notions ought to be defined. But
owing partly to a faulty logic, partly to belief in the logical necessity

of Euclidean Geometry, he was led into hopeless errors in the endeavour
to carry out in detail a view which, in its general outhne, is now known
to be con-ect*. The actual propositions of Euclid, for example, do not
follow from the principles of logic alone ; and the perception of this fact

led Kant to his innovations in the theory of knowledge. But since

the growth of ' non-Euclidean Geometry, it has appeared that pure
mathematics has no concern with the question whether the axioms
and propositions of Euclid hold of actual space or not: this is a question
for applied mathematics, to be decided, so far as any decision is possible,

by experiment and observation. What pure mathematics asserts is merely
that the Euclidean propositions follow from the Euclidean axioms

—

i.e.

it asserts an implication: any space which has such and such properties

has also such and such other properties. Thus, as dealt with in pure
mathematics, the Euclidean and non-Euclidean Geometries are equally

true: in each nothing is affirmed except implications. All propositions

as to what actually exists, like the space we live in, belong to experi-

mental or empirical science, not to mathematics ; when they belong to

applied mathematics, they arise from giving to one or more of the

variables in a proposition of pure mathematics some constant value

satisfying the hypothesis, and thus enabling us, for that value of the

variable, actually to assert both hypothesis and consequent instead of

asserting merely the implication. We fissert always in mathematics

that if a certain assertion p is true of any entity x, or of any set of

entities x,y,z,..., then some other assertion q is true of those entities

;

but we do not assert eitherp or q separately of our entities. We assert

a relation between the assertions p and q, which I shall calljbrmal

implication.

6. Mathematical propositions are not only characterized by the

fact that they assert implications, but also by the fact that they contain

variables. The notion of the variable is one of the most difficult with

which Logic has to deal, and in the present work a satisfactory theory

* On this subject, cf. Couturat, La Logique de Leibniz, Paris, 1901.
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as to its nature, in spite of much discussion, will hardly be found.

For the present, I only wish to make it plain that there are variables

in all mathematical propositions, even where at first sight they might

seem to be absent. Elementary Arithmetic might be thought to form

an exception: 1+1=2 appears neither to contain variables nor to

assert an implication. But as a matter of fact, as will be shown in

Part II, the true meaning of this proposition is: "If x is one and

y is one, and x differs from y, then x and y axe two." And this

proposition both contains variables and asserts an implication. We
shall find always, in all mathematical propositions, that the words any

or some occur ; and these words are the marks of a variable and a formal

implication. Thus the above proposition may be expressed in the form:

" Any unit and any other unit are two units." The typical proposition

of mathematics is of the form "^{x, y, z,...) implies -v/f(a?, y, z,...),

whatever values x, y, z, ... may have"; where <^{x, y, z,...) and

-\|r(^, y, z,...), for every set of values of x, y, z, ..., are propositions.

It is not asserted that
(f>

is always true, nor yet that -KJr is always true,

but merely that, in all cases, when
<f)

is false as much as when (p is true,

T|r follows from it.

The distinction between a variable and a constant is somewhat

obscured by mathematical usage. It is customary, for example, to speak

of parameters as in some sense constants, but this is a usage which

we shall have to reject. A constant is to be something absolutely

definite, concerning which there is no ambiguity whatever. Thus 1, 2,

3, e, TT, Socrates, are constants ; and so are mun, and the human race,

past, present and future, considered collectively. Proposition, implica-

tion, class, etc. are constants ; but a proposition, any proposition, some
proposition, are not constants, for these phrases do not denote one

definite object. And thus what are called parameters are simply

variables. Take, for example, the equation ax + by + c = 0, considered

as the equation to a straight line in a plane. Here we say that x and y
are variables, while a, b, c are constants. But unless we are dealing

with one absolutely particular line, say the line from a particular point

in London to a particular point in Cambridge, our a, b, c are not
definite numbers, but stand for any numbers, and are thus also variables.

And in Geometry nobody does deal with actual particular lines ; we
always discuss any line. The point is that we collect the various

couples X, y into classes of classes, each class being defined as those

couples that have a certain fixed relation to one triad (a, b, c). But
from class to class, a, b, c also vary, and are therefore properly variables.

7. It is customary in mathematics to regard our variables as

restricted to certain classes : in Arithmetic, for instance, they are

supposed to stand for numbers. But this only means that if they
stand for numbers, they satisfy some formula, i.e. the hypothesis that
they are numbers implies the formula. This, then, is what is really
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asserted, and in this proposition it is no longer necessary that our
variables should be numbers: the implication holds equally when they

are not so. Thus, for example, the proposition " x and y are numbers
implies {x-\-yy = a!'-\-%xy+y'^'''' holds equally if for x and y we substi-

tute Socrates and Plato* : both hypothesis and consequent, in this case,

will be false, but the implication will still be true. Thus in every

proposition of pure mathematics, when fully stated, the variables have

an absolutely mirestricted field: any conceivable entity may be substi-

tuted for any one of our variables without impairing the truth of our

proposition.

8. We can now understand why the constants in mathematics are

to be restricted to logical constants in the sense defined above. The
process of transforming constants in a proposition into variables leads

to what is called generalization, and gives us, as it were, the formal

essence of a proposition. Mathematics is interested exclusively in types

of propositions ; if a proposition p containing only constants be proposed,

and for a certain one of its terms we imagine others to be successively

substituted, the result will in general be sometimes true and sometimes

false. Thus, for example, we have "Socrates is a man"; here we turn

Socrates into a variable, and consider "a? is a man." Some hypotheses

as to X, for example, "a' is a Greek," insure the truth of "x is a man";

thus ".r is a Greek" implies "x is a man," and this holds for all values of

X. But the statement is not one of pure mathematics, because it depends

upon the particular nature of Greek and man. We may, however, vary

these too, and obtain: If a and b are classes, and a is contained in b,

then "x is an a" implies "x is a 6." Here at last we have a proposition

of pure mathematics, containing three variables and the constants class,

contained in, and those involved in the notion of formal implications with

variables. So long as any term in our proposition can be turned into

a variable, our proposition can be generalized; and so long as this is

possible, it is the business of mathematics to do it. If there are several

chains of deduction which differ only as to the meaning of the symbols,

so that propositions symbolically identical become capable of several

interpretations, the proper course, mathematically, is to form the class of

meanings which may attach to the symbols, and to assert that the

formula in question follows from the hypothesis that the symbols belong

to the class in question. In this way, symbols which stood for constants

become transformed into variables, and new constants are substituted,

consisting of classes to which the old constants belong. Cases of such

generalization are so frequent that many will occur at once to every

mathematician, and innumei-able instances will be given in the present

work. Whenever two sets of terms have mutual relations of the same

* It is necessary to suppose arithmetical addition and multiplication defined (as

may be easily done) so that the above formula remains significant when x and y arc

not numbers.
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type, the same form of deduction will apply to both. For example, the

mutual relations of points in a Euclidean plane are of the same type as

those of the complex numbers; hence plane geometry, considered as a

branch of pure mathematics, ought not to decide whether its variables

are points or complex numbers or some other set of entities having the

same type of mutual relations. Speaking generally, we ought to deal,

in every branch of mathematics, with any class of entities whose mutual

relations are of a specified type; thus the class, as well as the particular

term considered, becomes a variable, and the only true constants are the

types of relations and what they involve. Now a type of relation is to

mean, in this discussion, a class of relations characterized by the above

formal identity of the deductions possible in regard to the various

members of the class; and hence a type of relations, as will appear more
fully hereafter, if not already evident, is always a class definable in

terms of logical constants*. We may therefore define a type of relations

as a class of relations defined by some property definable in terms of.

logical constants alone.

9. Thus pure mathematics must contain no indefinables except

logical constants, and consequently no premisses, or indemonstrable

propositions, but such as are concerned exclusively with logical constants

and with variables. It is precisely this that distinguishes pure from
applied mathematics. In applied mathematics, results which have been
shown by pure mathematics .to follow from some hypothesis as to the

variable are actually asserted of some constant satisfying the hypothesis

in question. Thus terms which were variables become constant, and a
new premiss is always required, namely: this particular entity satisfies

the hypothesis in question. Thus for example Euclidean Geometry, as a
branch of pure mathematics, consists wholly of propositions having the
hypothesis "6* is a Euclidean space." If we go on to: "The space
that exists is Euclidean," this enables us to assert of the space that exists

the consequents of all the hypothetical constituting Euclidean Geometry,
where now the variable S is replaced by the constant actual space. But
by this step we pass from pure to applied mathematics.

10. The connection of mathematics with logic, according to the
above account, is exceedingly close. The fact that all mathematical
constants are logical constants, and that all the premisses of mathematics
are concerned with these, gives, I believe, the precise statement of what
philosophers have meant in asserting that mathematics is a priori. The
fact is that, when once the apparatus of logic has been accepted, all

mathematics necessarily follows. The logical constants themselves are
to be defined only by enumeration, for they are so fundamental that all

the properties by which the class of them might be defined presuppose

* One-one, many-one^ transitive, symmetrical, are instances of types of relations
with which we shall be often concerned.
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some terms of the class. But practically, the method of discovering the

logical constants is the analysis of symbolic logic, which will be the

business of the following chapters. The distinction of mathematics from
logic is very arbitrary, but if a distinction is desired, it may be made as

follows. Logic consists of the premisses of mathematics, together with

all other propositions which are concerned exclusively with logical

constants and with variables but do not fulfil the above definition of

mathematics (§ 1). Mathematics consists of all the consequences of the

above premisses which assert formal implications containing variables,

together with such of tlie premisses themselves as have these marks."

Thus some of the premisses of mathematics, e.g. the principle of the

syllogism, "if p implies q 'and q implies r, then p implies r," will

belong to mathematics, while others, such as "implication is a relation,"

will belong to logic but not to mathematics. But for the desire to

adhere to usage, we might identify mathematics and logic, and define

either as the class of propositions containing only variables and logical

constants; but respect for tradition leads me rather to adhere to the

above distinction, while recognizing that certain propositions belong to

both sciences.

From what has now been said, the reader will perceive that the

present wori< has to fulfil two objects, first, to show that all m/ithematics

follows from symbolic logic, and secondly to discover, as far as possible,

what are the principles of symbolic logic itself. The first of these objects

wiU be pursued in the following Parts, while the second belongs to

Part I. And first of all, as a preliminary to a critical analysis, it will

be necessary to give an outline of Symbolic Logic considered simply as a

branch of mathematics. This will occupy the following chapter.



CHAPTER II.

SYMBOLIC LOGIC.

11. Syjibolic or Formal Logic—I shall use these terms as

synonyms—is the study of the various general t>-pes of deduction.

The word symbolic designates the subject by an accidental characteristic,

for the employment of mathematical symbols, here as elsewhere, is merely

a theoi'etically irrelevant convenience. The syllogism in all its figures

belongs to Symbolic Logic, and would be the whole subject if all

deduction were syllogistic, as the scholastic tradition supposed. It is

from the recognition of asyllogistic inferences that modem Symbolic

Logic, from Leibniz onward, has derived the motive to progress. Since

the publication of Boole's Laws of Thought (1854i), the subject has

been pursued with a certain vigour, and has attained to a very consider-

able technical development*. Nevertheless, the subject achieved almost

nothing of utility either to philosophy or to other branches of mathematics,

until it was transformed by the new methods of Professor Peano-f*.

Symbolic Logic has now become not only absolutely essential to every

philosophical logician, but also necessary for the comprehension of

mathematics generally, and even for the successful practice of certain

branches of mathematics. How useful it is in practice can only be

judged by those who have experienced the increase of power derived

from acquiring it; its theoretical functions must be briefly set forth in

the present chapter |.

* By far the most complete account of the non-Peanesque methods will be found
in the three volumes of Schroder, Vorlesungen iiher die Algebra der Logik, Leipzig,

1890, 1891, 189.5.

t See Formulaire de Mathematique^ Turin, 189.5, with subsequent editions in
later years ; also Revue de Mathematiques, Vol. rii. No. 1 (1900). The editions of
the Formulaire will be quoted as F. 189.5 and so on. The Revue de Mathematiques,
which was originally the Rivista di Matematica, will be referred to as R. d. M.

X In what follows the main outlines are due to Professor Peano, except as
regards relations ; even in those cases where I depart from his views, the problems
considered have been suggested to me by his works.
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12. Symbolic Logic is essentially concerned with inference in

general*, and is distinguished from various special branches of mathe-
matics mainly by its generality. Neither mathematics nor symbolic
logic will study such special relations as (say) temporal priority, but
mathematics will deal explicitly with the class of relations possessing
the formal properties of temporal priority—properties which are
summed up in the notion of continuity f. And the formal properties
of a relation may be defined as those that can be expressed in terms
of logical constants, or again as those which, while they are preserved,

permit pur relation to be varied without invalidating any inference in

which the said relation is regarded in the light of a variable. But
symbolic logic, in the narrower sense which is convenient, will not
investigate ^\hat inferences are possible in respect of continuous relations

(i.e. relations generating continuous series); this investigation belongs
to mathematics, but is still too special for symbolic logic. What
symbolic logic does investigate is the general rules by which inferences

are made, and it requires a classification of relations or propositions

only in so far as these general rules introduce particular notions. The
particular notions' which appear in the propositions of symbolic logic,

and all othei-s definable in terms of these notions, are the logical

-constants. The number of indefinable logical constants is not gi-eat

:

it appeai-s, in fact, to be eight or nine. These notions alone form the

subject-matter of the whole of mathematics : no others, except such

as are definable in terms of the oi'iginal eight or nine, occur anywhere
in Arithmetic, Geometry, or rational Dynamics. For the technical

study of Symbolic Logic, it is convenient to take as a single indefinable

the notion of a formal implication, i.e. of such propositions as ".r is

•a man implies o' is a mortal, for all values of ^^—propositions whose
general type is :

"
(/> {oc) implies -v/r {x) for all values of .r," where <^ (<r),

v/r {x), for all values of x, are propositions. The analysis of this notion

of formal implication belongs to the principles of the subject, but is not

required for its formal development. In addition to this notion, we

require as indefinables the following : Implication between propositions
j

not containing variables, the relation of a term to a class of which it^,

is a member, the notion of siich that, the notion of relation, and truth,
j

By means of these notions, all the propositions of symbolic logic can be

stated.

13. The subject of Symbolic Logic consists of three parts, the

calculus of propositions, the calculus of classes, and the calculus of

relations. Between the first two, there is, within limits, a certain

parallelism, which arises as follows : In any symbolic expression, the

* I may as well say at once that I, do not distinguish between inference and

deduction. 'What is called induction appears to me to be either disguised deduction

or a mere method of making plausible guesses

+ See below^ Part V, Chap, xxxvi.
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lettere may be interpreted as classes or as propositions, and the relation

of inclusion in the one case may be replaced by that of formal implication

in the other. Thus, for example, in the principle of the syllogism, if

a, b, c be classes, and a is contained in b, b in c, then a is contained in c;

but if a, b, c be propositions, and a implies b, b implies c, then a implies c.

A great deal has been made of this duality, and in the later editions of

the Formulaire, Peano appears to have sacrificed logical precision to its

preservation *. But, as a matter of fact, there are many ways in which

the calculus of propositions differs from that of classes. Consider,,

for example, the following :
" If p, q, r are propositions, and p implies

q or r, then p implies q ov p implies r." This proposition is true ; but

its correlative is false, namely :
" If a, b, c are classes, and a is contained

in b or c, then a is contained in b or a is contained in c.'" For example,.

English people are all either men or women, but are not all men nor yet

all women. The fact is that the duality holds for propositions asserting

of a variable term that it belongs to a class, i.e. such propositions as

" ^ is a man," provided that the implication involved be formal, i.e. one

which holds for all values of x. But "a? is a man'" is itself not a

proposition at all, being neither true nor false ; and it is not with such

entities that we are concerned in the prepositional calculus, but with

genuine propositions. To continue the above illustration : It is true

that, for all values oi a; " x is a man or a woman " either implies " a? is a

man" or implies "^ is a woman." But it is false that "a- is a man or

woman" either implies "* is a man" for all values of x, or implies

" 57 is a woman " for all values of x. Thus the implication involved, which

is always one of the two, is not formal, since it does not hold for all values

of X, being not always the same one of the two. The symbolic affinity

of the propositional and the class logic is, in fact, something of a snare,,

and we have to decide which of the two we are to make fundamental.

Mr McColl, in an important series of papers f, has contended for the

view that implication and propositions are more fundamental than
inclusion and classes ; and in this opinion I agree with him. But he
does not appear to me to realize adequately the distinction between,

genuine propositions and such as contain a real variable : thus he is led

to speak of propositions as sometimes true and sometimes false, which
of course is impossible with a genuine proposition. As the distinction

involved is of very great importance, I shall dwell on it before proceeding

fm-ther. A proposition, we may say, is anything that is true or that is.

* On the points where the duality breaks down, cf. Schroder, op. cit., Vol. ii.

Lecture 21.

t Cf. "The Calculus of Equivalent Statements," Proceediiigs of the London.
Mathematical Society, Vol. ix and subsequent volumes ; "Symbolic Reasoning," Mind^
Jan. 1880, Oct. 1897, and Jan. 1900 ; "La Logique Symbolique et ses Applications,"
Bibliotheque du Congres International de Philosophic, Vol. iii (Paris, 1901). I shall in
future quote the proceedings of the above Congress by the title Congres.
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false. An expression such as " « is a man " is therefore not a proposi-

tion, for it is neither true nor false. If we give to x any constant value

whatever, the expression becomes a proposition : it is thus as it were a

schematic form standing for any one of a whole class of propositions.

And when we say " .r is a man implies x is, a, mortal for all values of x^
we are not asserting a single implication, but a class of implications

;

we have now a genuine proposition, in which, though the letter x appears,

there is no real variable : the variable is absorbed in the same kind of

way as the x imder the integral sign in a definite integral, so that the

result is no longer a function of x. Peano distinguishes a variable which

appears in this way as apparent, since the proposition does not depend

upon the variable ; whereas in " a- is a man " there are differ'ent proposi-

tions for different values of the variable, and the variable is what Peano

calls real*. I shall speak of propositions exclusively where there is no

real variable : where there are one or more real variables, and for all

values of the variables the expression involved is a proposition, I shall

call the expression a propositional function. The study of genuine r

propositions is, in my opinion, more fundamental than that of classes ; |

but the study of propositional functions appears to be strictly on a

par with that of classes, and indeed scarcely distinguishable therefrom.

Peano, like IVIcCoU, at first regarded propositions as more fundamental

than classes, but he, even more definitely, considered propositional func-

tions rather than propositions. From this criticism, Schroder is exempt:

his second volume deals with genuine propositions, and points out their

formal differences from classes.

A. The Propositional Calculus.

14. The propositional calculus is characterized by the fact that

all its propositions have as hypothesis and as consequent the assertion of

a material implication. Usually, the hypothesis is of the form "p im-

plies », etc., which (§ 16) is equivalent to the assertion that the letters

which occur in the consequent are propositions. Thus the consequents /

consist of propositional functions which are true of all propositions,
j

It is important to observe that, though the letters employed are symbols

for variables, and the consequents are true when the variables are given

values which are propositions, these values must be genuine propositions,

not propositional functions. The hypothesis "jj is a proposition" is

not satisfied if for p we put " a:' is a man," but it is satisfied if we put

" Socrates is a man " or if we put " x is a man implies a? is a mortal for
;

all values of a." Shortly, we may say that the propositions represented

by single letters in this calculus are variables, but do not contain

variables—in the case, that is to say, where the hypotheses of the

propositions which the calculus asserts are satisfied.

* F. 1901, p. 2.
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15. Our calculus studies the relation of implication between

propositions. This relation must be distinguished from the relation

of formal implication, which holds between propositional functions

when the one implies the other for all values of the variable. Formal

implication is also involved in this calculus, but is not explicitly

studied : we do not consider propositional functions in general, but
only certain definite propositional functions which occur in the propo-

sitions of our calculus. How far formal implication is definable in

terms of implication simply, or material implication as it may be

called, is a difficult question, which will be discussed in Chapter iii.

What the difference is between the two, an illustration will explain.

/^The fifth proposition of Euclid follows from the fourth: if the fourth

is true, so is the fifth, while if the fifth is false, so is the fourth.

This is a case of material implication, for both propositions are absolute

constants, not dependent for their meaning upon the assigning of a

, value to a variable. But each of them states a formal implication. The
foiuth states that if x and y be triangles fulfilling certain conditions,

then X and y are triangles fulfilling certain other conditions, and that

this implication holds for all values of oc and y ; and the fifth states that

if X is an isosceles triangle, x has the angles at the base equal<i!l^The

formal implication involved in each of these two propositions is quite

(' a different thing from the material implication holding between the

propositions as wholes ; both notions are required in the propositional

1 calculus, but it is the study of material implication which specially

i distinguishes this subject, for formal implication occurs throughout the

whole of mathematics.

It has been customary, in treatises on logic, to confound the two
kinds of implication, and often to be really considering the formal kind
where the material kind only was apparently involved. For example,
when it is said that "Socrates is a man, therefore Socrates is a mortal,"

Socrates is felt as a variable: he is a type of humamty, and one feels that

any other man would have done as well. If, instead of therefore, which
implies the truth of hypothesis and consequent, we put "Socrates is a
man implies Socrates is a mortal," it appears at once that we may
substitute not only another man, but any other entity whatever, in the
place of Socrates. Thus although what is explicitly stated, in such a
case, is a material implication, what is meant is a formal implication ; and
some effort is needed to confine our imagination to material implication.

16. A definition of implication is quite impossible. If p implies

q, then if p is true q is true, i.e. p's truth implies q's truth ; also if q is

false p is false, i.e. q's falsehood implies ^'s falsehood* Thus truth and
falsehood give us merely new implications, not a definition of implication.

* The reader is recommended to observe that the main implications in these
statements are formal, i.e. "p implies g" formally implies "p's truth implies q's
truth," while the subordinate implications are material.
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If p implies q, then both are false or both true, or p. is false and q true ;

it is impossible to have q false and p true, and it is necessary to have

q true or p false*. In fact, the assertion that q is true or p false turns

out to be strictly equivalent to "p implies g""; but as equivalence means
mutual implication, this still leaves implication fundamental, and not

definable in terms of disjuncti<m. Disjunction, on the other hand, is

definable in terms of implication, as we shall shortly see. It follows

from the above equivalence that of any two propositions there must be

one which implies the other, that false propositions imply all propositions,

and true propositions are implied by all propositions. But these are

results to be demonstrated; the premisses of our subject deal exclusively

with rules of inference.

It may be observed that, although implication is indefinable,

proposition can be defined. Every proposition implies itself, and

whatever is not a proposition implies nothing. Hence to say "j9 is a

proposition" is equivalent to saying "/» implies^"; and this equivalence

may be used to define propositions. As the mathematical sense of

definition is widely different from that current among philosophers,

it may be well to observe that, in the mathematical sense, a new
prepositional function is said to be defined when it is stated to be

equivalent to (i.e. to imply and be implied by) a prepositional function

which has either been accepted as indefinable or has been defined in

terms of indefinables. The definition of entities which are not

prepositional functions is derived from such as are in ways which will

be explained in connection with classes and relations.

17. We require, then, in the prepositional calculus, no indefinables

except the two kinds of implication—remembering, however, that formal

implication is a complex notion, whose analysis remains to be undertaken.

As regards our two indefinables, we require certain indemonstrable

propositions, which hitherto I have not succeeded in reducing to less

than ten. Some indemonstrables there must be; and some propositions,

such as the syllogism, must be of the number, since no demonstration

is possible without them. But concerning others, it may be doubted

whether they are indemonstrable or merely undemonstrated; and it

should be observed that the method of supposing an axiom false, and

deducing the consequences of this assumption, which has been found

admirable in such cases as the axiom of parallels, is here not universally

available. For all our axioms are principles of deduction; and if they

are true, the consequences which appear to follow from the employment

of an opposite principle will not really follow, so that arguments from

the supposition of the falsity of an axiom are here subject to special

fallacies. Thus the number of indemonstrable propositions may be

capable of further reduction, and in regard to some of them I know of

* I may as well state ouce for all that the alternatives of a disjunction will never

be considered as mutually exclusive unless expressly said to be so.
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no grounds for regarding them as indemonstrable except that they have

hitherto remained undemonstrated.

18. The ten axioms are the following. (1) If p implies q, then

p implies q*\ m other words, whatever p and q may be, "p implies q"

is a proposition. (2) If p implies q, then p implies p; in other words,

whatever implies anything is a proposition. (3) If p implies q, then q
implies q ; in other words, whatever is implied by anything is a proposition.

(4) A true hypothesis in an implication may be dropped, and the

consequent asserted. This is a principle incapable of formal symbolic

statement, and illustrating the essential limitations of formalism—

a

point to which I shall return at a later stage. Before proceeding

further, it is desirable to define the joint assertion of two propositions,

or what is called their logical product. This definition is highly artificial,

and illustrates the great distinction between mathematical and philo-

sophical definitions. It is as follows : If p implies p, then, if q implies q,

pq (the logical product of p and q) means that if p implies that q implies

r, then r is true. In other words, iip and q are propositions, their joint

assertion is equivalent to saying that every proposition is true which is

such that the first implies that the second implies it. We cannot, with

formal correctness, state our definition in this shorter form, for the

hypothesis "p and q are propositions'" is already the logical product of

"p is a proposition" and "y is a proposition." We can now state the

six main principles of inference, to each of which, owing to its importance,

a name is to be given; of these all except the last will be found in

Peano's accounts of the subject. (5) If p implies p and q implies q,

then pq implies p. This is called simplification, and asserts merely that

the joint £issertion of two propositions implies the assertion of the first

of the two. (6) If p implies q and q implies r, then p implies r. This
will be called the syllogism.. (7) If q implies q and r implies r, and
if p implies that q implies r, then pq implies r. This is the principle of

importation. In the hypothesis, we have a product of three propositions;

but this can of course be defined by means of the product of two.

The principle states that if p implies that q implies r, then r follows

from the joint assertion of p and q. For example: "If I call on so-and-

so, then if she is at home I shall be admitted" implies "If I call on
so-and-so and she is at home, I shall be admitted." (8) If p implies

p and q implies q, then, if pq implies r, then p implies that q implies r.

This is the converse of the preceding principle, and is called exportationf.
The previous illustration reversed will illustrate this principle. (9) If

p implies q and p implies r, then p implies qr: in other words, a

* Note that the implications denoted by if and then, in these axioms^ are formal,
while those denoted by implies are material.

t (7) and (8) cannot (I think) be deduced from the definition of the logical
product, because they are required for passing from "If p is a proposition^ then 'q is

a proposition' implies etc." to "If jo and q are propositions, then etc."
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proposition which impHes each of two propositions imphes them both.

This is called the principle of composition. (10) If p implies p and

q implies q, then " ^p implies q" implies p'"'' implies p. This is called

the principle of reduction; it has less self-evidence than the previous

principles, but is equivalent to many propositions that are self-evident.

I prefer it to these, because it is explicitly concerned, like its predecessors,

with implication, and has the same kind of logical character as they

have. If we remember that "p implies q"" is equivalent to "q or not-p,"

we can easily convince ourselves that the 'above principle is true; for

"'^ implies q'' implies p''''
is equivalent to "p or the denial of 'g or not-

^,"' i.e. to "p or 'p and not y,'" i.e. to p. But this way of persuading

ourselves that the principle of reduction is true involves many logical

principles which have not yet been demonstrated, and cannot be

demonstrated except by reduction or some equivalent. The principle is

especially useful in connection with negation. Without its help, by
means of the first nine principles, we can prove the law of contradiction;

we can prove, if p and q be propositions, that p implies not-not-p ; that
"•-^ "p implies not-gf" is equivalent to "g implies not-jo" and to not-pq;

i:;_that "^ implies^ gf" implies "not-g implies not-p^'J^hat p implies that

not-^ implies p;^ that not-p is equivalent to "jd implies not-p"; and that

"p implies not-g''" is equivalent to "not-not-p implies not-g." But we

cannot prove without reduction or some equivalent (so far at least as

I have been able to discover) that p or not-p must be true (the law of

excluded middle); that every proposition is equivalent to the negation

of some other proposition; that not-not-p implies jp; that "not-g implies

not-p" implies "/» implies q""; that "not-p implies jt?" implies p, or that

"p implies g" implies "q or not-p."' Each of these assumptions is

equivalent to the principle of reduction, and may, if we choose, be sub-

stituted for it. Some of them—especially excluded middle and double

negation—appear to have far more self-evidence. But when we have

seen how to define disjunction and negation in terms of implication,^we

shall see that ^the supposed simplicity vanishes, and that, for formal

purposes at any rate, reduction is simpler than any of the possible

alternatives." For this reason I retain it among my premisses in

preference to more' usual' and mo'fe superficially obvious propositions.

19. Disjunction or logical addition is defined as follows: "p or g"

is "equivalent to "'p 'implies q'' imphes g." It is easy to persuade

ourselves of this equivalence, by remembering that a false proposition

implies every other; for if p is false, p does imply q, and therefore,

if "p implies g" implies q, it follows that q is true. But this argument

again uses principles which have not yet been demonstrated, and is

merely designed to elucidate the definition by anticipation. From this

definition, by the help^ of reduction, we can prove that "p or q"" is

equivalent to "q or p."" An alternative definition, deducible -from the

above, is : "Any proposition implied by p and implied by q is true," or,

R. 2
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in other words, " 'p implies s' and 'q implies s' together imply s, whatever

* may be." Hence we proceed to the definition of negation: not-p is

equivalent to the assertion that p implies all propositions, i.e. that

"r implies r" implies "p implies r" whatever r may be*. From this

point we can prove the laws of contradiction and excluded middle and

double negation, and establish all the formal properties of logical

multiplication and addition—the associative, commutative and distributive

laws. Thus the logic of propositions is now complete.

Philosophers will object to the above definitions of disjunction and

negation on the ground that what we mean by these notions is some-

thing quite distinct from what the definitions assign as their meanings,

and that the equivalences stated in the definitions are, as a matter of

fact, significant propositions, not mere indications as to the way in

which symbols are going to be used. Such an objection is, I think, well-

founded, if the above account is advocated as giving the true philosophic

analysis of the matter. But where a purely formal purpose is to be

served, any equivalence in which a certain notion appears on one side

but not on the other will do for a definition. And the advantage of

having before our minds a strictly formal development is that it pro-

vides the data for philosophical analysis in a more definite shape than

would be otherwise possible. Criticism of the procedure of formal logic,

therefore, wiU be best postponed until the present brief account has been

brought to an end.

B. The Calculus of Classes.

20. In this calculus there are very much fewer new primitive pro-

positions—in fact, two seem sufficient—but there are much greater

difficulties in the way of non-symbolic exposition of the ideas embedded

in our symbolism. These difficulties, as far £is possible, will be postponed

to later chapters. For the present, I shall try to make an exposition

which is to be as straightforward and simple as possible.

The calculus of classes may be developed by regarding as fundamental

the notion of class, and also the relation of a member of a class to its

class. This method is adopted by Professor Peano, and is perhaps more
philosophically correct than a different method which, for formal pur-

poses, I have found more convenient. In this method we still take as

* Tlie principle that false propositions imply all propositions solves Lewis
Carroll's logical paradox in Mind, N. S. No. 11 (1894). The assertion made in that

paradox is that, if p, q, r be propositions, and q implies r, while p implies that

q implies not-r, then p must be false, on the supposed ground that "q implies r" and
" q implies not-r" are incompatible. But in virtue of our deiinition of negation^ if

q be false both these implications will hold : the two together, in fact, what-
ever proposition r may be, are equivalent to not-g. Thus the only inference

warranted by Lewis Carroll's premisses is that if p be true, q must be false, i.e. that

p implies not-g ; and this is the conclusion, oddly enough, which common sense would
have drawn in the particular case which he discusses.
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fundamental the relation (which, following Peano, I shall denote by e)

of an individual to a cla^s to which it belongs, i.e, the relation of Socrates

to the human race which is expressed by saying that Socrates is a man.

In addition to this, we take as indefinables the notion of a propositional

function and the notion of such that. It is these three notions that

characterize the class-calculus. Something must be said in explanation

of each of them.

21. The insistence on the distinction between e and the relation of

whole and part between classes is due to Peano, and is of very great

importance to the whole technical development and the whole of the

applications to mathematics. In the scholastic doctrine of the syllogism,|

and in all previous symbolic logic, the two relations are confounded,

except in the work of Frege*. The distinction is the same as that

between the relation of individual to species and that of species to

genus, between the relation of Socrates to the class of Greeks and the

relation of Greeks to men. On the philosophical nature of this distinc-

tion I shall enlarge when I come to deal critically with the nature of

classes ; for the present it is enough to observe that the relation of

whole and part is transitive, while e is not so : we have Socrates is a

a man, and men are a class, but not Socrates is a class. It is to be

observed that the class must be distinguished from the class-concept

or predicate by which it is to be defined: thus men are a class, while

man is a class-concept. The relation e must be regarded as holding

between Socrates and men considered collectively, not between Socrates

and man. I shall return to this point in Chapter vi. Peano holds

that all propositional functions containing only a single variable are

capable of expression in the form " x is an a," where a is a constant

class ; but this view we shall find reason to doubt.

22. The next fundamental notion is that of a propositional func-

tion. Although propositional functions occur in the calculus of pro-

positions, they are there each defined as it occurs, so that the general

notion is not required. But in the class-calculus it is necessary to intro-

duce the general notion explicitly. Peano does not require it, owing to

his assumption that the form "x is an a" is general for one variable, and

that extensions of the same form are available for any number of

variables. But we must avoid this assumption, and must therefore

introduce the notion of a propositional function. We may explain (but

not define) this notion as follows : </)a7 is a propositional function if, for

every value of x, 4>x is a proposition, determinate when x is given.

Thus " ^ is a man " is a propositional function. In any proposition, how-

ever complicated, which contains no real variables, we may imagine one

of the terms, not a verb or adjective, to be replaced by other terms: instead

of " Socrates is a man " we may put " Plato is a man," " the number 2

* See his Begriffsschrift, Halle, 1879, and Grundgesetze der Arithmetik, Jena, 1893,

p. 2.

2—2
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is a man,'" and so on*. Thus we get successive propositions all agreeing

except as to the one variable term. Putting x for the variable term,

"x is a man" expresses the type of all such propositions. A pro-

positional function in general will be true for some values of the variable

and false for others. The instances where it is true for all values of the

variable, so far as they are known to me, all express implications, such as

";r is a man implies x isa mortal"; but I know of no a priori reason for

asserting that no other propositional functions are true for all values of

the variable.

23. This brings me to the notion of smh that. The values of x

which render a propositional function <^x true are like the roots of an

equation—indeed the latter are a particular case of the former—and we

may consider all the values of x which are such that j>x is true. In general,

these values form a class, and in fact a class may be defined as all

the terms satisfying some propositional function. There is, however,

some limitation required in this statement, though I have not been able to

discover precisely what the limitation is. This results from a certain

contradiction which I shall discuss at length at a later stage (Chap. x).

The reasons for defining class in this way-are, that we require to provide

for the null-class, which prevents our defining a class as a term to

which some other has the relation e, and that we wish to be able

to define classes by relations, i.e. all the terms which have to other

terms the relation R are to form a class, and such cases require somewhat

complicated propositional functions.

24. With regard to these three fundamental notions, we require

two primitive propositions. The first asserts that if x belongs to the

class of terms satisfying a propositional function <^x, then <l>x is true.

The second asserts that if <^x and y^rx are equivalent propositions for all

values of x, then the class of x^ such that <\>x is true is identical with

the class of x''s such that ^x is true. Identity, which occurs here, is

defined as follows : x is identical with y ii y belongs to every class to

which x belongs, in other words, if ".r is a y" implies "«/ is a m" for

all values of u. With regard to the primitive proposition itself, it is to

be observed that it decides in favour of an extensional view of classes.

Two class-concepts need not be identical when their extensions are so

:

man axidJeatherless biped are by no means identical, and no more are even

prime and integer between 1 and 3. These are class-concepts, and if our

axiom is to hold, it must not be of these that we are to speak in dealing

with classes. We must be concerned with the actual assemblage of

terms, not with any concept denoting that assemblage. For mathe-

matical purposes, this is quite essential. Consider, for example, the

problem as to how many combinations can be formed of a given set

* Verbs and adjectives occurring as such are distinguished by the fact that, if

they be taken as variable, the resulting function is only a proposition for some values

of the variable, i.e. for such as are verbs or adjectives respectively. See Chap. iv.
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of terms taken any number at a time, i.e. as to how many classes are

contained in a given class. If distinct classes may have the same ex-

tension, this problem becomes utterly indeterminate. And certainly

common usage would regard a class as determined when all its terms are

given. The extensional view of classes, in some form, is thus essential to

Symbolic Logic and to mathematics, and its necessity is expressed in the

above axiom. But the axiom itself is not employed until we come to

Arithmetic ; at least it need not be employed, if we choose to distinguish

the equality of classes, which is defined as mutual inclusion, from the

identity of individuals. Formally, the two are totally distinct : identity

is defined as above, equality of a and 6 is defined by the equivalence of

" a? is an a " and " a? is a 6 " for all values of x.

25. Most of the propositions of the class-calculus are easily

deduced from those of the propositional calculus. The logical product

or common part of two classes a and b is the class of x's such that the

logical product of " .r is an a " and "x is a V is true. Similarly we define

the logical sum of two classes (a or b), and the negation of a class (not-a).

A new idea is introduced by the logical product and sum of a class of

classes. If k is a class of classes,*its logical product is the class of terms be-

longing to each of the classes of k, i.e. the class of terms x such that " u

is a A; " implies " a? is a u " for all values of u. The logical sum is the class

which is contained in every class in which every class of the class k is

contained, i.e. the class of terms x such that, if "m is a k"" implies "w is

contained in c" for all values of ic, then, for all values of c, a? is a c.

And we say tfiat a class a is contained in a class b when " a? is an a

"

implies " a; is a 6 " for all values of x. In like manner with the above

we may define the product and sum of a class of propositions. Another

very important notion is what is called the existence of a class—a word

which must not be supposed to mean what existence means in philosophy.

A class is said to exist when it has at least one term. A formal defini-

tion is as follows: a is an existent class when and only when any

proposition is true provided " x is an a" always implies it whatever value

we may give to x. It must be understood that the proposition implied

must be a genuine proposition, not a propositional function of x. A
class a exists when the logical sum of all propositions of the form " x is

an a " is true, i.e. when not all such propositions are false.

It is important to understand clearly the manner in which pro-

positions in the class-calculus are obtained from those in the pro-

positional calculus. Consider, for example, the syllogism. We have

"^ implies g" and "j implies r"" imply "j9 imphes r." Now put " x is

an a," "*' is a 6," ".r is a c" forp, q, r, where x must have some definite

value, but it is not necessary to decide what value. We then find that

if, for the value of x in question, a? is an a implies x is a, b, and x is a, b

implies ;r is a c, then ir is an a implies a? is a c. Since the value of x is

irrelevant, we may vary x, and thus we find that if a is contained in b.
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and 6 in c, then a is contained in c. This is the class-syllogism. But in

applying this process it is necessary to employ the utmost caution,

if fallacies are to be successfully avoided. In this connection it will

be instructive to examine a point upon which a dispute has arisen

between Schroder and Mr McColl*. Schroder asserts that lip, q, r are

propositions, "pq implies r" is equivalent to the disjunction "p implies r

or q implies r." Mr McColl admits that the disjunction implies the

other, but denies the converse implication. The reason for the diver-

gence is, that Schroder is thinking of propositions and material im-

plication, while Mr McColl is thinking of propositional functions and

formal implication. As regards propositions, the truth of the principle

may be easily made plain by the following considerations. If pq implies

r, then^ if either p or q he false, the one of them which is false implies r,

because false propositions imply all propositions. But if both be true,

pq is true, and therefore r is true, and therefore jo implies r and q im-

plies r, because true propositions are implied by every proposition.

Thus in any case, one at least of the propositions p and q must

imply r. (This is not a proof, but an elucidation.) But Mr McCoU
objects: Suppose p and q to be mutually contradictory, and r to be the

null proposition, then pq implies r but neither p nor q implies r. Here

we are dealing with propositional functions and formal implication. A
propositional function is said to be null when it is false for all values of

a;; and the class of x's satisfying the function is called the null-class,

being in fact a class of no terms. Either the function or the class,

following Peano, I shall denote by A . Now let our r be replaced by A,

our p by <pw, and our q by not-^a?, where <f>a' is any propositional function.

Then pq is false for all values of x, and therefore implies A. But it is

not in general the case that (j)x is always false, nor yet that not-(f)X is always

false; hence neither always implies A. Thus the above formula can only

be truly interpreted in the propositional calculus : in the class-calculus

it is false. This may be easily rendered obvious by the following

considerations: Let tpa;, yjrx, ')(x be three propositional functions. Then
" ^x . \jrx implies ^a?" implies, for all values of x, that either (j)X implies

')(^x or -ijrx implies )(^x. But it does not imply that either (f>x implies )(X

for aU values of x, or yjrx implies ^.r for all values of x. The disjunction

is what I shall call a variable disjunction, as opposed to a constant one:

that is, in some cases one alternative is true, in others the other, whereas

in a constant disjunction there is one of the alternatives (though it is not

stated which) that is always true. Wherever disjunctions occur in regard

to propositional functions, they will only be transformable into statements

in the class-calculus in cases where the disjunction is constant. This is

a point which is both important in itself and instructive in its bearings.

Another way of stating the matter is this: In the proposition: If

* Schroder, Algebra der Logik, Vol. ii, pp. 2.58-9 ; McColl, " Calculus of

Equivalent Statements," fifth paper, Proc. Land. Math. Soc. Vol. xxviir, p. 182.
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(^x . yfrx implies -xx, then either <px implies 'x^x or '\lrx implies x^, the

implication indicated by if and then is formal, while the subordinate

implications are material; hence the subordinate implications do not

lead to the inclusion of one class in another, which results only from
formal implication.

The formal laws of addition, multiplication, tautology and negation

are the same as regards classes and propositions. The law of tautology

states that no change is made when a class or proposition is added to or

multiplied by itself. A new feature of the class-calculus is the null-class,

or class having no terms. This may be defined as the class of terms that

belong to every class, as the class which does not exist (in the sense

defined above), as the class which is contained in every class, as the

class A which is such that the propositional function "x is a A" is false

for all values of x, or as the class of x''s satisfying any propositional

function (px which is false for all values of x. All these definitions are

easily shown to be equivalent.

26. Some important points arise in connection with the theory of

identity. We have already defined two terms as identical when the

second belongs to every class to which the first belongs. It is easy to

show that this definition is symmetrical, and that identity is transitive

and reflexive (i.e. if x and «/, y and z are identical, so are x and z ; and
whatever x may be, x is identical with x). Diversity is defined as the

negation of identity. If x be any term, it is necessary to distinguish

from X the class whose only member is x : this may be defined as the

class of terms which are identical with x. The necessity for this

distinction, which results primarily from purely formal considerations,

was discovered by Peano ; I shall return to it at a later stage. Thus
the class of even primes is not to be identified with the number 2, and

the class of numbers which are the sum of 1 and 2 is not to be identified

with 3. In what, philosophically speaking, the difference consists, is a

point to be considered in Chapter vi.

C. The Calculus of Relations.

27. The calculus of relations is a more modern subject than the

calculus of classes. Although a few hints for it are to be found in

De Morgan*, the subject was first developed by C. S. Peircef. A careful

analysis of mathematical reasoning shows (as we shall find in the course

of the present work) that types of relations are the true subject-matter

discussed, however a bad phraseology may disguise this fact ; hence the

logic of relations has a more immediate bearing on mathematics than

* Gamb. Phil. Trans. Vol. x, "On the Syllogism, No. iv, and on the Logic of

Relations." Cf. ib. Vol. ix, p. 104; also his Formal Logic (London, 1847), p. 50.

t See especially his articles on the Algehra of Logic, American Journal of

Mathematics, Vols, iii and vii. The subject is treated at length by C. S. Peirce's

methods in Schroder, op. cit., Vol. m.
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that of classes or propositions, and any theoretically correct and adequate

expression of mathematical truths is only possible by its means. Peirce

and Schroder have realized the great importance of the subject, but

unfortunately their methods, being based, not on Peano, but on the

older Symbolic Logic derived (with modifications) from Boole, are so

cumbrous and difficult that most of the applications which ought to be

made are practically not feasible. In addition to the defects of the old

Symbolic Logic, their method suffers technically (whether philosophically

or not I do not at present discuss) from the fact that they regard a

relation essentially as a class of couples, thus requiring elaborate

formulae of summation for dealing with single relations. This view is

derived, I think, probably unconsciously, from a philosophical error : it

has always been customary to suppose relational propositions less

ultimate than class-propositions (or subject-predicate propositions, with

which class-propositions are habitually confounded), and this has led

to a desire to treat relations as a kind of classes. However this may
be, it was certainly from the opposite philosophical belief, which I

derived from my friend Mr G. E. Moore*, that I was led to a different

formal treatment of relations. This treatment, whether more philo-

sophically correct or not, is certainly far more convenient and far more
powerful as an engine of discovery in actual mathematics f.

28. If .ff be a relation, we express by xRy the propositional function
" X has the relation R to y."" We require a primitive {i.e. indemonstrable)

proposition to the effect that xRy is a proposition for all values of x
and y. We then have to consider the following classes : The class of
terms which have the relation R to some terra or other, which I call the
class of referents with respect to R ; and the class of terms to which
some term has the relation R, which I call the class of relata. Thus if

R be paternity, the referents will be fathers and the relata will be
children. We have also to consider the corresponding classes with
respect to particular terms or classes of terms : so-and-so's children, or
the children of Londoners, afford illustrations.

The intensional view of relations here advocated leads to the result

that two relations may have the same extension without being identical.

Two relations R, R! are said to be equal or equivalent, or to have the
same extension, when xRy imphes and is implied by xR!y for all values
of X and y. But there is no need here of a primitive proposition, as
there was in the case of classes, in order to obtain a relation which is

determinate when the extension is determinate. We may replace a
relation i? by the logical sum or product of the class of relations
equivalent to R, i.e. by the assertion of some or of all such relations

;

and this is identical with the logical sum or product of the class of
relations equivalent to R!, if R! be equivalent to R. Here we use

* See his article " On the Nature of Judgment," Mind, N. S. No. 30.
t See my articles in R. d. M. Vol. vii. No. 2 and subsequent numbers.
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the identity of two cleisses, which results from the primitive proposition

as to identity of classes, to establish the identity of two relations

—

a procedure which could not have been applied to classes themselves

without a vicious circle.

A primitive proposition in regard to relations is that every relation

has a converse, i.e. that, if R be any relation, there is a relation R' such

that xRy is equivalent to yR'x for all values of x and y. Following

Schroder, I shall denote the converse of R by R. Greater and less,

before and after, implying and implied by, are mutually converse

relations. With some relations, such as identity, diversity, equality,

inequality, the converse is the same as the original relation : such

relations are called symmetrical. ^Vhen the converse is incompatible

witlji the original relation, as in such cases as greater and less, I call the

relation asymmetrical ; in intermediate cases, not-symmetiical.

The most important of the primitive propositions in this subject is

that between any two terms there is a relation not holding between any

two other terms. This is analogous to the principle that any term is

the only member of some class ; but whereas that could be proved,

owing to the extensional view of classes, this principle, so far as I can

discover, is incapable of proof. In this point, the extensional view of

relations has an advantage ; but the advantage appears to me to be

outweighed by other considerations. When relations are considered

intensionally, it may seem possible to doubt whether the above principle

is true at all. It will, however, be generally admitted that, of any two

terms, some propositional function is true which is not true of a certain

given different pair of terms. If this be admitted, the above principle

follows by considering the logical product of all the relations that hold

between our first pair of terms. Thus the above principle may be

replaced by the following, which is equivalent to it : If xRy implies

x'Ry', whatever R may be, so long as i? is a relation, then x and x',

y and y' are respectively identical. But this principle introduces a

logical difficulty from which we have been hitherto exempt, namely a

variable with a restricted field ; for unless 72 is a relation, xRy is not a

proposition at all, true or false, and thus R, it would seem, cannot take

all values, but only such as are relations. I shall return to the discussion

of this point at a later stage.

29. Other assumptions required are that the negation of a relation

is "'a relation, and that the logical product of a class of relations {i.e. the

assertion of all of them simultaneously) is a relation. Also the relative

product of two relations must be a relation. The relative product of two

relations R, S is the relation which holds between x and z whenever

there is a term y to which x has the relation R and which has to z the

relation .S". Thus the relation of a maternal grandfather to his grandson

is the relative product of father and mother ;• that of a paternal grand-

mother to her grandson is the relative product of mother and father

;
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that of grandparent to grandchild is the relative product of parent and
parent. The relative product, as these instances show, is not in general

commutative, and does not in general obey the law of tautology. The
relative product is a notion of very great importance. Since it does not

obey the law of tautology, it leads to powers of relations : the square of

the relation of parent and child is the relation of grandparent and
grandchild, and so on. Peirce and Schroder consider also what they call

the relative sum of two relations R and aS*, which holds between x and s,,

when, if y be any other term whatever, either x has to y the relation R,,

or y has to z the relation .S". This is a complicated notion, which I have

found no occasion to employ, and which is introduced only in order to

preserve the duality of addition and multiplication. This duality has a

certain technical charm when the subject is considered as an independent

branch of mathematics ; but when it is considered solely in relation to

the principles of mathematics, the duality in question appears devoid of

all philosophical importance.

30. Mathematics requires, so far as I know, only two other

primitive propositions, the one that material implication is a relation^

the other that e (the relation of a term to a class to which it belongs) is

a relation*. We can now develop the whole of mathematics without

further assumptions or indefinables. Certain propositions in the logic

of relations deserve to be mentioned, since they are important, and it

might be doubted whether they were capable of formal proof. If u, v
be any two classes, there is a relation R the assertion of which between
any two terms x and y is equivalent to the assertion that x belongs to u
and y to v. If u be any class which is not null, there is a relation which
all its terms have to it, and which holds for no other pairs of terms. If

R be any relation, and u any class contained in the class of referents

with respect to R, there is a relation which has u for the class of its-

referents, and is equivalent to R throughout that class ; this relation is

the same as R where it holds, but has a more restricted domain. (I use

domain as synonymous with class of referents.) From this point onwards,
the development of the subject is technical : special types of relations are

considered, and special branches of mathematics result.

D. Beano's Symbolic Logic.

31. So much of the above brief outline of Symbolic Logic is

inspired by Peano, that it seems desirable to discuss his work explicitly^

justifying by criticism the points in which I have departed from him.
The question as to which of the notions of symbolic logic are to be

taken as indefinable, and which of the propositions as indemonstrable

>

is, as Professor Peano has insisted f, to some extent arbitrary. But it is

* There is a difficulty in regard to this primitive proposition, discussed in §§ 53,
94 below.

t E.g. F. 1901, p. 6 ; F. 1897, Part I, pp. 62-3.
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important to establish all the mutual relations of the simpler notions

of logic, and to examine the consequence of taking various notions as

indefinable. It is necessary to realize that definition, in mathematics,
does not mean, as in philosophy, an analysis of the idea to be defined

into constituent ideas. This notion, in any case, is only applicable to

concepts, whereas in mathematics it is possible to define terms which
are not concepts*. Thus also many notions are defined by symbolic

logic which are not capable of philosophical definition, since they are

simple and unanalyzable. Mathematical definition consists in pointing

out a fixed relation to a fixed term, of which one term only is capable:

this term is then defined by means of the fixed relation and the fixed

term. The point in which this differs from philosophical definition

may be elucidated by the remark that the mathematical definition does

not point out the term in question, and that only what may be called

philosophical insight reveals which it is among all the terms there are.

This is due to the fact that the term is defined by a concept which

denotes it unambiguously, not by actually mentioning the term denoted.

What is meant by denoting, as well as the different ways of denoting,

must be accepted as primitive ideas in any symbolic logici": in this

respect, the order adopted seems not in any degree arbitrary.

32. For the sake of definiteness, let us now examine some one

of Professor Peano''s expositions of the subject. In his later expositionsj
he has abandoned the attempt to distinguish clearly certain ideas and
propositions as primitive, probably because of the realization that any

such distinction is largely arbitrary. But the distinction appears useful,

as introducing greater definiteness, and as showing that a certain set

of primitive ideas and propositions are sufficient ; so far from being

abandoned, it ought rather to be made in every possible way. I shall,

therefore, in what follows, expound one of his earlier expositions, that

of 1897§.

The primitive notions with which Peano starts are the following

:

Class, the relation of an individual to a class of which it is a member,

the notion of a term, implication where both propositions contain the

same variables, i.e. formal implication, the simultaneous affirmation of

two propositions, the notion of definition, and the negation of a pro-

position. From these notions, together with the division of a complex

proposition into parts, Peano professes to deduce all symbolic logic by

means of certain primitive pi'opositions. Let us examine the deduction

in outline.

We may observe, to begin with, that the simultaneous affirmation

of two propositions might seem, at first sight, not enough to take as a

primitive idea. For although this can be extended, by successive steps,

to the simultaneous affirmation of any finite number of propositions,

* See Chap. iv. t See Chap. v.

X F. 1901 and R. d. M. Vol. vii, No. 1 (1900). § F. 1897, Part I.
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yet this is not all that is wanted; we require to be able to affirm

simultaneously all the propositions of any class, finite or infinite. But

the simultaneous assertion of a class of propositions, oddly enough, is

much easier to define than that of two propositions, (see § 34, (3)). If Ic

be a class of propositions, their simultaneous affirmation is the assertion

that "^ is a A; " implies p. If this holds, all propositions of the class are

true; if it fails, one at least must be false. We have seen that the

logical product of two propositions can be defined in a highly artificial

manner; but it might almost as well be taken as indefinable, since no

further property can be proved by means of the definition. We may

observe, also, that formal and material implication are combined by

Peano into one primitive idea, whereas they ought to be kept separate.

33. Before giving any primitive propositions, Peano proceeds to

some definitions. (1) If a is a class, "a? and y are a's" is to mean

"a? is an a and y is an a." (2) If a and b are classes, " every a is a 6"

means " a; is an a implies that x is, b. J." If we accept formal implication

as a primitive notion, this definition seems unobjectionable ; but it may

well be held that the relation of inclusion between classes is simpler than

formal implication, and should not be defined by its means. This is a

difficult question, which I reserve for subsequent discussion. A formal

implication appears to be the assertion of a whole class of material

implications. The complication introduced at this point arises from

the nature of the variable, a point which Peano, though he has done

very much to show its importance, appears not to have himself suffi-

ciently considered. The notion of one proposition containing a variable

implying another such proposition, which he takes as primitive, is

complex, and should therefore be separated into its constituents ; from

this separation arises the necessity of considering the simultaneous

affirmation of a whole class of propositions before interpreting such

a proposition as " ^ is an a implies that a? is a 6." (3) We come next

to a perfectly worthless definition, which has been since abandoned*.'

This is the definition of siich that. The ^''s such that x is an a, we are

told, are to mean the class a. But this only gives the meaning of s^^ch

that when placed before a proposition of the type " x is an a."" Now
it is often necessary to consider an x such that some proposition is true

of it, where this proposition is not of the form " x is an a." Peano holds

(though he does not lay it down as an axiom) that every proposition

containing only one variable is reducible to the form "^ is an at-"

But we shall see (Chap, x) that at least one such proposition is not

reducible to this form. And in any case, the only utility of such that

is to effect the reduction, which cannot therefore be assumed to be

already effected without it. The fact is that such that contains a primi-

tive idea, but one which it is not easy clearly to disengage from other ideas.

* In consequence of the criticisms of Padoa, R. d. M. Vol. vi, p. 112.

+ B. d. M. Vol. VII, No. 1, p. 25 ; F. 1901, p. 21, § 2, Prop. 4. 0, Note.
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In order to grasp the meaning of such that, it is necessary to observe,

first of all, that what Peano and mathematicians generally call one

proposition containing a variable is really, if the variable is apparent,

the conjunction of a certain class of propositions defined by some
constancy of form ; while if the variable is real, so that we have a

propositional fmiction, there is not a proposition at all, but merely

a kind of schematic representation of any proposition of a certain type.

" The sum of the angles of a triangle is two right angles," for example,-

when stated by means of a variable, becomes : Let jr be a triangle ; then

the sum of the angles of x is two right angles. This expresses the

conjunction of all the propositions in which it is said of particular

definite entities that if they are triangles, the sum of their angles is

two right angles. But a propositional function, where the variable is

real, represents any proposition of a certain form, not all such proposi-

tions (see §§ 59-62). There is, for each propositional function, an
indefinable relation between propositions and entities, which may be

expressed by saying that all the propositions have the same form,

but different entities enter into them. It is this that gives rise to

propositional functions. Given, for example, a constant relation and
a constant term, there is a one-one correspondence between the propo-

sitions asserting that various terms have the said relation to the said

term, and the various terms which occur in these propositions. It is

this notion which is requisite for the comprehension of sv£h that. Let

iT be a variable whose values form the class a, and let f {x) be a one-

valued function of x which is a true proposition for all values of x within

the class a, and which is false for all other values of x. Then the terms

of a are the class of terms siich thatf{x) is a true proposition. This

gives an explanation of sii£h that. But it must always be remembered

that the appearance of having one proposition f{x) satisfied by a

number of values of x is fallacious : f{x) is not a proposition at all,

but a propositional function. What is fundamental is the relation of

various propositions of given form to the various terms entering

severally into them as arguments or values of the variable ; this

relation is equally required for interpreting the propositional function

f(x) and the notion such that, but is itself ultimate and inexplicable.

(4) We come next to the definition of the logical product, or

common part, of two classes. If a and b be two classes, their common
part consists of the class of terms x such that a; is an a and x is a b.

Here already, as Padoa points out {loc. cit.), it is necessary to extend the

meaning of such that beyond the case where our proposition asserts

membership of a cla^s, since it is only by means of the definition that

the common part is shown to be a class.

34. The remainder of the definitions preceding the primitive

propositions are less important, and may be passed over. Of the

primitive propositions, some appear to be merely concerned with the



30 The Indefinables of Mathematics [ohap. n

symbolism, and not to express any real properties of what is symbolized

;

others, on the contrary, are of high logical importance.

(1) The first of Peano's axioms is "every class is contained in

itself." This is equivalent to " every proposition implies itself." There

seems no way of evading this axiom, which is equivalent to the law of

identity, except the method adopted above, of using self-implication

to define propositions. (2) Next we have the axiom that the product

of two classes is a class. This ought to have been stated, as ought also

the definition of the logical product, for a class of classes ; for when
stated for only two classes, it cannot be extended to the logical product

of an infinite class of classes. If class is taken as indefinable, it is a

genuine axiom, which is very necessary to reasoning. But it might

perhaps be somewhat generalized by an axiom concerning the terms

satisfying propositions of a given form : e.g. " the terms having one

or more given relations to one or more given terms form a class."

In Section B, above, the axiom was wholly evaded by using a generalized

form of the axiom as the definition of class. (3) We have next two
axioms which are really only one, and appear distinct only because Peano
defines the common part of two classes instead of the common part of a

class of classes. These two axioms state that, if a, h be classes, their logical

product, ab, is contained in a and is contained in b. These appear as

different axioms, because, as far as the symbolism shows, ab might be

different from ba. It is one of the defects of most symbolisms that they

give an order to terms which intrinsically have none, or at least none
that is relevant. So in this case : if X be a class of classes, the logical

product of K consists of all terms belonging to every class that belongs

to K. With this definition, it becomes at once evident that no order

of the terms of K is involved. Hence ifK has only two terms, a and b,

it is indifferent whether we represent the logical product of K by ab
or by ba, since the order exists only in the symbols, not in what is

symbolized. It is to be observed that the corresponding axiom with
regard to propositions is, that the simultaneous assertion of a class of

propositions implies any proposition of the class ; and this is perhaps
the best form of the axiom. Nevertheless, though an axiom is not

required, it is necessary, here as elsewhere, to have a means of connecting
the case where we start from a class of classes or of propositions or of

relations with the case where the class results from enumeration of its

terms. Thus although no order is involved in the product of a class of

propositions, there is an order in the product of two definite proposi-
tions p, q, and it is significant to assert that the products pq and qp are
equivalent. But this can be proved by means of the axioms with which
we began the calculus of propositions (§ 18). It is to be observed that
this proof is prior to the proof that the class whose terms are p and q is

identical with the class whose terms are q and p. (4) We have next
two forms of syllogism, both primitive propositions. The fii-st asserts
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that, if a, b, c be classes, and a is contained in h, and x is an a, then x is

a b ; the second asserts that if a, b, c be classes, and a is contained in b,

'b in c, then a is contained in c. It is one of the greatest of Peano's

merits to have clearly distinguished the relation of the individual to its

class from the relation of inclusion between classes. The difference is

exceedingly fundamental : the former relation is the simplest and most
essential of all relations, the latter a complicated relation derived from
logical implication. It results from the distinction that the syllogism

in Barbara has two forms, usually confounded : the one the time-honoured

assertion that Socrates is a man, and therefore mortal, the other the

assertion that Greeks are men, and therefore mortal. These two forms

are stated by Peano's axioms. It is to be observed that, in virtue of the

definition of what is meant by one class being contained in another,

the first form results from the axiom that, if p, q, r be propositions, and

p implies that q implies r, then the product of p and q implies r. This

axiom is now substituted by Peano for the first form of the syllogism *

:

it is more general and cannot be deduced from the said form. The
second form of the syllogism, when applied to propositions instead of

classes, asserts that implication is transitive. This principle is, of course,

the very life of all chains of reasoning. (5) We have next a principle

of reasoning which Peano calls composition : this asserts that if a is

contained in b and also in c, then it is contained in the common part

of both. Stating this principle with regard to propositions, it asserts

that if a proposition implies each of two others, then it implies their

joint assertion or logical product ; and this is the principle which was

called composition above.

35. From this point, we advance successfully until we require the

idea of negation. This is taken, in the edition of the Formulaire we are

considering, as a new primitive idea, and disjunction is defined by its

means. By means of the negation of a proposition, it is of course easy

to define the negation of a class : for " a; is a not-a " is equivalent to " x

is not an a." But we require an axiom to the effect that not-a is a

class, and another to the effect that not-not-a is a. Peano gives also a

third axiom, namely : If a, b, c be classes, and ab is contained in c, and x
is an a but not a c, then x is not a b. This is simpler in the form : lip,

q, r be prowsitions, and p, q together imply r, and q is true while r is

false, then 5 is false. This would be still further improved by being put

in the form : U q, r are propositions, and q implies r, then not-r implies

not-g' ; a form which Peano obtains as a deduction. By dealing with

propositions before classes or propositional functions, it is possible, as we

saw, to avoid treating negation as a primitive idea, and to replace all

axioms respecting negation by the principle of reduction.

We come next to the definition of the disjunction or logical sum of

two classes. On this subject Peano has many times changed his

* See e.g. F. 1901, Part I, § 1, Prop. 3. 3 (p. 10).
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procedure. In the edition we are considering, " a or b " is defined as the

negation of the logical product of not-a and not-6, i.e. as the class of

terms which are not both not-a and not-6. In later editions {e.g. F. 1901,

p. 19), we find a somewhat less artificial definition, namely :
" « or 6

"

consists of all terms which belong to any class which contains a and
contains b. Either definition seems logically unobjectionable. It is to

be observed that a and b are classes, and that it remains a question for

philosophical logic whether there is not a quite different notion of the

disjunction of individuals, as e.g. " Brown or Jones." I shall consider

this question in Chapter v. It will be remembered that, when we begin

by the calculus of propositions, disjunction is defined before negation;

with the above definition (that of 1897), it is plainly necessary to take

negation first.

36. The connected notions of the null-class and the existence of a
class are next dealt with. In the edition of 1897, a class is defined as

null when it is contained in every class. When we remember the

definition of one class a being contained in another b {" x is an a"
implies "a? is a 6'" for all values of x), we see that we are to regard

the implication as holding for all values, and not only for those values

for which w really is an a. This is a point upon which Peano is not

explicit, and I doubt whether he has made up his mind on it. If the

implication were only to hold when x really is an a, it would not give a
definition of the null-class, for which this hypothesis is false for all values

of X. I do not know whether it is for this reason or for some other that

Peano has since abandoned the definition of the inclusion of classes

by means of formal implication between propositional functions : the

inclusion of classes appears to be now regarded as indefinable. Another
definition which Peano has sometimes favoured (e.g. F. 1895, Errata,

p. 116) is, that the null-class is the product of any class into its

negation—;a definition to which similar remarks apply. In R. d. M. vii,

No. 1 (§ 3, Prop. 1. 0), the null-class is defined as the class of those terms
that belong to every class, i.e. the class of terms x such that "a is a
class " implies " a: is an a " for all values of a. There are of course no
such terms x ; and there is a grave logical difficulty in trying to interpret

extensionally a class which has no extension. This point is one to which
I shall return in Chapter vi.

From this point onward, Peano's logic proceeds by a smooth develop-

ment. But in one respect it is stiU defective : it does not recognize as

ultimate relational propositions not asserting membership of a class.

For this reason, the definitions of a function* and of other essentially

relational notions are defective. But this defect is easily remedied by
applying, in the manner explained above, the principles of the
Formulaire to the logic of relations f.

* E.g. F. 1901, Part I, § 10, Props. 1. 0. 01 (p. 83).

t See my article " Sur la logique des relations," R. d. M. Vol. vii, 2 (1901).



CHAPTEE III.

IMPLICATION AND FORMAL IMPLICATION.

37. In the preceding chapter I endeavoured to present, briefly and
uncritically, all the data, in the shape of formally fundamental ideas

and propositions, that pure mathematics requires. In subsequent Parts

I shall show that these are all the data by giving definitions of the

various mathematical concepts—number, infinity, continuity, the various

spaces of geometry, and motion. In the remainder of Part I, I shall

give indications, as best I can, of the philosophical problems arising in

the analysis of the data, and of the directions in which I imagine these

problems to be probably soluble. Some logical notions will be elicited

which, though thev seem quite fundamental to logic, are not commonly

discussed in works on the subject ; and thus problems no longer clothed

in mathematical symbolism will be presented for iiie consideraH;ion of

philosophical logicians.

Two kinds of implication, the material and the formal, were found to

be essential to every kind of deduction. In the present chapter I wish

to examine and distinguish these two kinds, and to discuss some methods

of attempting to analyze the second of them.

In the discussion of inference, it is common to permit the intrusion

of a psychological element, and to consider our acquisition of new

knowledge by its means. But it is plain that where we validly infer one

proposition from another, we do so in virtue of a relation which holds

between the two propositions whether we perceive it or not : the mind, ^
in fact, is as purely receptive in inference as common sense supposes it to

be in perception of sensible objects. The relation in virtue of which it

is possible for us validly to infer is what I call material implication.

We have already seen that it would be a vicious circle to define this

relation as meaning that if one proposition is true, then another is true,

for if and then already involve implication. The relation holds, in fact,

when it does hold, without any reference to the truth or falsehood of the

propositions involved.

But in developing the consequences of our assumptions as to impli-

cation, we were led to conclusions which do not by any means agree with

H. 3
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what is commonly held concerning implication, for we found that any

false proposition implies every proposition and any true proposition is

implied by every proposition. Thus propositions are formally like a set

of lengths each of which is one inch or two, and implication is like the

relation "equal to or less than" among such lengths. It would certainly

not be commonly maintained that "2 + 2 = 4" can be deduced from

"Socrates is a man," or that both are implied by "Socrates is a triangle."

But the reluctance to admit such implications is chiefly due, I think, to

preoccupation with formal implication, which is a much more familiar

notion, and is really before the mind, as a rule, even where material

implication is what is explicitly mentioned. In inferences from "Socrates

is a man," it is customary not to consider the philosopher who vexed the

Athenians, but to regard Socrates merely as a symbol, capable of being

replaced by any other man ; and only a vulgar prejudice in favour of

true propositions stands in the way of replacing Socrates by a number, a

table, or a plum-pudding. Nevertheless, wherever, as in Euclid, one

particular proposition is deduced from another, material implication is

involved, though as a rule the material implication may be regarded as a

particular instance of some formal implication, obtained by giving some

constant value to the variable or variables involved in the said formal

implication. And although, while relations are still regarded with the

awe caused by unfamiliarity, it is natural to doubt whether any such

relation as implication is to be found, yet, in virtue of the general

principles laid down in Section C of the preceding chapter, there must

be a relation holding between nothing except propositions, and holding

between any two propositions of which either the first is false or the

second true. Of the various equivalent relations satisfying these

conditions, one is to be called implication, and if such a notion seems

unfamiliar, that does not suffice to prove that it is illusory.

38. At this point, it is necessary to consider a very difficult

logical problem, namely, the distinction between a proposition actually

asserted, and a proposition considered merely as a complex concept.

One of our indemonstrable principles was, it will be remembered, that

if the hypothesis in an implication is true, it may be dropped, and the

consequent asserted. This principle, it was observed, eludes formal

statement, and points to a certain failure of formalism in general. The
principle is employed whenever a proposition is said to be proved ; for

what happens is, in all such cases, that the proposition is shown to be
implied by some true proposition. Another form in which the principle

is constantly employed is the substitution of a constant, satisfying the

hypothesis, in the consequent of a formal implication. If (^x implies i|ra7

for all values of x, and if a is a constant satisfying (^x, we can assert

^a, dropping the true hypothesis ^a. This occurs, for example, when-
ever any of those rules of inference which employ the hypothesis

that the variables involved are propositions, are applied to particular
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propositions. The principle in question is, therefore, quite vital to any
kind of demonstration.

The independence of this principle is brought out by a consideration

of Lewis Carroll's puzzle, "What the Tortoise said to' Achilles*." The
principles of inference which we accepted lead to the proposition that, if

p and q be propositions, then p together with "|7 implies q " implies q.

At first sight, it might be thought that this would enable us to assert q
provided p is true and implies q. But the puzzle in question shows that

this is not the case, and that, until we have some new principle, we shall

only be led into an endless regress of more and more complicated impli-

cations, without ever arriving at the assertion of q. We need, in fact,

the notion of therefore, which is quite different from the notion of implies,

and holds between different entities. In grammar, the distinction is that

between a verb and a verbal noun, between, say, "J is greater than 5"
and " J's being gi-eater than 5." In the first of these, a proposition is

actually asserted, whereas in the second it is merely considered. But
these are psychological terms, whereas the difference which I desire to

express is genuinely logical. I It is plain that, if I may be allowed to

use the word assertion in a non-psychological sense, the proposition

"^ implies q " asserts an implication, though it does not assert p or q.

The p and the q which enter into this proposition are not strictly the

same as the p or the q which are separate propositions, at least, if they

are true. The question is : How does a proposition differ by being

actually true from what it would be as an entity if it were not true .'* It

is plain that true and false propositions alike are entities of a kind, but

that true propositions have a quality not belonging to false ones, a

quality which, in a non-psychological sense, may be called being

asserted. Yet there are grave difficulties in forming a consistent theory

on this point, for if assertion in any way changed a proposition, no

proposition which can possibly in any context be unasserted could be

truej since when asserted it would become a different proposition. But

this is plainly false ; for in "p implies 5," p and q are not asserted, and

yet they may be true. Leaving this puzzle to logic, however, we must

insist that there is a difference of some kind between an asserted and an

unasserted proposition f. When we say therefore, we state a relation

which can only hold between asserted propositions, and which thus

differs from impKcation. Wherever therefore occurs, the hypothesis

may be dropped, and the conclusion asserted by itself. This seems to

be the first step in answering Lewis Carroll's puzzle.

39. It is commonly said that an inference must have premisses

and a conclusion, and it is held, apparently, that two or more premisses

are necessary, if not to all inferences, yet to most. This view is borne

out, at first sight, by obvious facts : every syllogism, for example, is held

* Mind, N. S. Vol. iv, p. 278.

t Frege Qoc. cit.) has a special symbol to denote assertion.

3—2
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to have two premisses. Now such a theory greatly complicates the

relation of implication, since it renders it a relation which may have any

number of terms, and is symmetrical with respect to all but one of them,

but not symmetrical with respect to that one (the conclusion). This

complication is, however, unnecessary, first, because every simultaneous

assertion of a number of propositions is itself a single proposition, and

secondly, because, by the i-ule which we called exportation, it is always

possible to exhibit an implication explicitly as holding between single

propositions. To take the first point first : if A; be a class of proposi-

tions, all the propositions of the class h are asserted by the single

proposition " for all values of x, if x implies x, then ' <r is a A; ' implies

a?," or, in more ordinary language, " every It is true." And as regards

the second point, which assumes the number of premisses to be finite,

"pg implies r" is equivalent, if g' be a proposition, to "^ implies that q
implies r," in which latter form the implications hold explicitly between

single propositions. Hence we may safely hold implication to be a

relation between two propositions, not a relation of an arbitrary number
of premisses to a single conclusion.

40. I come now to formal implication, which is a far more difficult

notion than material implication. In order to avoid the general notion

of propositional function, let us begin by the discussion of a particular

instance, say " x is a man implies .r is a mortal for all values of ir."

This proposition is equivalent to " all men are mortal " " every man is

mortal" and "any man is mortal." But it seems highly doubtful

whether it is the same proposition. It is also connected with a purely

intensional proposition in which man is asserted to be a complex notion

of which mortal is a constituent, but this proposition is quite distinct

from the one we are discussing. Indeed, such intensional propositions

are not always present where one class is included in another : in general,

either class may be defined by various different predicates, and it is by
no means necessary that every predicate of the smaller class should

contain every predicate of the larger class as a factor. Indeed, it may
very well happen that both predicates are philosophically simple : thus

colour and existent appear to be both simple, yet the class of colours is

part of the class of existents. The intensional view, derived from
predicates, is in the main irrelevant to Symbolic Logic and to Mathe-
matics, and I shall not consider it further at present.

41. It may be doubted, to begin with, whether ";r is a man
implies «• is a mortal " is to be regarded as asserted strictly of all possible

terms, or only of such terms as are men. Peano, though he is not explicit,

appears to hold the latter view. But in this case, the hypothesis ceases

to be significant, and becomes a mere definition of a; : a; is to mean any
man. The hypothesis then becomes a mere assertion concerning the
meaning of the symbol x, and the whole of what is asserted concerning
the matter dealt with by our symbol is put into the conclusion. The
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premiss says : o^ is to mean any man. The conclusion says : x is mortal.

But the implication is merely concerning the symbolism : since any man
is mortal, if x denotes any man, x is mortal. Thus formal implication,

on this view, has wholly disappeared, leaving us the proposition "-any

man is mortal''' as expressing the whole of what is relevant in the

proposition with a variable. It would now only remain to examine

the proposition "any man is mortal," and if possible to explain this

proposition without reintroducing the variable and formal implication.

It must be confessed that some grave difficulties are avoided by this

view. Consider, for example, the simultaneous assertion of all the

propositions of some class k: this is not expressed by "'a? is a h'' implies

X for all values of .r." For as it stands, this proposition does not express

what is meant, since, if .r be not a proposition, " .r is a k "" cannot imply

,r ; hence the range of variability of x must be confined to propositions,

unless we prefix (as above, § 39) the hypothesis "x implies x."" This

remark applies generally, throughout the propositional calculus, to aU

cases where the conclusion is represented by a single letter : unless the

letter does actually represent a proposition, the implication asserted will

be false, since only propositions can be implied. The point is that, if x

be our variable, ^r itself is a proposition for all values of x which are

propositions, but not for other values. This makes it plain what the

limitations are to which our variable is subject: it must vai-y only within

the range of values for which the two sides of the principal implication

are propositions, in other words, the two sides, when the variable is not

replaced by a constant, must be genuine propositional functions. If this

restriction is not observed, fallacies quickly begin to appear. It should be

noticed that there may be any number of subordinate implications which

do not require that their terms should be propositions : it is only of the

principal implication that this is required. Take, for example, the first

principle of inference : If p implies q, then p implies q. This holds

equally whether p and q be propositions or not ; for if either is not a

proposition, "/i implies j" becomes false, but does not cease to be a

proposition. In fact, in virtue of the definition of a proposition, our

principle states that "p implies q''''
is a propositional function, i.e. that

it is a proposition for all values of p and q. But if we apply the

principle of importation to this proposition, so as to obtain " 'p implies

y,' together with p, implies g'," we have a formula which is only true

when p and q are propositions : in order to make it time universally, we

must preface it by the hypothesis "^ implies p and q implies g." In this

way, in many cases, if not in all, the restriction on the variability of the

variable can be removed ; thus, in the assertion of the logical product of

a class of propositions, the formula "if x implies x, then '« is a f
implies a-" appears unobjectionable, and allows x to vary without restric-

tion. Here the subordinate implications in the premiss and the conclusion

are material : only the principal implication is fonnal.
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Returning now to " a? is a man implies a? is a mortal,'" it is plain that

no restriction is required in order to insure our having a genuine pro-

position, i^nd it is plain that, although we might restrict the values of

iT to men, and although this seems to be done in the proposition

" all men are mortal," yet there is no reason, so far as the truth of our

proposition is concerned, why we should so restrict our x. Whether x
be a man or not, " ^ is a man " is always, when a constant is substituted

for X, a proposition implying, for that value of x, the proposition " x is

a mortal." And unless we admit the hypothesis equally in the cases

where it is false, we shall find it impossible to deal satisfactorily with the

null-class or with null propositional functions. We must, therefore,

allow our x, wherever the truth of our formal implication is thereby

unimpaired, to take all values without exception; and where any

restriction on variability is required, the implication is not to be

regarded as formal until the said restriction has been removed by being

prefixed as hypothesis. (If i^rx be a proposition whenever x satisfies ^x,

where <^x is a propositional function, and if -^^x, whenever it is a pro-

position, implies x^^ then "i/ra? implies ^^" is not a formal implication,

but " (/)« implies that ^x implies ^a?" is a formal implication.)

42. It is to be observed that ".r is a man implies a? is a mortal

"

is not a relation of two propositional functions, but is itself a single

propositional function having the elegant property of being always

true. For "a? is a man" is, as it stands, not a proposition at all,

and does not imply anything!; and we must not first vary our x in

"iT is a man," and then independently vary it in "a' is a mortal,"

for this would lead to the proposition that " everything is a man

"

implies " everything is a mortal," which, though true, is not what was

meant. This proposition would have to be expressed, if the language
of variables were retained, by two variables, as "a? is a man implies

y \s a. mortal." But this formula too is unsatisfactory, for its natural

meaning would be : "If anything is a man, then everything is a mortal."

The point to be emphasized is, of course, that our x, though variable,

must be the same on both sides of the implication, and this requires

that we should not obtain our formal implication by first varying (say)

Socrates in "Socrates is a man," and then in "Socrates is a mortal,"

but that we should start from the whole proposition " Socrates is a
man implies Socrates is a mortal," and vary Socrates in this proposition

- as a whole. Thus our formal implication asserts a class of implications,

I not a single implication at all. We do not, in a word, have one im-
plication containing a variable, but rather a variable implication. We
have a class of implications, no one of which contains a variable, and
we assert that every member of this class is true. This is a first step
towards the analysis of the mathematical notion of the variable.

But, it may be asked, how comes it that Socrates may be varied
in the proposition " Socrates is a man implies Socrates is mortal".? In
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virtue of the fact that true propositions are implied by all others, we
have "Socrates is a man implies Socrates is a philosopher"; but in this

proposition, alas, the variability of Socrates is sadly restricted. This
seems to show that formal implication involves something over and
above the relation of implication, and that some additional relation
must hold where a term can be varied. In the case in question, it is

natural to say that what is involved is the relation of inclusion between
the classes men and mortals—the very relation which was to be defined
and explained by our formal implication. But this view is too simple
to meet all cases, and is therefore not required in any case. A larger

number of cases, though still not all cases, can be dealt with by the
notion of what I shall call assertions. This notion must now be briefly

explained, leaving its critical discussion to Chapter vii.

43. It has always been customary to divide propositions into

subject and predicate ; but this division has the defect of omitting the

verb. It is true that a graceful concession is sometimes made by loose

talk about the copula, but the verb deserves far more respect than is

thus paid to it. We may say, broadly, that every proposition may be
divided, some in only one way, some in several ways, into a term (the

subject) and something which is said about the subject, which something/

I shall call the assertion. Thus " Socrates is a man " may be divided

into Socrates and u a man. The verb, which is the distinguishing mark
of propositions, remains with the assertion ; but the assertion itself,

being robbed of its subject, is neither true nor false. In logical dis-

cussions, the notion of assertion often occurs, but as the word proposition

is used for it, it does not obtain separate consideration. Consider, for

example, the best statement of the identity of indiscernibles :
" If j" and y

be any two diverse entities, some assertion holds of x which does not

hold of I/." But for the word assei'tion, which would ordinarily be

replaced by proposition, this statement is one which would commonly
pass unchallenged. Again, it might be said: "Socrates was a philo-

sopher, and the same is true of Plato." Such statements require the

analysis of a proposition into an assertion and a subject, in order that

there may be something identical which can be said to be affirmed of

two subjects.

44. We can now see how, where the analysis into subject and

assertion is legitimate, to distinguish implications in which there is a

term which can be varied from others in which this is not the case. Two
ways of making the distinction may be suggested, and we shall have to

decide between them. It may be said that there is a relation between

the two assertions "is a man" and "is a mortal," in virtue of which,

when the one holds, so does the other. Or again, we may analyze the

whole proposition "Socrates is a man implies Socrates is a mortal" into

Socrates and an assertion about him, and say that the assertion in

question holds of all terms. Neither of these theories replaces the above
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analysis of " a? is a man implies a; is a mortal "" into a class of material

implications ; but whichever of the two is true carries the analysis one

step further. The first theory suffers from the difficulty that it is

essential to the relation of assertions involved that both assertions

should be made of the same subject, though it is otherwise irrelevant

what subject we choose. The second theory appears objectionable on

the ground that the suggested analysis of " Socrates is a man implies

Socrates is a mortal" seems scarcely possible. The proposition in

question consists of two terms and a relation, the terms being "Socrates

is a man" and "Socrates is a mortal"; and it would seem that when a

relational proposition is analyzed into a subject and an assertion, the

subject must be one of the- terms of the relation which is asserted. This

objection seems graver than that against the former view; I shall

therefore, at any rate for the present, adopt the former view, and regard

formal implication as derived from a relation between assertions.

We remarked above that the relation of inclusion between classes is

insufficient. This results from the irreducible nature of relational

propositions. Take e.g. "Socrates is married implies Socrates had a

father." Here it is affirmed that because Socrates has one relation,

he must have another. Or better still, take "^ is before B implies B is

after AT This is a formal implication, in which the assertions are

(superficially at least) concerning different subjects; the only way to

avoid this is to say that both ' propositions have both A and B as

subjects, which, by the way, is quite different from saying that they

have the one subject " A and 5." Such instances make it plain that

the notion of a prepositional function, and the notion of an assertion,

are more fundamental than the notion of class, and that the latter is

not adequate to explain all cases of formal implication. I shall not

enlarge upon this point now, as it will be abundantly illustrated in

subsequent portions of the present work.

It is important to realize that, according to the above analvsisf'of

formal implication, the notion of every term is indefinable and ultimate!

A formal implication is one which holds of every term, and therefore

every cannot be explained by means of formal implication. If a and h

be classes, we can explain "every a is a 6" by means of "^ is an a

implies x is a 6"; but the every which occurs here is a derivative and
subsequent notion, presupposing the notion of every term. It seems

to be the very essence of what may be called a formal truth, and of

j/formal reasoning generally, that some assertion is affirmed to hold of

\ every term ; and unless the notion of every term is admitted, formal

truths are impossible.

45. The fundamental importance of formal implication is brought
out by the consideration that it is involved in all the rules of inference.

This shows that we cannot hope wholly to define it in terms of material

implication, but that some further element or elements must be involved.
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We may observe, however, that, in a particular inference, the rule

according to which the inference proceeds is not required as a premiss.

This point has been emphasized by Mr Bradley*; it is closely connected

with the principle of dropping a true premiss, being again a respect

in which formalism breaks down. In order to 'apply a rule of inference,

it is formally necessary to have a premiss asserting that the present

case is an instance of the rule; we shall then need to affirm the rule by
which we can go from the rule to an instance, and also to affirm that here

we have an instance of this rule, and so on into an endless process.

The fact is, of course, that any implication warranted by a rule of

inference does actually hold, and is not merely implied by the nile.

This is simply an instance of the non-formal principle of dropping a

true premiss: if our rule implies a certain implication, the rule may be

dropped and the implication asserted. But it remains the case that the

fact that our rule does imply the said implication, if introduced at all,

must be simply perceived, and is not guaranteed by any formal deduction

;

and often it is just as easy, and consequently just as legitimate, to perceive

immediately tne implication in question as to perceive that it is implied

by one or more of the rules of inference.

To sum up our discussion of formal implication : a formal implication,

we said, is the affirmation of every material implication of a certain

class; and the class of material implications involved is, in simple cases,

the class of all propositions in which a given fixed assertion, made con-

cerning a certain subject or subjects, is affirmed to imply another given

fixed assertion concerning the same subject or subjects. Where a formal

implication holds, we agreed to regard it, wherever possible, as due to

some relation between the assertions concerned. This theory raises many

formidable logical problems, and requires, for its defence, a thorough

analysis of the constituents of propositions. To this task we must now

address ourselves.

* Logic, Book II, Part I, Chap, ii (p. 227).



CHAPTER IV.

PROPER NAMES, ADJECTIVES, AND VERBS.

46. In the present chapter, certain questions are to be discussed

belonging to what may be called philosophical grammar. The study

of grammar, in my opinion, is capable of throwing far more light on

philosophical questions than is commonly supposed by philosophers.

Although a grammatical distinction cannot be uncritically assumed to

correspond to a genuine philosophical difference, yet the one is prima

facie evidence of the other, and may often be most usefully employed

as a source of discovery. Moreover, it must be admitted, I think, that

every word occurring in a sentence must have some meaning : a perfectly

meaningless sound could not be employed in the more or less fixed

way in which language employs words. The correctness of our philo-

sophical analysis of a proposition may therefore be usefully checked

by the exercise of assigning the meaning of each word in the sentence

expressing the proposition. On the whole, grammar seems to me to

bring us much nearer to a correct logic than the current opinions of

philosophers ; and in what follows, grammar, though not our master,

will yet be taken as our guide*.

Of the parts of speech, three are specially important : substantives,

adjectives, and verbs. Among substantives, some are derived from
adjectives or verbs, as humanity from human, or sequence from follows.

(I am not speaking of an etymological derivation, but of a logical one.)

Others, such as proper names, or space, time, and matter, are not

derivative, but appear primarily as substantives. What we wish to

obtain is a classification, not of words, but of ideas ; I shall therefore

call adjectives or predicates all notions which are capable of being such,

even in a form in which grammar would call them substantives. The
fact is, as we shall see, that human and humanity denote' precisely

the same concept, these words being employed respectively according to

the kind of relation in which this concept stands to the other constituents

of a proposition in which it occurs. The distinction which we require

* The excellence of grammar as a guide is proportional to the paucity of
inflexions, i.e. to the degree of analysis effected by the language considered.
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is not identical with the grammatical distinction between substantive

and adjective, since one single concept may, according to circumstances,

be either substantive or adjective : it is the distinction between proper

and general names that we require, or rather between the objects in-

dicated by such names. In every proposition, as we saw in Chapter iii,

we may make an analysis into something asserted and something about

which the assertion is made. A proper name, when it occurs in a

proposition, is always, at least according to one of the possible ways

of analysis (where there are several), the subject that the proposition

or some subordinate constituent proposition is about, and not what is

said about the subject. Adjectives and verbs, on the other hand,

are capable of occurring in propositions in which they cannot be

regarded as subject, but only as parts of the assertion. Adjectives

are distinguished by capacity for denoting—a term which I intend

to use in a technical sense to be discussed in Chapter v. Verbs

are distinguished by a special kind of connection, exceedingly hard

to define, with truth and falsehood, in virtue of which they dis-

tinguish an asserted proposition from an unasserted one, e.g. " Caesar

died ^ from " the death of Caesar." These distinctions must now be

amplified, and I shall begin with the distinction between general and

proper names.

47. Philosophy is familiar with a certain set of distinctions, all

more or less equivalent : I mean, the distinctions of subject and^ pre-

dicate, substance and attribute, substantive and adjective, thM and
what*. I wish now to point out briefly what appears to me to be'the

truth concerning these cognate distinctions. The subject is important,

since the issues between monism and monadism, between idealism and

empiricism, and between those who maintain and those who deny that

all truth is concerned with what exists, all depend, in whole or in part,

upon the theory we adopt in regard to the present question. But the

subject is treated here only because it is essential to any doctrine of

number or of the nature of the variable. Its bearings on general

philosophy, important as they are, will be left wholly out of account.

Whatever may be an object of thought, or may occur in any true

or false proposition, or can be counted as o?ie, I call a teTin. This,

then, is the ^videst word in the philosophical vocabulary. I shall use

aS synonymous with it the words unit, individual, and entity. The

first two emphasize the fact that every term is one, while the third is

derived from the fact that every term has being, i.e. i? in some sense.

A man, a moment, a number, a class, a relation, a chimaera, or anything

else that can be mentioned, is sure to be a term ; and to deny that such

and such a thing is a term must always be false.

It might perhaps be thought that a word of such extreme generality

could not be of any great use. Such a view, however, owing to certain

* This last pair of terms is due to Mr Bradley.
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wide-spread philosophical doctrines, would be erroneous. A term is,

in fact, possessed of all the properties commonly assigned to substances

or substantives. Every term, to begin with, is a logical subject : it is,

for example, the subject of the proposition that itself is one. Again

every term is immutable and indestructible. What a term is, it is, and

no change can be conceived in it which would not destroy its identity

and make it another term*. Another mark which belongs to terms

is numerical identity with themselves and numerical diversity from all

other terms f. Numerical identity and diversity are the source of unity

and plurality ; and thus the admission of many terms destroys monism.

And it seems undeniable that every constituent of every proposition can

be counted as one, and that no proposition contains less than two

constituents. Term is, therefore, a useful word, since it marks dissent

from various philosophies, as well as because, in many statements, we
wish to speak of any term or some term.

48. Among terms, it is possible to distinguish two kinds, which

I shall call respectively things and concepts. The former are the terms

indicated by proper n^mes, the latter those indicated by all other words.

Here proper names are to be understood in a somewhat wider sense than

is usual, and things also are to be understood as embracing all par-

ticular points and instants, and many other entities not commonly called

things. Among concepts, again, two kinds at least must be distinguished,

namely those indicated by adjectives and those indicated by verbs. The
former kind will often be called predicates or class-concepts ; the latter

are always or almost always relations. (In intransitive verbs, the notion

expressed by the verb is complex, and usually asserts a definite relation

to an indefinite relatum, as in " Smith breathes.")

In a large class of propositions, we agreed, it is possible, in one or

more ways, to distinguish a subject and an assertion about the subject.

The assertion must always contain a verb, but except in this respect,

assertions appear to have no universal properties. In a relational

proposition, say "J is greater than 5," we m^y regard A as the subject,

and " is greater than B'''' as the assertion, or B as the subject and "J is

greater than" as the assertion. There are thus, in the case proposed,

two ways of analyzing the proposition into subject and assertion.

Where a relation has more than two terms, as in "^^ is here now;]:,"

there will be more than two ways of making the analysis. But in

some propositions, there is only a single way : these are the subject-

* The notion of a term here set forth is a modification of Mr G. E. Moore's
notion of a concept in his article "On the Nature of Judgment," Mind, N. S. No. 30,
from which notion, however, it differs in some important respects.

t On identity, see Mr G. E. Moore's article in the Proceedings of the Aristotelian
Society, 1900-1901.

X This proposition means " A is in this place at this time." It will he shown in
Part VII that the delation expressed is not reducible to a two-term relation.
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predicate propositions, such as "Socrates is human." The proposition
" humanity belongs to Socrates," which is equivalent to " Socrates is

human," is an assertion about humanity ; but it is a distinct propo-
sition. In " Socrates is human," the notion expressed by human occurs

in a different way from that in which it occurs when it is called

humanity, the difference being that in the latter case, but not in the

former, the proposition is about this notion. This indicates that

humanity is a concept, not a thing. I shall speak of \h.e terms of a

proposition as those terms, however numerous, which occur in a propo-

sition and may be regarded as subjects about which the proposition is.

It is a characteristic of the terms of a proposition that any one of

them may be replaced by any other entity without our ceasing to have

a proposition. ' Thus we shall say that " Socrates is human " is a

proposition having only one term ; of the remaining components of

the proposition, one is the verb, the other is a predicate. With the sense

which is has in this proposition, we no longer have a proposition at all

if we replace human by something other than a predicate. Predicates,

then, are concepts, other than verbs, which occur in propositions having

only one term or subject. Socrates is a thing, because Socrates can

never occur otherwise than as term in a proposition : Socrates is not

capable of that curious twofold use which is involved in human and

humanity. Points, instants, bits of matter, particular states of mind,

and particular existents generally, are things in the above sense, and

so are many terms which do not exist, for example, the points in a

non-Euclidean space and the pseudo-existents of a novel. All classes,

it would seem, as numbers, men, spaces, etc., when taken as single terms,

are things ; but this is a point for Chapter vi.

Predicates are distinguished from other terms by a number of very

interesting properties, chief among which is their connection with what

I shall call denoting. One predicate always gives rise to a host of

cognate notions : thus in addition to human and humanity, which

only differ grammatically, we have man, a man, some man, any man,

every man, all men*, all of which appear to be genuinely distinct one

from another. The study of these various notions is absolutely vital

to any philosophy of mathematics ; and it is on account of them that

tlie tiaeory of predicates is important.

49. It might be thought that a distinction ought to be made

between a concept as such and a concept used as a term, between,

e.g., such pairs as is and heing, human and humanity, one in such a

proposition as " this is one " and 1 in " 1 is a number." But inex-

tricable difficulties will envelop us if we allow such a view. There is,

* I use all men as collective^ i.e. as nearly synonymous with the human race, but

differing therefrom by being many and not one. I shall always use all collectively,

confining myself to every for the distributive sense. Thus I shall say " every man is

mortal," not ''all men are mortal."
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of course, a grammatical difference, and this corresponds to a difference

as regards relations. In the first case, the concept in question is used

as a concept, that is, it is actually predicated of a term or asserted to

relate two or more terms ; while in the second case, the concept is

itself said to have a predicate or a relation. There is, therefore,

no difficulty in accounting for the grammatical difference. But what

I wish to urge is, that the difference lies solely in external relations,

and not in the intrinsic nature of the terms. For suppose that one

as adjective differed from 1 as term. In this statement, one as

adjective has been made into a term ; hence either it has become

1, in which case the supposition is self-contradictory ; or there is some

other difference between one and 1 in addition to the fact that the

first denotes a concept not a term while the second denotes a concept

which is a term. But in this latter hypothesis, there must be propo-

sitions concerning one as term, and we shall still have to maintain

propositions concerning one as adjective as opposed to one as term

;

yet all such propositions must be false, since a proposition about one

as adjective makes one the subject, and is therefore really about one

as term. In short, if there were any adjectives which could not be

made into substantives without change of meaning, all propositions

concerning such adjectives (since they would necessarily turn them into

substantives) would be false, and so would the proposition that all

such propositions are false, since this itself turns the adjectives into

substantives. But this state of things is self-contradictory.

The above argument proves that we were right in saying that terms

embrace everything that can occur in a proposition, with the possible

exception of complexes of terms of the kind denoted by any and cognate

words*. For if A occurs in a proposition, then, in this statement,

A is the subject; and we have just seen that, if A is ever not the

subject, it is exactly and numerically the same A which is not subject

in one proposition and is subject in another. Thus the theory that

there are adjectives or attributes or ideal things, or whatever they may
be called, which are in some way less substantia], less self-subsistent,

less self-identical, than true substantives, appears to be wholly erroneous,

and to be easily reduced to a contradiction. Terms which are concepts

differ from those which are not, not in respect of self-subsistence, but

in virtue of the fact that, in certain true or false propositions, they

occur in a manner which is different in an indefinable way from the

manner in which subjects or terms of relations occur.

50. Two concepts have, in addition to the numerical diversity

which belongs to them as terms, another special kind of diversity

which may be called conceptual. This may be characterized by the

fact that two propositions in which the concepts occur otherwise than

as terms, even if, in all other respects, the two propositions are identical,

* See the next chapter.
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yet differ in virtue of the fact that the concepts which occur in

them are conceptually diverse. Conceptual diversity implies numerical

diversity, but the converse implication does not hold, since not all

terms are concepts. Numerical diversity, as its name implies, is the

source of plurality, and conceptual diversity is less important to

mathematics. But the whole possibility of making different assertions

about a given term or set of terms depends upon conceptual diversity,

which is therefore fundamental in general logic.

51. It is interesting and not unimportant to examine very briefly

the connection of the above doctrine of adjectives with certain traditional

views on the nature of propositions. It is customary to regard all

propositions as having a subject and a predicate, i.e. as having an

immediate this, and a general concept attached to it by way of description.

This is, of course, an account of the theory in question which will strike

its adherents as extremely crude; but it will serve for a general indication

of the view to be discussed. This doctrine develops by internal logical

necessity into the theory of Mr Bradley's Logic, that all words stand for

ideas having what he calls meaning, and that in every judgment there

is a something, the true subject of the judgment, which is not an idea

and does not have meaning. To have meaning, it seems to me, is a

notion confusedly compounded of logical and psychological elements.

Words all have meaning, in the simple sense that they are symbols

which stand for something other than themselves. But a proposition,

unless it happens to be linguistic, does not itself contain words : it

contains the entities indicated by words. Thus meaning, in the sense

in which words have meaning, is irrelevant to logic. But such concepts

as a man have meaning in another sense : they are, so to speak, symbolic

in their own logical nature, because they have the property which I call

denoting. That is to say, when a man occurs in a proposition {e.g.

" I met a man in the street "), the proposition is not about the concept

a man, but about something quite different, some actual biped denoted

by the concept. Thus concepts of this kind have meaning in a non-

psychological sense. And in this sense, when we say " this is a man,"

we are making a proposition in which a concept is in some sense

attached to what is not a concept. But when meaning is thus under-

stood, the entity indicated by John does not have meaning, as Mr Bradley

contends* ; and even among concepts, it is only those that denote that

have meaning. The confusion is largely due, I believe, to the notion

that words occur in propositions, which in turn is due to the notion that

propositions are essentially mental and are to be identified with cognitions.

But these topics of general philosophy must be pursued no further in

this work.

52. It remains to discuss the verb, and to find marks by which

it is distinguished from the adjective. In regard to verbs also, there is

* Logic, Book I, Chap, i, §§ 17, 18 (pp. 58-60).
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a twofold grammatical form corresponding to a difference in merely

external relations. There is the verb in the form which it has as verb

(the various inflexions of this form may be left out of account), and

there is the verbal noun, indicated by the infinitive or (in English) the

present participle. The distinction is that between " Felton killed

Buckingham " and " Killing no murder." By analyzing this difference,

the nature and function of the verb will appear.

It is plain, to begin with, that the concept which occurs in the verbal

noun is the very same as that which occurs as verb. Tjiis results from

the previous argument, that every constituent of every proposition must,

on pain of self-contradiction, be capable of being made a logical subject.

If we say " hills does not mean the same as to Jcill^'' we have already

made kills a subject, and we cannot say that the concept expressed by

,
the word ¥ills cannot be made a subject. Thus the very verb which

occurs as verb can occur also as subject. The question is : What logical

difference is expressed by the difference of grammatical form ? And it

is plain that the difference must be one in external relations. But
in regard to verbs, there is a further point. By transforming the verb,

as it occurs in a proposition, into a verbal noun, the whole proposition

can be turned into a single logical subject, no longer asserted, and no
longer containing in itself truth or falsehood. But here too, there seems

to be no possibility of maintaining that the logical subject which results

is a different entity from the proposition. "Caesar died " and " the

death of Caesar " will illustrate this point. If we ask : What is asserted

in the proposition " Caesar died " ^ the answer must be " the death of

Caesar is asserted.'" In that case, it would seem, it is the death of Caesar
which is true or false ; and yet neither truth nor falsity belongs to

a mere logical subject. The answer here seems to be that the death of

Caesar has an external relation to truth or falsehood (as the case may
be), whereas " Caesar died " in some way or other contains its own truth

or falsehood as an element. But if this is the correct analysis, it is

difficult to see how " Caesar died " differs from " the truth of Caesar's

death " in the case where it is true, or " the falsehood of Caesar's death "

in the other case. Yet it is quite plain that the latter, at any rate, is

never equivalent to "Caesar died." There appears to be an ultimate
notion of assertion, given by the verb, which is lost as soon as we
substitute a verbal noun, and is lost when the proposition in question

is made the subject of some other proposition. This does not depend
upon grammatical form ; for if I say " Caesar died is a proposition,"

I do not assert that Caesar did die, and an element which is present in
" Caesar died " has disappeared. Thus the contradiction which was to
have been avoided, of an entity which cannot be made a logical subject,

appears to have here become inevitable. This difficulty, which seems to
be inherent in the very nature of truth and falsehood, is one with which
I do not know how to deal satisfactorily. The most obvious course
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would be to say that the difference between an asserted and an unasserted

proposition is not logical, but psychological. In the sense in which
false propositions may be asserted, this is doubtless true. But there

is another sense of assertion, very difficult to bring clearly before the

mind, and yet quite undeniable, in which only true propositions aj-e

asserted. True and false propositions alike are in some sense entities,

and are in some sense capable of being logical subjects; but when
a proposition happens to be true, it has a further quality, over and
above that which it shares with false propositions, and it is this further

quality which is what I mean by assertion in a logical as opposed to

a psychological sense. The nature of truth, however, belongs no more
to the principles of mathematics than to the principles of everything

else. I therefore leave this question to the logicians with the above

brief indication of a difficulty.

53. It may be asked whether everything that, in the logical sense

we are concerned with, is a verb, expresses a relation or not. It seems

plain that, if we were right in holding that " Socrates is human " is a

proposition having only one term, the is in this proposition cannot

express a relation in the ordinary sense. In fact, subject-predicate

propositions are distinguished by just this non-relational character.

Nevertheless, a relation between Socrates and humanity is certainly

implied, and it is very difficult to conceive the proposition as expressing

no relation at all. We may perhaps say that it is a relation, although

it is distinguished from other relations in that it does not permit itself

to be regarded as an assertion concerning either of its terms indifferently,

but only as an assertion concerning the referent. A similar remark may
apply to the proposition " A is," which holds of every term without

exception. The is here is quite different from the is in " Socrates is

human " ; it may be regarded as complex, and as really predicating

Being of ^. In this wav, the true logical verb in a proposition may be

always regarded as asserting a relation. But it is so hard to know
exactly what is meant by relation that the whole question is in danger

of becoming purely verbal.

54. The twofold nature of the verb, as actual verb and as verbal

noun, may be expressed, if all verbs are held to be relations, as the

difference between a relation in itself and a relation actually relating.

Consider, for example, the proposition "A differs from 5." The
constituents of this proposition, if we analyze it, appear to be only A,

difference, B. Yet these constituents, thus placed side by side, do not

reconstitute the proposition. The difference which occurs in the

proposition actually relates A and B, whereas the difference after

analysis is a notion which has no connection with A and B. It may
be said that we ought, in the analysis, to mention the relations which

difference has to A and B, relations which are expressed by is and from
when we say "A is different from 5." These relations consist in the

E. 4
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fact that A is referent and B relatum with respect to difference. But
^^ A, referent, difference, relatum, 5" is still merely a list of terms, not

j

a proposition. A proposition, in fact, is essentially a unity, and when
'

analysis has destroyed the unity, no enumeration of constituents wjil,^

restore the proposition. The verb, when used as a verb, embodies the

unity of the proposition, and is thus distinguishable from the verb con-

sidered as a term, though I do not know how to give a clear account of

the precise nature of the distinction.

55. It may be doubted whether the general concept difference

occurs at all in the proposition "^ differs from jB," or whether there is

not rather a specific difference of A and B, and another specific difference

of C and D, which are respectively affirmed in "^ differs from B " and
" C differs from DJ" In this way, difference becomes a class-concept of

which there are as many instances as there are pairs of different terms

;

and the instances may be said, in Platonic phrase, to partake of the

nature of difference. As this point is quite vital in the theory of

relations, it may be well to dwell upon it. And first of all, I must
point out that in "^ differs from B" I intend to consider the bare

numerical difference in virtue of which they are two, not diff'erence in

this or that respect.

Let us first try the hypothesis that a difference is a complex notion,

compounded of difference together with some special quality distinguishing

a particular difference from every other particular difference. So far as

the relation of difference itself is concerned, we are to suppose that

no distinction can be made between different cases ; but there are to be

different associated qualities in different cases. But since cases are

distinguished by their terms, the quality must be primarily associated

with the terms, not with diff'erence. If the quality be not a relation, it

can have no special connection with the difference of A and B, which it

was to render distinguishable from bare difference, and if it fails in this

it becomes irrelevant. On the other hand, if it be a new relation

between A and B, over and above difference, we shall have to hold that

any two terms have two relations, difference and a specific difference, the

latter not holding between any other pair of terms. This view is a

combination of two others, of which the first holds that the abstract

general relation of difference itself holds between A and B, while the

second holds that when two terms differ they have, corresponding to

this fact, a specific relation of difference, unique and unanalyzable and
not shared by any other pair of terms. Either of these views may be

held with either the denial or the affirmation of the other. Let us see

what is to be said for and against them.

Against the notion of specific differences, it may be urged that, if

differences differ, their differences from each other must also differ, and
thus we are led into an endless process. Those who object to endless

processes will see in this a proof that differences do not differ. But in
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the present work, it will be maintained that there are no contradictions

peculiar to the notion of infinity, and that an endless process is not to

be objected to unless it arises in the analysis of the actual meaning of a

proposition. In the present case, the process is one of implications, not

one of analysis ; it must therefore be regarded as harmless.

Against the notion that the abstract relation of difference holds

between A and B, we have the argument derived from the analysis of

" A differs from 5," which gave rise to the present discussion. It is to

be observed that the hypothesis which combines the general and the

specific difference must suppose that there are two distinct propositions,

the one affirming the general, the other the specific difference. Thus if

there cannot be a general difference between A and B, this mediating

hypothesis is also impossible. And we saw that the attempt to avoid

the failure of analysis by including in the meaning of "^ differs from 5"

the relations of difference to A and B was vain. This attempt, in fact,

leads to an endless process of the inadmissible kind ; for we shall have to

include the relations of the said relations to A and B and difference, and

so on, and in this continually increasing complexity we are supposed

to be only analyzing the meaning of our original proposition. This

argument establishes a point of very great importance, namely, that

when a relation holds between two terms, the relations of the relation to

the terms, and of these relations to the relation and the terms, and so

on ad infinitum, though all implied by the proposition affirming the

original relation, form no part of the meaning of this proposition.

But the above argument does not suffice to prove that the relation

of ^ to -B cannot be abstract difference : it remains tenable that, as

was suggested to begin with, the true solution lies in regarding every

proposition as having a kind of unity which analysis cannot preserve,

and which is lost even though it be mentioned by analysis as an element

in the proposition. This view has doubtless its own difficulties, but the

view that no two pairs of terms can have the same relation both contains

difficulties of its own and fails to solve the difficulty for the sake of which

it was invented. For, even if the difference of A and B be absolutely

peculiar to A and B, still the three terms A, B, difference of A from B,

do not reconstitute the proposition "A differs from 5," any more than

A and B and difference did. And it seems plain that, even if differences

did differ, they would still have to have something in common. But

the most general way in which two terms can have something in common

is by both having a given relation to a given term. Hence if no two

pairs of terms can have the same relation, it follows that no two terms

can have anything in common, and hence different differences will not

be in any definable sense instances of difference *. I conclude, then, that

* The above argument appears to prove that Mr Moore's theory of universals

with numerically diverse instances in his paper on Identity {Proceedings of the

4—2
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the relation affirmed between A and B in the proposition "^ differs

from B"" is the general relation of difference, and is precisely and

numerically the same as the relation affirmed between C and D in

"C differs from D." And this doctrine must be held, for the same

reasons, to be true of all other relations; relations dp not have instances,

but are strictly the same in all propositions in which they occur.

We may now sum up the main points elicited in our discussion of

the verb. The verb, we saw, is a concept which, like the adjective, may

occur in a proposition without being one of the terms of the proposition,

though it may also be made into a logical subject. One verb, and one

only, must occur as verb in every proposition; but every proposition,

by turning its verb into a verbal noun, can be changed into a single

logical subject, of a kind which I shall call in future a prepositional

concept. Every verb, in the logical sense of the word, may be regarded

as a relation ; when it occurs as verb, it actually relates, but when it

occurs as verbal noun it is the bare relation considered independently of

the terms which it relates. Verbs do not, like adjectives, have instances,

but are identical in all the cases of their occurrence. Owing to the way

in which the verb actually relates the terms of a proposition, every

j

proposition has a unity which renders it distinct from the sum of its

constituents. All these points lead to logical problems, which, in a

! treatise on logic, would deserve to be fully and thoroughly discussed.

Having now given a general sketch of the nature of verbs and

adjectives, I shall proceed, in the next two chapters, to discussions

arising out of the consideration of adjectives, and in Chapter vii to

topics connected with verbs. Broadly speaking, classes are connected

with adjectives, while prepositional functions involve verbs. It is for

this reason that it has been necessary to deal at such length with a

subject which might seem, at first sight, to be somewhat remote from

the principles of mathematics.

Aristotelian Society, 1900—1901) must not be applied to all concepts. The relation of

an instance to its universal, at any rate, must be actually and numerically the same
in all cases where it occurs.



CHAPTER V.

DENOTING.

56. The notion of denoting, like most of the notions of logic, has

been obscured hitherto by an undue admixture of psychology. There is

a sense in which ice denote, when we point or describe, or employ words

as symbols for concepts ; this, however, is not the sense that I wish to

discuss. But the fact that description is possible—that we are able, by
the employment of concepts, to designate a thing which is not a concept

—is due to a logical relation between some concepts and some terms, in

virtue of which such concepts inherently and logically denote such terras.

It is this sense of denoting which is here in question. This notion lies

at the bottom (I think) of all theories of substance, of the subject-

predicate logic, and of the opposition between things and ideas,

discui-sive thought and immediate perception. These various develop-

ments, in the main, appear to me mistaken, while the fundamental fact

itself, out of which they have grown, is hardly ever discussed in its

logical purity.

A concept denotes when, if it occurs in a proposition, the proposition

is not about the concept, but about a term connected in a certain

peculiar way with the concept. If I say " I met a man," the proposition

is not about a man : this is a concept which does not walk the streets,

but lives in the shadowy limbo of the logic-books. What I met was a

thing, not a concept, an actual man with a tailor and a bank-account or

a public-house and a drunken wife. Again, the proposition " any finite

number is odd or even " is plainly true ; yet the concept " any finite

number " is neither odd nor even. It is only particular numbers that are

odd or even ; there is not, in addition to these, another entity, any

number, which is either odd or even, and if there were, it is plain that it

could not be odd and could not be even. Of the concept " any number,"

almost all the propositions that contain the phrase " any number " are

false. If we wish to speak of the concept, we have to indicate the fact by

italics or inverted commas. People often assert that man is mortal

;

but what is mortal will die, and yet we should be surprised to find in the

" Times " such a notice as the following : " Died at his residence of



54 The Indefinables of Mathematics [chap. V

Camelot, Gladstone Road, Upper Tooting, on the 18th of June 19—

,

Man, eldest son of Death and Sin." Man, in fact, does not die ; hence

if " man is mortal " were, as it appears to be, a proposition about man,

it would be simply false. The fact is, the proposition is about men

;

and here again, it is not about the concept men, but about what this

concept denotes. The whole theory of definition, of identity, of classes,

of symbolism, and of the variable is wrapped up in the theory of

denoting. The notion is a fundamental notion of logic, and, in spite

of its difficulties, it is quite essential to be as clear about it as possible.

57. The notion of denoting may be obtained by a kind of logical

genesis from subject-predicate propositions, upon which it seems more or

less dependent. The simplest of propositions are those in which one

predicate occurs otherwise than as a term, and there is only one term of

which the predicate in question is asserted. Such propositions may be

called subject-predicate propositions. Instances are : A is, A is one,

A is human. Concepts which are predicates might also be called class-

concepts, because they give rise to classes, but we shall find it necessary

to distinguish between the -wotAspredicate and class-concept. Propositions

of the subject-predicate type always imply and are implied by other propo-

sitions of the type which asserts that an individual belongs to a class.

Thus the above instances are equivalent to : ^ is an entity, ^ is a unit,

^ is a man. These new propositions are not identical with the previous

ones, since they have an entirely different form. To begin with, is is now
the only concept not used as a term. A man, we shall find, is neither

a concept nor a term, but a certain kind of combination of certain terms,

namely of those which are human. And the relation of Socrates to

a man is quite different from his relation to humanity ; indeed " Socrates

is human " must be held, if the above view is correct, to be not, in the

most usual sense, a judgment of relation between Socrates and humanity,
since this view would make human occur as term in "Socrates is human."
It is, of course, undeniable that a relation to humanity is implied by
•'Socrates is human," namely the relation expressed by "Socrates has

humanity " ; and this relation conversely implies the subject-predicate

proposition. But the two propositions can be clearly distinguished, and
it is impoi-tant to the theory of classes that this should be done. Thus
we have, in the case of every predicate, three types of propositions

which imply one another, namely, " Socrates is human," " Socrates has

humanity," and "Socrates is a man." The first contains a term and
a predicate, the second two terms and a relation (the second term being

identical with the predicate of the first proposition)*, while the third

contains a term, a relation, and what I shall call a disjunction (a term
which will be explained shortlyjf. The class-concept differs little, if at

* Cf. § 49.

t There are two allied propositions expressed by the same words, namely
"Socrates is a-man" and "Socrates is-a man." The above remarks apply to the
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all, from the predicate, while the class, as opposed to the class-concept, is

the sum or conjunction of all the terms which have the given predicate.

The relation which occurs in the second type (Socrates has humanity) is

characterized completely by the fact that it implies and is implied by a

proposition with only one term, in which the other term of the relation

has become a predicate. A class is a certain combination of terms, a

class-concept is closely akin to a predicate, and the terms whose com-

bination forms the class are determined by the class-concept. Predicates

are, in a certain sense, the simplest type of concepts, since they occur in

the simplest type of proposition.

58. There is, connected with every predicate, a great variety of

closely allied concepts, which, in so far as they are distinct, it is

important to distinguish. Starting, for example, with human, we have

man, men, all men, every man, any man, the human race, of which all

except the first are twofold, a denoting concept and an object denoted

;

we have also, less closely analogous, the notions " a man " and " some

man," which again denote objects* other than themselves. This vast

apparatus connected with every predicate must be borne in mind, and

an endeavour must be made to give an analysis of all the above notions.

But for the present, it is the property of denoting, rather than the

various denoting concepts, that we are concerned with.

The combination of concepts as such to form new concepts, of greater

complexity than their constituents, is a subject upon which writers on

logic have said many things. But the combination of terms as such,

to form what by analogy may be called complex terms, is a subject

upon which logicians, old and new, give us only the scantiest discussion.

Nevertheless, the subject is of vital importance to the philosophy of

mathematics, since the nature both of number and of the variable turns

upon just this point. Six words, of constant occurrence in daily life,

are also characteristic of mathematics : these are the words all, every,

any, a, some and the. For correctness of reasoning, it is essential that

these words should be sharply distinguished one from another; but

the subject bristles with difficulties, and is almost wholly neglected by

logicians i*.

It is plain, to begin with, that a phrase containing one of the above

former ; but in future, unless the contrary is indicated by a hyphen or otherwise,

the latter will always be in question. The former expresses the identity of Socrates

with an ambiguous individual ; the latter expresses a relation of Socrates to the

class-concept man.
* I shall use the word object in a wider sense than term, to cover both singular

and plural, and also cases of ambiguity, such as "a man." The fact that a word can

be framed with a wider meaning than term raises grave logical problems. Cf § 47.

t On the indefinite article, some good remarks are made by Meinong,

"Abstrahiren und Vergleichen," Zeitschrift fur Psychohgie und Physiologie der

Sinnesorgane, Vol. xxiv, p. 63.
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six words always denotes. It will be convenient, for the present

discussion, to distinguish a class-concept from a predicate : I shall call

human a predicate, and man a class-concept, though the distinction is

perhaps only verbal. The characteristic of a class-concept, as distin-

guished from terms in general, is that "a? is a m" is a propositional

function when, and only when, w is a class-concept. It must be held that

when u is not a class-concept, we do not have a false proposition, but

simply no proposition at all, whatever value we may give to x. This

enables us to distinguish a class-concept belonging to the null-class, for

which all propositions of the above form are false, from a term which is

not a class-concept at all, for which there are no propositions of the

above form. Also it makes it plain that a class-concept is not a term
in the proposition "x is a «," for u has a restricted variability if the

formula is to remain a proposition. A denoting phrase, we may now say,

consists always of a class-concept preceded by one of the above six words
or some synonym of one of them.

59. The question which iirst meets us in regard to denoting is

this : Is there one way of denoting six different kinds of objects, or are

the ways of denoting different ? And in the latter case, is the object

denoted the same in all six cases, or does the object differ as well as the
way of denoting it .'' In order to answer this question, it will be first

necessary to explain the differences between the six words in question.

Here it wiU be convenient to omit the word the to begin with, since this

word is in a different position from the others, and is liable to limitations

from which they are exempt.

In cases where the class defined by a class-concept has only a finite

number of terms, it is possible to omit the class-concept wholly, and
indicate the various objects denoted by enumerating the terms and
connecting them by means of and or or as the case may be. It will

help to isolate a part of our problem if we first consider this case,

although the lack of subtlety in language renders it difficult to grasp the
difference between objects indicated by the same form of words.

Let us begin by considering two terms only, say Brown and Jones.
The objects denoted by all, every, any, a and scrnie* are respectively

involved in the following five propositions. (1) Brown and Jones are
two of Miss Smith's suitors ; (2) Brown and Jones are paying court to
Miss Smith ; (3) if it was Brown or Jones you met, it was a very ardent
lover; (4) if it was one of Miss Smith's suitors, it must have been
Brown or Jones ; (5) Miss Smith will marry Brown or Jones. Although
only two forms of words, Brown and Jones and Brown or Jones, are

involved in these propositions, I maintain that five different combinations
are involved. The distinctions, some of which are rather subtle, may be

* I intend to distinguish between a and sorrue in a way n'^t warranted by language

;

the distinction of all and evei-y is also a straining of usage. Both are necessary to
avoid circumlocution.
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brought out by the following considerations. In the first proposition, it

is Brown aiid Jones who are two, and this is not true of either separately;

nevertheless it is not the whole composed of Brown and Jones which is

two, for this is only one. The two are a genuine combination of Brown
with Jones, the kind of combination which, as we shall see in the next

chapter, is characteristic of classes. In the second proposition, on the

contrary, what is asserted is true of Brown and Jones severally; the

proposition is equivalent to, though not (I think) identical with, "Brown
is paying court to Miss Smith and Jones is paying court to Miss Smith."

Thus the combination indicated by and is not the same here as in the

first case : the first case concerned all of them collectively, while the

second concerns all distributively, i.e. each or every one of them. For
the sake of distinction, we may call the first a numerical conjunction,

since it gives rise to number, the second a proportional conjunction,

since the proposition in which it occurs is equivalent to a conjunction of

propositions. (It should be observed that the conjunction of propo-

sitions in question is of a wholly different kind from any of the com-
binations we are considering, being in fact of the kind which is called

the logical product. The propositions are combined qua propositions,

not qua terms.)

The third proposition gives the kind of conjunction by which any is

defined. There is some difficulty about this notion, which seems half-way

between a conjunction and a disjunction. This notion maybe further

explained as follows. Let a and h be two different propositions,

each of which implies a third proposition c. Then the disjunction

" (2 or 6 " implies c. Now let a and h be propositions assigning the

same predicate to two different subjects, then there is a combination

of the two subjects to which the given predicate may be assigned so

that the resulting proposition is equivalent to the disjunction " a or hP
Thus suppose we have " if you met Brown, you met a very ardent lover,"

and " if you met Jones, you met a very ardent lover." Hence we infer

" if you met Brown or if you met Jones, you met a very ardent lover,"

and we regard this as equivalent to " if you met Brown or Jones, etc."

The combination of Brown and Jones here indicated is the same as that

indicated by either of them. It differs from a disjunction by the fact

that it implies and is implied by a statement concerning both, ; but in

some more complicated instances, this mutual implication fails. The

method of combination is, in fact, different from that indicated by hoth,

and is also different from both forms of disjunction. I shall call it the

variable conjunction. The first form of disjunction is given by (4) : this

is the form which I shall denote by a suitor. Here, although it must

have been Brown or Jones, it is not true that it must have been Brown,

nor yet that it must have been Jones. Thus the proposition is not

equivalent to the disjunction of propositions " it must have been Brown

or it must have been Jones." The proposition, in fact, is not capable of
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statement either as a disjunction or as a conjunction of propositions,

except in the very roundabout form :
" if it was not Brown, it was

Jones, and if it was not Jones, it was Brown," a form which rapidly

becomes intolerable when the number of terms is increased beyond two,

and becomes theoretically inadmissible when the number of terms is

infinite. Thus this form of disjunction denotes a variable term, that

is, whichever of the two terms we fix upon, it does not denote this term,

and yet it does denote one or other of them. This form accordingly I

shall call the variable disjunction. Finally, the second form of disjunction

is given by (5). This is what I shall call the constant disjunction, since

here either Brown is denoted, or Jones is denoted, but the alternative

is undecided. That is to say, our proposition is now equivalent to a

disjunction of propositions, namely " Miss Smith will marry Brown, or

she will marry Jones." She will marry some one of the two, and the

disjunction denotes a particular one of them, though it may denote

either particular one. Thus all the five combinations are distinct.

It is to be observed that these five combinations yield neither terms

nor concepts, but strictly and only combinations of terms. The first

yields many terms, while the others yield something absolutely peculiar,

which is neither one nor many. The combinations are combinations of

terms, effected without the use of relations. Corresponding to each

combination there is, at least if the terms combined form a class, a

perfectly definite concept, which denotes the various terms of the combi-

nation combined in the specified manner. To explain this, let us repeat

our distinctions in a case where the terms to be combined are not

enumerated, as above, but are defined as the terms of a certain class.

60. When a class-concept a is given, it must be held that the

various terms belonging to the class are also given. That is to say, any

term being proposed, it can be decided whether or not it belongs to the

class. In this way, a collection of terms can be given otherwise than by
enumeration. Whether a collection can be given otherwise than by

enumeration or by a class-concept, is a question which, for the present,

I leave undetermined. But the possibility of giving a collection by a

class-concept is highly important, since it enables us. to deal with infinite

collections, as we shall see in Part V. For the present, I wish to examine

the meaning of such phrases as all a's, every a, any a, an a, and some a.

All a's, to begin with, denotes a numerical conjunction; it is definite as

soon as a is given. The concept all a's is a perfectly definite single

concept, which denotes the terms of a taken all together. The terms

so taken have a number, which may thus be regarded, if we choose, as

a property of the class-concept, since it is determinate for any given

class-concept. Every a, on the contrary, though it still denotes all the

a's, denotes them in a different way, i.e. severally instead of collectively.

Any a denotes only one a, but it is wholly irrelevant which it denotes,

and what is said will be equally true whichever it may be. Moreover,
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any a denotes a variable a, that is, whatever particular a we may fasten
upon, it is certain that any a does not denote that one ; and yet of that
one any proposition is true which is true of any a. An a denotes a
variable disjunction : that is to say, a proposition which holds of an a
may be false concerning each particular a, so that it is not reducible to

a disjunction of propositions. For example, a point lies between any
point and any other point; but it would not be true of any one
particular point that it lay between any point and any other point,

since there would be many pairs of points between which it did not lie.

This brings us finally to some «, the constant disjunction. This denotes
just one term of the class a, but the term it denotes may be any term
of the class. Thus " some moment does not follow any moment " would
mean that there was a first moment in time, while " a moment precedes
any moment "" means the exact opposite, namely, that every moment has
predecessors.

61. In the case of a class a which has a finite number of terms

—

say «!, flSa, a^, ... an, we can illustrate these various notions as follows

:

(1) All a's denotes aj and Aj and . . . and a„.

(2) Every a denotes «i and denotes a^ and . . . and denotes a„.

(3) Any a denotes asi or a^ or ... or a„, where or has the meaning
that it is irrelevant which we take.

(4-) An a denotes % or a^ or ... or a„, where or has the meaning
that no one in particular must be taken, just as in all a's we must not
take any one in particular.

(5) Some a denotes a^ or denotes a^or ... or denotes a„, where it is

not irrelevant which is taken, but on the contrary some one particular a
must be taken.

As the nature and properties of the various wavs of combining terms
are of vital importance to the principles of mathematics, it may be well

to illustrate their properties by the following important examples.

(a) Let a be a class, and b a class of classes. We then obtain

in all six possible relations of a to 6 from various combinations of any,

a and some. All and every do not, in this case, introduce anything new.

The six cases are as follows.

(1) Any a belongs to any class belonging to b, in other words, the

class a is wholly contained in the common part or logical product of

the various classes belonging to b.

(2) Any a belongs to a b, i.e. the class a is contained in any
class which contains all the b\ or, is contained in the logical sum of

all the 6's.

(3) Any a belongs to some b, i.e. there is a class belonging to b,

in which the class a is contained. The difference between this case and

the second arises from the fact that here there is one b to which every

a belongs, whereas before it was only decided that every a belonged to

a b, and different a's might belong to diflBrent Fs. ,jj
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(4) An a belongs to any b, i.e. whatever b we take, it has a

in common with a.

(5) An a belongs to a b, i.e. there is a 6 which has a part in common

with a. This is equivalent to " some (or an) a belongs to some 6."

(6) Some a belongs to any b, i.e. there is an a which belongs to

the common part of all the b\ or a and all the Vs have a common part.

These are all the cases that arise here.

{^) It is instructive, as showing the generality of the type of

relations here considered, to compare the above case with the following.

Let a, b be two series of real numbers; then six precisely analogous

cases arise.

(1) Any a is less than any b, or, the series a is contained among

numbers less than every b.

(2) Any a is less than a b, or, whatever a we take, there is a 6

which is greater, or, the series a is contained among numbers less than

a (variable) term of the series b. It does not follow that some term of

the series b is greater than all the a's.

(3) Any a is less than some b, or, there is a term of b which is

greater than all the a's. This case is not to be confounded with (2).

(4) An a is less than any b, i.e. whatever b we take, there is an

a which is less than it.

(5) An a is less than a b, i.e. it is possible to find an a and a b

such that the a is less than the b. This merely denies that any a is

greater than any b.

(6) Some a is less than any b, i.e. there is an a which is less than

all the &'s. This was not implied in (4), where the a was variable,

whereas here it is constant.

In this case, actual mathematics have compelled the distinction

between the variable and the constant disjunction. But in other cases,

where mathematics have not obtained sway, the distinction has been

neglected ; and the mathematicians, as was natural, have not investi-

gated the logical nature of the disjunctive notions which they employed.

(7) I shall give one other instance, as it brings in the difference

between any and every, which has not been relevant in the previous

cases. Let a and b be two classes of classes ; then twenty different

relations between them arise from different combinations of the terms

of their terms. The following technical terras will be useful. If a be

a class of classes, its logical sum consists of all terms belonging to any

a, i.e. all terms such that there is an a to which they belong, while

its logical product consists of all terms belonging to every a, i.e. to the

common part of all the a's. We have then the following cases.

(1) Any term of any a belongs to every b, i.e. the logical sum of

a is contained in the logical product of b.

(2) Any term of any a belongs to a b, i.e. the logical sum of a

is contained i(i the logical sum of b.
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(3) Any term of any a belongs to some i, i.e. there is a 6 which
contains the logical sum of a.

(4) Any term of some (or an) a belongs to every b, i.e. there is an
a which is contained in the product of b.

(5) Any term of some (or an) a belongs to a b, i.e. there is an a
which is contained in the sum of b.

(6) Any tenii of some (or an) a belongs to some b, i.e. there is a

b which contains one class belonging to a.

(7) A term of any a belongs to anv b, i.e. any class of a and any
class of b have a common part.

(8) A term of any a belongs to a b, i.e. any class of a has a part

in common with the logical sum of b.

(9) A term of any a belongs to some b, i.e. there is a 6 with which
any a has a part in common.

(10) A term of an a belongs to everv b, i.e. the logical sura of a
and the logical product of b have a common part.

(11) A term of an a belongs to anv b, i.e. given any b, an a can

be found with which it has a common part.

(12) A term of an a belongs to a b, i.e. the logical sums of a and
of b have a common part.

(13) Any term of every a belongs to every b, i.e. the logical

product of a is contained in the logical product of b.

(14) Any term of every a belongs to a b, i.e. the logical product

of a is contained in the logical sum of b.

(15) Any term of every a belongs to some b, i.e. there is a term
of b in which the logical product of a is contained.

(16) A (or some) term of e\"ery a belongs to every b, i.e. the logical

products of a and of b have a common part.

(17) A (or some) term of every a belongs to a b, i.e. the logical

product of a and the logical sum of b have a common part.

(18) Some term of any a belongs to every b, i.e. any a has a part

in common with the logical product of b.

(19) A term of some a belongs to anv b, i.e. there is some term

of a with which any b has a common pai-t.

(20) A term of every a belongs to any b, i.e. anv b has a part in

common with the logical product of a.

The above examples show that, although it may often happen that

there is a mutual implication (which has not always been stated) of

corresponding propositions concerning some and a, or concerning aiii/

and everI/, yet in other cases there is no such mutual implication. Thus
the five notions discussed in the present chapter are genuinely distinct,

and to confound them may lead to perfectly definite fallacies.

62. It appeal's from the above discussion that, whether there are

different ways of denoting or not, the objects denoted by all men, every

man,, etc. are certainly distinct. It seems therefore legitimate to say
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that the whole difference Hes in the objects, and that denoting itself is

the same in all cases. There are, however, many difficult problems

connected with the subject, especially as regards the nature of the

objects denoted. All men, which I .shall identify with the class of men,

seems to be an unambiguous object, although grammatically it is plural.

But in the other cases the question is not so simple : we may doubt

whether an ambiguous object is unambiguously denoted, or a definite

object ambiguously denoted. Consider again the proposition " I met

a man." It is quite certain, and is implied by this proposition, that

what I met was an unambiguous perfectly definite man : in the technical

language which is here adopted, the proposition is expressed by " I met

some man." But the actual man whom I met forms no part of the

proposition in question, and is not specially denoted by some man.

Thus the concrete event which happened is not asserted in the proposi-

tion. What is asserted is merely that some one of a class of concrete

events took place. The whole human race is involved in my assertion

:

if any man who ever existed or will exist had not existed or been going

to exist, the purport of my proposition would have been different. Or,

to put the same point in more intensional language, if I substitute for

man any of the other class-concepts applicable to the individual whom
I had the honour to meet, my proposition is changed, although the

individual in question is just as much denoted as before. What this

proves is, that some man must not be regarded as actually denoting

Smith and actually denoting Brown, and so on : the whole procession

of human beings throughout the ages is always relevant to every pro-

position in which some man occurs, and what is denoted is essentially

not each separate man, but a kind of combination of all men. This

is more evident in the case of every, any, and a. There is, then, a

definite something, different in each of the five cases, which must, in

a sense, be an object, but is characterized as a set of terms combined

in a certain way, which something is denoted by all men, every man,

any man, a man or some man ; and it is with this very paradoxical

object that propositions are concerned in which the corresponding

concept is used as denoting.

63. It remains to discuss the notion of the. This notion has

been symbolically emphasized by Peano, with very great advantage to

his calculus ; but here it is to be discussed philosophically. The use

of identity and the theory of definition are dependent upon this notion,

which has thus the very highest philosophical importance.

The word the, in the singular, is correctly employed only in relation

to a class-concept of which there is only one instance. We speak of

the King, the Prime Minister, and so on (understanding at the present

time) ; and in such cases there is a method of denoting one single definite

term by means of a concept, which is not given us by any of our other five

words. It is owing to this notion that mathematics can give definitions
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of terms which are not concepts—a possibility which illustrates the

difference between mathematical and philosophical definition. Every

term is the only instance of some class-concept, and thus every term,

theoretically, is capable of definition, provided we have not adopted

a system in which the said term is one of our indefinables. It is a

curious paradox, puzzling to the symbolic mind, that definitions, theo-

retically, are nothing but statements of symbolic abbreviations, irrelevant

to the reasoning and inserted only for practical convenience, while yet,

in the development of a subject, they always require a very large amount
of thought, and often embody some of the greatest achievements of

analysis. This fact seems to be explained by the theory of denoting.

An object may be present to the mind, without our knowing any concept

of which the said object is the instance; and the discovery of such a

concept is not a mere improvement in notation. The reason why this

appears to be the case is that, as soon as the definition is found, it

becomes wholly unnecessary to the reasoning to remember the actual

object defined, since only concepts are relevant to our deductions. In

the moment of discovery, the definition is seen to be true, because the

object to be defined was already in our thoughts ; but as part of our

reasoning it is not true, but merely symbolic, since what the reasoning

requires is not that it should deal with that object, but merely that

it should deal with the object denoted by the definition.

In most actual definitions of mathematics, what is defined is a class

of entities, and the notion of the does not then explicitly appear. But
even in this case, what is really defined is the class satisfying certain

conditions ; for a class, as we shall see in the next chapter, is always

a term or conjunction of terms and never a concept. Thus the notion of

the is always relevant in definitions ; and we may observe generally that

the adequacy of concepts to deal with things is wholly dependent upon

the unambiguous denoting of a single term which this notion gives.

64. The connection of denoting with the nature of identity is

important, and helps, I think, to solve some rather serious problems.

The question whether identity is or is not a relation, and even whether

there is such a concept at all, is not easy to answer. For, it may be

said, identity cannot be a relation, since, where it is truly asserted,

we have only one term, whereas two terms are required for a relation.

And indeed identity, an objector may urge, cannot be anything at all

:

two terms plainly are not identical, and one term cannot be, for what

is it identical with.? Nevertheless identity must be something. We
might attempt to remove identity from terms to relations, and say that

two terms are identical in some respect when they have a given relation

to a given term. But then we shall have to hold either that there is

strict identity between the two cases of the given relation, or that the

two cases have identity in the sense of having a given relation to a given

term ; but the latter view leads to an endless process of the illegitimate
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kind. Thus identity must be admitted, and the difficulty as to the

two terms of a relation must be met by a sheer denial that two different

terms are necessary. There must always be a referent and a relatum,

but these need not be distinct ; and where identity is affirmed, they are

not so*.

But the question arises : Why is it ever worth while to affirm

identity .P This question is answered by the theory of denoting. If

we say " Edward VII is the King," we assert an identity ; the reason

why this assertion is worth making is, that in the one case the actual

term occurs, while in the other a denoting concept takes its place.

(For purposes of discussion, I ignore the fact that Edwards form a

class, and that seventh Edwards form a class having only one term.

Edward VII is practically, though not formally, a proper name.) Often

two denoting concepts occur, and the term itself is not mentioned, as

in the proposition " the present Pope is the last survivor of his genera-

tion." When a term is given, the assertion of its identity with itself,

though true, is perfectly futile, and is never made outside the logic-

books ; but where denoting concepts are introduced, identity is at once

seen to be significant. In this ease, of course, there is involved, though

not asserted, a relation of the denoting concept to the term, or of the

two denoting concepts to each other. But the is which occurs in such

propositions does not itself state this further relation, but states pure

identity
-f.

65. To sum up. When a class-concept, preceded by one of the

six words all, every, any, a, some, the, occurs in a proposition, the

proposition is, as a rule, not about the concept formed of the two words

together, but about an object quite different from this, in general not

a concept at all, but a term or complex of terms. This may be seen by

the fact that propositions in which such concepts occur are in general

false concerning the concepts themselves. At the same time, it is

possible to consider and make propositions about the concepts them-

selves, but these are not the natural propositions to make in employing

the concepts. " Any number is odd or even " is a perfectly natural propo-

sition, whereas ''Any number is a variable conjunction" is a proposition

only to be made in a logical discussion. In such cases, we say that the

concept in question denotes. We decided that denoting is a perfectly

* On relations of terms to themselves, v. inf. Chap, ix, § 9-5.

t The word in is terribly ambiguous, and great care is necessary in order not to

confound its various meanings. We have (1) the sense in which it asserts Being, as

in "^ is"; (2) the sense of identity; (3) the sense of predication, in "A is human";
(4) the sense of "A is a-man " (cf p. .54, note), which is very like identity. In
addition to these there are less common uses, as "to be good is to be happy," where
a relation of assertions is meant, that relation, in fact, which, where it exists, gives

rise to formal implication. Doubtless there are further meanings which have not
occurred to me. On the meanings of is, cf. De Morgan, Formal Logic, pp. 49, SO.
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definite relation, the same in all six cases, and that it is the nature of

the denoted object and the denoting concept which distinguishes the

cases. We discussed at some length the natiu'e and the differences of
the denoted objects in the five cases in which these objects are com-

binations of terms. In a full discussion, it would be necessary also tO'

discuss the denoting concepts : the actual meanings of these concepts, as

opposed to the nature of the objects they denote, have not been discussed

above. But I do not know that there would be anything further to say

on this topic. Finally, we discussed the, and showed that this notion

is essential to what mathematics calls definition, as well as to the

possibility of uniquely determining a term by means of concepts ; the

actual use of identity, though not its meaning, was also found to depend

upon this way of denoting a single term. From this point we can

advance to the discussion of classes, thereby continuing the development

of the topics connected with adjectives.



CHAPTER VI.

CLASSES.

66. To bring cleai-ly before the mind what is meant by class, and

to distinguish this notion from all the notions to which it is allied, is

one of the most difficult and important problems of mathematical

philosophy. Apart from the fact that class is a very fundamental

concept, the utmost care and nicety is required in this subject on

account of the contradiction to be discussed in Chapter x. I must

ask the reader, therefore, not to regard as idle pedantry the apparatus

of somewhat subtle discriminations to be found in what follows.

It has been customary, in works on logic, to distinguish two stand-

points, that of extension and that of intension. Philosophers have

usually regarded the latter as more fundamental, while Mathematics

has been held to deal specially with the former. M. Couturat, in his

admirable work on Leibniz, states roundly that Symbolic Logic can only

be built up from the standpoint of extension* ; and if there really were

only these two points of view, his statement would be justified. But as

a matter of fact, there are positions intermediate between pure intension

and pure extension, and it is in these intermediate regions that Symbolic

Logic has its lair. It is essential that the classes with which we are

concerned should be composed of terms, and should not be predicates or

concepts, for a class must be definite when its terms are given, but

in general there will be many predicates which attach to the given

terms and to no others. We cannot of course attempt an intensional

definition of a class as the class of predicates attaching to the terms

in question and to no others, for this would involve a vicious circle

;

hence the point of view of extension is to some extent unavoidable.

On the other hand, if we take extension pm-e, our class is defined by

enumeration of its terms, and this method will not allow us to deal, as

Symbolic Logic does, with infinite classes. Thus, our classes must in

general be regarded as objects denoted by concepts, and to this extent

the point of view of intension is essential. It is owing to this con-

* La Logique de Leibniz, Paris, 1901, p. 387.
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sideration that the theory of denoting is of such great importance. In
the present chapter we have to specify the precise degree in which
extension and intension respectively enter into the definition and em-
ployment of classes; and throughout the discussion, I must ask the

reader to remember that whatever is said has to be applicable to infinite

as well as to finite classes.

67. When an object is unambiguously denoted by a concept, I shall

speak of the concept as a concept (or sometimes, loosely, as the concept)

of the object in question. Thus it will be necessary to distinguish the

concept of a class from a class-concept. We agreed to call man a class-

concept, but man does not, in its usual employment, denote anything.

On the other hand, men and all men (which I shall regard as synonyms) do
denote, and I shall contend that what they denote is the class composed
of all men. Thus man is the class-concept, men (the concept) is the

concept of the class, and men (the object denoted by the concept men)

are the class. It is no doubt confusing, at first, to use class-concept and
concept of a class in different senses ; but so many distinctions are

required that some straining of language seems unavoidable. In

the phraseology of the preceding chapter, we may say that a class is a t

numerical conjunction of terms. This is the thesis which is to be '

established.

68. In Chapter ii we regarded classes as derived from assertions,

i.e. as all the entities satisfying some assertion, whose form was left

wholly vague. I shall discuss this view critically in the next chapter

;

for the present, we may confine ourselves to classes as they are derived

from predicates, leaving open the question whether every assertion is

equivalent to a predication. We may, then, imagine a kind of genesis

of classes, through the successive stages indicated by the typical propo-

sitions- " Socrates is human," " Socrates has humanity," " Socrates is a

man," " Socrates is one among men." Of these propositions, the last

only, we should say, explicitly contains the class as a constituent ; but

every subject-predicate proposition gives rise to the other three equivalent

propositions, and thus every predicate (provided it can be sometimes

truly predicated) gives rise to a class. This is the genesis of classes from

the intensional standpoint.

On the other hand, when mathematicians deal with what they call a

manifold, aggregate, Menge, ensemble, or some equivalent name, it is

common, especially where the number of terms involved is finite, to regard

the object in question (which is in fact a class) as defined by the enumera-

tion of its terms, and as consisting possibly of a single term, which in

that case is the class. Here it is not predicates and denoting that are

relevant, but terms connected by the word and, in the sense in which

this word stands for a numerical conjunction. Thus Brown and Jones

are a class, and Brown singly is a class. This is the extensional genesis

of classes.

5—2
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69. The best formal treatment of classes in existence is that of

Peano*. But in this treatment a number of distinctions of great

philosophical importance are overlooked. Peano, not I think quite

consciously, identifies the class with the class-concept ; thus the relation

of an individual to its class is, for him, expressed by is a. For him,
" 2 is a number " is a proposition in which a term is said to belong to

the class number. Nevertheless, he identifies the equality of classes,

which consists in their having the same terms, with identity—a pro-

ceeding which is quite illegitimate when the class is regarded as the

class-concept. In order to perceive that man and feaiherless biped are

not identical, it is quite unnecessary to take a hen and deprive the poor

bird of its feathers. Or, to take a less complex instance, it is plain that

even prime is not identical with integer next after 1. Thus when we

identify the class with the class-concept, we must admit that two classes

may be equal without being identical. Nevertheless, it is plain that

when two class-concepts are equal, some identity is involved, for we say

that they have the same terms. Thus there is some object which is

positively identical when two class-concepts are equal ; and this object,

it would seem, is more properly called the cla^s. Neglecting the plucked

hen, the class of featherless bipeds, every one would say, is the same as

the class of men ; the class of even primes is the same as the class of

integers next after 1. Thus we must not identify the class with the

class-concept, or regard " Socrates is a man " as expressing the relation

of an individual to a class of which it is a member. This has two

consequences (to be established presently) which prevent the philosophical

acceptance of certain points in Peano's formalism. The first consequence

is, that there is no such thing as the null-class, though there are null

class-concepts. The second is, that a class having only one term is to

be identified, contrary to Peano's usage, with that one term. I should

not propose, however, to alter his practice or his notation in consequence

of either of these points ; rather I should regard them as proofs that

Symbolic Logic ought to concern itself, as far as notation goes, with

class-concepts rather than with classes.

70. A class, we have seen, is neither a predicate nor a class-

concept, for different predicates and different class-concepts may corre-

spond to the same class. A class also, in one sense at least, is distinct

from the whole composed of its terms, for the latter is only and essentially

one, while the former, where it has many terms, is, as we shall see later,

the very kind of object of which many is to be asserted. The distinction

of a class as many from a class as a whole is often made by language

:

space and points, time and instants, the army and the soldiers, the navy
and the sailors, the Cabinet and the Cabinet Ministers, all illustrate the

distinction. The notion of a whole, in the sense of a pure aggregate

* Neglecting Frege, who is discussed in the Appendix.
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which is here relevant, is, we shall find, not always applicable where the

notion of the class as many applies (see Chapter x). In such cases,

though terms may be said to belong to the class, the class must not be

treated as itself a single logical subject*. But this case never arises

where a class can be generated by a predicate. Thus we may for the

present dismiss this complication from our minds. In a class as many,

the component terms, though they have some kind of unity, have less

than is required for a whole. They have, in fact, just so much unity

as is required to make them many, and not enough to prevent them from

remaining many. A further reason for distinguishing wholes from

classes as many is that a class as one may be one of the terms of itself

as many, as in " classes are one among classes " (the extensional equi-

valent of " class is a class-concept "), whereas a complex whole can never

be one of its own constituents.

71. Class may be defined either extensionally or intension;

That is to say, we may define the kind of object which is a class, or the'

kind of concept which denotes a class : this is the precise meaning of

the opposition of extension and intension in this connection. But
although the general notion can be defined in this two-fold manner,

particular classes, except when they happen to be finite, can only be

defined intensionally, i.e. as the objects denoted by such and such con-

cepts. I believe this distinction to be purely psychological : logically,

the extensional definition appears to be equally applicable to infinite

classes, but practically, if we were to attempt it. Death would cut short

our laudable endeavour before it had attained its goal. Logically,

therefore, extension and intension seem to be on a par. I will begin

with the extensional view.

When a class is regarded as defined by the enumeration of its terms,

it is more naturally called a collection. I shall for the moment adopt

this name, as it will not prejudge the question whether the objects

denoted by it are truly classes or not. By a collection I mean what is

conveyed by "A and 5" or "^ and B and C," or any other enumeration

of definite terms. The collection is defined by the actual mention of

the terms, and the terms are connected by and. It would seem that

and represents a fundamental way of combining terms, and that just

this way of combination is essential if anything is to result of which a

number other than 1 can be asserted. Collections do not presuppose

numbers, since they result simply from the terms together with and:

they could only presuppose numbers in the particular case where the

terms of the collection themselves presupposed numbers. There is a

grammatical difficulty which, since no method exists of avoiding it,

must be pointed out and allowed for. A collection, grammatically, is

* A plurality of terms is not the logical subject when a number is asserted of it

:

such propositions have not one subject, but many subjects. See end of § 74.
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singular, whereas A and B, A and B and C, etc. are essentially plural.

This grammatical diificulty arises from the logical fact (to be discussed

presently) that whatever is many in general forms a whole which is

one ; it is, therefore, not removable by a better choice of technical

terms.

The notion of and was brought into prominence by Bolzano*. In

order to understand what infinity is, he says, " we must go back to one

of the simplest conceptions of our understanding, in order to reach an

agreement concerning the word that we are to use to denote it. This is

the conception which underlies the conjunction and, which, however, if

it is to stand out as clearly as is required, in many cases, both by the

purposes of mathematics and by those of philosophy, I believe to be best

expressed by the words :
' A system {Inbegriff) of certain things,' or

' a whole consisting of certain parts.' But we must add that every

arbitrary object A can be combined in a system with any others

B, C, D, ..., or (speaking still more correctly) already forms a system

by itself f, of which some more or less important truth can be enunciated,

provided only that each of the presentations A, B, C, D,... in fact

represents a different object, or in so far as none of the propositions

' A is the same as 5,' ' A is the same as C,' ' A is the same as i>,' etc.,

is true. For if e.g. A is the same as B, then it is certainly unreasonable

to speak of a system of the things A and 5."

The above passage, good as it is, neglects several distinctions which

we have found necessary. First and foremost, it does not distinguish

the many from the whole which they form. Secondly, it does not appear

to observe that the method of enumeration is not practically applicable

to infinite systems. Thirdly, and this is connected with the second point,

it does not make any mention of intensional definition nor of the notion

of a class. What we have to consider is the dilFerence, if any, of a class

from a collection on the one hand, and from the whole formed of the

collection on the other. But let us first examine further the notion

of and.

Anything of which a finite number other than or 1 can be asserted

would be commonly said to be many, and many, it might be said, are

always of the form "^ and B and C and ...." Here^, B, C, ... are

each one and are all different. To say that A is one seems to amount
to much the same as to say that A is not of the form " A^ and A^ and

As and ...." To say that A, B, C, ... are all different seems to amount
only to a condition as regards the symbols : it should be held that

" A and A " is meaningless, so that diversity is implied by amd, and need

not be specially stated.

A term A which is one may be regarded as a particular case of a

* Paradoxien des Unendlichen, Leipzig, 1854 (2nd ed., Berlin, 1889), § 3.

t i.e. the combination of A with B, C, D, ... already forms a system.
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collection, namely as a collection of one term. Thus every collection

which is many presupposes many collections which are each one : A and
B presupposes A and presupposes B. Conversely some collections of

one term presuppose many, namely those which are complex: thus

"A differs from B"" is one, but presupposes A and difference and B.

But there is not symmetry in this respect, for the ultimate presupposi-

tions of anything are always simple terms.

Every pair of terms, without exception, can be combined in the

manner indicated by A and B, and if neither A nor B be many, then

A and B are two. A and B may be any conceivable entities, any

possible objects of thought, they may be points or numbers or true or

false propositions or events or people, in short anything that can be

counted. A teaspoon and the number 3, or a chimaera and a four-

dimensional space, are certainly two. Thus no restriction whatever is

to be placed on A and B, except that neither is to be many. It should

be observed that A and B need not exist, but must, like anything that

can be mentioned, have Being. The distinction of Being and existence

is important, and is well illustrated by the process of counting. What .

can be counted must be something, and must certainly be, though it

need by no means be possessed of the further privilege of existence.

Thus what we demand of the terras of our collection is merely that each

should be an entity.

The question may now be asked : What is meant by A and B ?

Does this mean anything more than the juxtaposition of A with B ?

That is, does it contain any element over and above that of A and that

of B? Is and a separate concept, which occurs besides A, B? To
either answer there are objections. In the first place, and, we might

suppose, cannot be a new concept, for if it were, it would have to be

some kind of relation between A and B; A and B would then be a

proposition, or at least a propositional concept, and would be one, not

two. Moreover, if there are two concepts, there are two, and no third

mediating concept seems necessary to make them two. Thus and would

seem meaningless. But it is difficult to maintain this theory. To begin

with, it seems rash to hold that any word is meaningless. When we use

the word and, we do not seem to be uttering mere idle breath, but some

idea seems to correspond to the word. Again some kind of combination

seems to be implied by the fact that A and B are two, which is not true

of either separately. When we say "A and B are yellow," we can replace

the proposition by " A is yellow " and " B is yellow "
; but this cannot

be done for " A and B are two " ; on the contrary, A is one and B is on€.

Thus it seems best to regard and as expressing a definite unique kind of

combination, not a relation, and not combining A and B into a whole,

which would be one. This unique kind of combination will in future be

called addition of individuals. It is important to observe that it applies

to terms, and only applies to numbers in consequence of their being



72 The IndeJiTiables of Mathematics [chap, vi

terms. Thus for the present, 1 and 2 are two, and 1 and 1 is

meaningless.

As regards what is meant by the combination indicated by and, it is

indistinguishable from what we before called a numerical conjunction.

That is, A and B is what is denoted by the concept of a class of which

A and B are the only members. If m be a class-concept of which the

propositions "A is a m " " 5 is a m " are true, but of which all other

propositions of the same form are false, then " all m's " is the concept of

a class whose only terms are A and B ; this concept denotes the terms

A, B combined in a certain way, and "A and 5" are those terms com-

bined in just that way. Thus "A and jB" are the class, but are distinct

from the claiss-concept and from the concept of the class.

The notion of and, however, does not enter into the meaning of a

class, for a single term is a class, although it is not a numerical

conjunction. If ti be a class-concept, and only one proposition of the

form " X is a m " be true, then " all m's " is a concept denoting a single

term, and this term is the class of which " all m's " is a concept. Thus
what seems essential to a class is not the notion of and, but the being

denoted by some concept of a class. This brings us to the intensional

view of classes.

72. We agreed in the preceding chapter that there are not

different ways of denoting, but only different kinds of denoting concepts

and correspondingly different kinds of denoted objects. We have

discussed the kind of denoted object which constitutes a class ; we have

now to consider the kind of denoting concept.

The consideration of classes which results from denoting concepts

is more general than the extensional consideration, and that in two

respects. In the first place it allows, what the other practically

excludes, the admission of infinite classes ; in the second place it

introduces the nuU concept of a class. But, before discussing these

matters, there is a piurely logical point of Some importance to be

examined.

If M be a class-concept, is the concept " all zt's " analyzable into two

constituents, all and u, or is it a new concept, defined by a certain

relation to u, and no more complex than u itself.'' We may observe,

to begin with, that " all ti's " is synonymous with " m's," at least according

to a very common use of the plural. Our question is, then, as to the

meaning of the plural. The word all has certainly some definite

meaning, but it seems highly doubtful whether it means more than

the indication of a relation. " All men " and " all numbers " have in

common the fact that they both have a certain relation to a class-

concept, namely to man and number respectively. But it is very difficult

to isolate any further element of all-ness which both share, unless we

take as this element the mere fact that both are concepts of classes.

It would seem, then, that "all it's"" is not validly analyzable into ail
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and u, and that language, in this case as in some others, is a misleading

guide. The same remark will apply to every, any, some, a, and the.

It might perhaps be thought that a class ought to be considered,

not merely as a numerical conjunction of terms, but as a numerical

conjunction denoted by the concept of a class. This complication,

however, would serve no useful purpose, except to preserve Peano's

distinction between a single term and the class whose only term it is

—

a distinction which is easy to grasp when the class is identified with the

class-concept, but which is inadmissible in our view of classes. It is

evident that a numerical conjunction considered as denoted is either

the same entity as when not so considered, or else is a complex of

denoting together with the object denoted ; and the object denoted is

plainly what we mean by a class.

With regard to infinite classes, say the class of numbers, it is to be

observed that the concept (dl numbers, though not itself infinitely

complex, yet denotes an infinitely complex object. This is the inmost

secret of our power to deal ^^•ith infinity. An infinitely complex I

concept, though there may be such, can certainly not be manipulatedi

by the human intelligence ; but infinite collections, owing to the notion

of denoting, can be manipulated without introducing any concepts qi

infinite complexity. Throughout the discussions of infinity in later

Parts of the present work, this remark should be borne in mind : if

it is forgotten, there is an air of magic which causes the results obtained

to seem doubtful.

73. Great difficulties are associated with the null-class, and

generally with the idea of nothing. It is plain that there is such a

concept as nothing, and that in some sense nothing is something. In

fact, the proposition " nothing is not nothing " is undoubtedly capable

of an interpretation which makes it true—a point which gives rise to

the contradictions discussed in Plato's Sophist. In Symbolic Logic

the null-class is the class which has no terms at all ; and symbolically

it is quite necessary to introduce some ^ such notion. We have to

consider whether the contradictions which naturally arise can be

avoided.

It is necessary to realize, in the first place, that a concept may

denote although it does not denote anything. This occurs when there

are propositions in which the said concept occiu-s, and which are not

about the said concept, but all such propositions are false. Or rather,

the above is a first step towards the explanation of a denoting concept

which denotes nothing. It is not, however, an adequate explanation.

Consider, for example, the proposition "chimaeras are animals" or

"even primes other than 2 are numbers." These propositions appear

to be true, and it would seem that they are not concerned with the

denoting concepts, but with what these concepts denote; yet that is

impossible, for the concepts in question do not denote anything.
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Symbolic Logic says that these concepts denote the null-class, and that

the propositions in question assert that the null-class is contained in

certain other classes. But with the strictly extensional view of classes

propounded above, a class which has no terms fails to be anything at

all : what is merely and solely a collection of terms cannot subsist when

all the terms are removed. Thus we must either find a different

interpretation of classes, or else find a method of dispensing with

the null-class.

The above imperfect definition of a concept which denotes, but

does not denote anything, may be amended as follows. All denoting

concepts, as we saw, are derived from class-concepts; and a is a class-

concept when " ,r is an « '' is a prepositional function. . The denoting

concepts associated with a will not denote anything when and only

when "j? is an a" is false for all values of x. This is a complete

definition of a denoting concept which does not denote anything ; and

in this case we shall say that a is a null class-concept, and that " all a's
"

is a null concept of a class. Thus for a system such as Peano's, in

which what are called classes are really class-concepts, technical difficulties

need not arise ; but for us a genuine logical problem remains.

The proposition " chimaeras are animals " may be easily interpreted

by means of formal implication, as meaning "a; is a chimaera implies

X is an animal for all values of x."" But in dealing with classes we

have been assuming that propositions containing all or any or every,

though equivalent to formal implications, were yet distinct from them,

and involved ideas requiring independent treatment. Now in the case

of chimaeras, it is easy to substitute the pure intensional view, according

to which what is really stated is a relation of predicates : in the case in

question the adjective animal is part of the definition of the adjective

chimerical (if we allow ourselves to use this word, contrary to usage,

to denote the defining predicate of chimaeras). But here 'again it is

fairly plain that we are dealing with a proposition which implies that

chimaeras are animals, but is not the same proposition—indeed, in the

present case, the implication is not even reciprocal. By a negation

we can give a kind of extensional intei-pretation : nothing is denoted

by a chimaera which is not denoted bv an animal. But this is a very

roundabout interpretation. On the whole, it seems most correct to

reject the proposition altogether, while retaining the various other

propositions that would be equivalent to it if there were chimaeras.

By symbolic logicians, who have experienced the utility of the null-

class, this will be felt as a reactionary view. But I am not at present

discussing what should be done in the logical calculus, where the

established practice appears to me the best, but what is the philo-

sophical truth concerning the null-class. We shall say, then, that,

of the bundle of normally equivalent interpretations of logical symbolic

formula*, the class of interpretations considered in the present chapter,
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which are dependent upon actual classes, fail where we are concerned
with null class-concepts, on the ground that there is no actual null-class.

We may now reconsider the proposition " nothing is not nothing "

—

a proposition plainly true, and yet, unless carefully handled, a source of
apparently hopeless antinomies. Nothing is a denoting concept, which
denotes nothing. The concept which denotes is of course not nothing,
i.e. it is not denoted by itself The proposition which looks so para-
doxical means no more than this : Nothing, the denoting concept, is

not nothing, i.e. is not what itself denotes. But it by no means follows

from this that there is an actual null-class : only the null class-concept

and the null concept of a class are to be admitted.

But now a new difficulty has to be met. The equality of class-

concepts, like all relations which are reflexive, symmetrical, and transitive,

indicates an underlying identity, i.e. it indicates that every class-concept

has to some term a relation which all equal class-concepts also have to

that term—the term in question being different for different sets of

equal class-concepts, but the same for the various members of a single

set of equal class-concepts. Now for all class-concepts which are not
null, this term is found in the corresponding class ; but where are we
to find it for null class-concepts ? To this question several answers may
be given, any of which may be adopted. For we now know what a
class is, and we may therefore adopt as our term the class of all null

class-concepts or of all null prepositional functions. These are not null-

classes, but genuine classes, and to either of them all null class-concepts

have the same relation. If we then wish to have an entity analogous

to what is elsewhere to be called a class, but corresponding to null

class-concepts, we shall be forced, wherever it is necessary (as in counting

classes) to introduce a term which is identical for equal class-concepts,

to substitute everywhere the class of class-concepts equal to a given

class-concept for the class corresponding to that class-concept. The
class corresponding to the class-concept remains logically fundamental,

but need not be actually employed in our symbolism. The null-class,

in fact, is in some ways analogous to an irrational in Arithmetic : it

cannot be interpreted on the same principles as other classes, and if

we wish to give an analogous interpretation elsewhere, we must substitute

for classes other more complicated entities—in the present case, certain

correlated classes. The object of such a procedure will be mainly

technical; but failure to understand the procedure will lead to in-

extricable difficulties in the interpretation of the symbolism. A very

closely analogous procedure occurs constantly in Mathematics, for

example with every generalization of number ; and so far as I know,

no single case in which it occurs has been rightly interpreted either by
philosophers or by mathematicians. So many instances will meet us

in the course of the present work that it is unnecessary to linger longer

over the point at present. Only one possible misunderstanding must
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be guarded against. No vicious circle is involved in the above account

of the null-class ; for the general notion of class is first laid down, is

found to involve what is called existence, is then symbolically, not

philosophically, replaced by the notion of a class of equal class-concepts,

and is found, in this new form, to be applicable to what corresponds to

null class-concepts, since what corresponds is now a class which is not

null. Between classes simpliciter and classes of equal class-concepts

there is a one-one correlation, which breaks down in the sole case of the

class of nuU class-concepts, to which no null-class corresponds ; and this

fact is the reeison for the whole complication.

74. A question which is very fundamental in the philosophy of

Arithmetic must now be discussed in a more or less preliminary fashion. Is

a class which has many terms to be regarded as itself one or many.'' Taking

the class as equivalent simply to the numerical conjunction "A and 5
and C and etc.," it seems plain that it is many ; yet it is quite necessary

that we should be able to count classes as one each, and we do habitually

speak of a class. Thus classes would seem to be one in one sense and

many in another.

There is a certain temptation to identify the class as many and the

class as one, e.g., all men and the human race. Nevertheless, wherever

a class consists of more than one term, it can be proved that no such

identification is permissible. A concept of a class, if it denotes a class

as one, is not the same as any concept of the class which it denotes.

That is to say, classes of nil rational animals, which denotes the human
race as one term, is different from men, which denotes men, i.e. the

human race as many. But if the human race were identical with men,

it would follow that whatever denotes the one must denote the other,

and the above difference would be impossible. We might be tempted

to infer that Peano's distinction, between a term and a class of which

the said term is the only member, must be maintained, at least when the

term in question is a class*. But it is more correct, I think, to infer an

ultimate distinction between a class as many and a class as one, to

hold that the many are only many, and are not also one. The class as

one may be identified with the whole composed of the terms of the class,

i.e., in the case of men, the class as one will be the human race.

But can we now avoid the contradiction always to be feared,

where there is something that cannot be made a logical subject .''

I do not myself see any way of eliciting a precise contradiction in this

case. In the case of concepts, we were dealing with what was plainly

one entity ; in the present case, we are dealing with a complex essentially

capable of analysis into units. In such a proposition as "^ and B are

two," there is no logical subject: the assertion is not about A, nor

* This conclusion is actually drawn by Frege from an analogous argument

:

Archivfiir syst. Phil, i, p. 444. See Appendix.
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about B, nor about the whole composed of both, but strictly and only

about A and B. Thus it would seem that assertions are not necessarily

about single subjects, but may be about many subjects ; and this removes

the contradiction which arose, in the case of concepts, from the im-

possibility of making assertions about them unless they were turned

into subjects. This impossibility being here absent, the contradiction

which was to be feared does not arise.

75. We may ask, as suggested by the above discussion, what is to be

said of the objects denoted by a man, every man, some man, and any man.

Are these objects one or many or neither ? Grammar treats them all as

one. But to this view, the natural objection is, which one ? Certainly

not Socrates, nor Plato, nor any other particular person. Can we
conclude that no one is denoted.'' As well might we conclude that

every one is denoted, which in fact is true of the concept every man.

I think one is denoted in every case, but in an impartial distributive

manner. Any number is neither 1 nor 2 nor any other particular number,

whence it is easy to conclude that any number is not any one number,

a proposition at first sight contradictory, but really resulting from an

ambiguity in any, and more correctly expressed by " any number is not

some one number." There are, however, puzzles in this subject which

I do not yet know how to solve.

A logical difficulty remains in regard to the nature of the whole

composed of all the terras of a class. Two propositions appear self-

evident : (1) Two wholes composed of different terms must be different

;

(2) A whole composed of one term only is that one term. It follows

that the whole composed of a class considered as one term is that class

considered as one term, and is therefore identical with the whole

composed of the terms of the class ; but this result contradicts the

first of our supposed self-evident principles. The answer in this case,

however, is not difficult. The first of our principles is only universally

true when all the terms composing our two wholes are simple. A given

whole is capable, if it has more than two parts, of being analyzed in a

plurality of ways; and the resulting constituents, so long as analysis

is not pushed as far as possible, will be different for different ways of

analyzing. This proves that different sets of constituents may constitute

the same whole, and thus disposes of our difficulty.

76. Something must be said as to the relation of a term to a class

of which it is a member, and as to the various allied relations. One of

the allied relations is to be called e, and is to be fundamental in Symbolic

Logic. But it is to some extent optional which of them we take as

symbolically fundamental.

Logically, the fundamental relation is that of subject and predicate,

expressed in "Socrates is human"—a relation which, as we saw in

Chapter iv, is pecuhar in that the relatum cannot be regarded as a term
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in the proposition. The first relation that grows out of this is the one

expressed by " Socrates has humanity," which is distinguished by the

fact that here the relation is a term. Next comes " Socrates is a

man." This proposition, considered as a relation between Socrates and

the concept man, is the one which Peano regards as fundamental ; and

his 6 expresses the relation is a between Socrates and man. So long

as we use class-concepts for classes in our symbolism, this practice is

unobjectionable; but if we give e this meaning, we must not assume

that two symbols representing equal class-concepts both represent one

and the same entity. We may go on to the relation between Socrates

and the human race, i.e. between a term and its class considered as

a whole ; this is expressed by " Socrates belongs to the human race."

This relation might equally well be represented by e. It is plain that,

since a class, except when it has one term, is essentially many, it cannot

be as such represented by a single letter : hence in any possible Symbolic

Logic the letters which do duty for clsisses cannot represent the classes

as viany, but must represent either class-concepts, or the wholes com-

posed of classes, or some other allied single entities. And thus e cannot

represent the relation of a term to its class as many ; for this would be

a relation of one term to many terms, not a two-term relation such as

we want. This relation might be expressed by " Socrates is one among
men " ; but this, in any case, cannot be taken to be the meaning of e.

77. A relation which, before Peano, was almost universally con-

founded with f, is the relation of inclusion between classes, as e.g.

between men and mortals. This is a time-honoured relation, since

it occurs in the traditional form of the syllogism : it has been a battle-

ground between intension and extension, and has been so much dis-

cussed that it is astonishing how much remains to be said about it.

Empiricists hold that such propositions mean an actual enumeration

of the terms of the contained class, with the assertion, in each case,

of membership of the containing class. They must, it is to be in-

ferred, regard it as doubtful whether all primes are integers, since they

wiU scarcely have the face to say that they have examined all primes

one by one. Their opponents have usually held, on the contrary, that

what is meant is a relation of whole and part between the defining

predicates, but turned in the opposite sense from the relation between

the classes : i.e. the defining predicate of the larger class is part of that

of the smaller. This view seems far more defensible than the other;

and wherever such a relation does hold between the defining predicates,

the relation of inclusion follows. But two objections may be made,

first, that in some cases of inclusion there is no such relation between

the defining predicates, and secondly, that in any case what is meant

is a relation between the classes, not a relation of their defining

predicates. The first point may be easily established by instances.
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The concept even prime does not contain as a constituent the concept
integer between 1 and 10 ; the concept " English King whose head was
cut off'" does not contain the concept "people who died in 1649'"; and
so on through innumerable obvious cases. This might be met by saying

that, though the relation of the defining predicates is not one of whole
and part, it is one more or less analogous to implication, and is always

what is really meant by propositions of inclusion. Such a view repre-

sents, I think, what is said by the better advocates of intension, and
I am not concerned to deny that a relation of the kind in question does

always subsist between defining predicates of classes one of which is

contained in the other. But the second of the above points remains

valid as against any intensional interpretation. When we say that

men are mortals, it is evident that we are saying something about men,
not about the concept man or the predicate human. The question is,

then, what exactly are we saying ?

Peano held, in earlier editions of his Formulaire, that what is

asserted is the formal implication " ,r is a man implies a? is a mortal."

This is certainly implied, but I cannot persuade myself that it is the

same proposition. For in this proposition, as we saw in Chapter iii,

it is essential that x should take all values, and not only such as are

men. But when we say " all men are mortals,'''' it seems plain that we
are only speaking of men, and not of all other imaginable terms. We
may, if we wish for a genuine relation of classes, regard the assertion

as one of whole and part between the two classes each considered as

a single term. Or we may give a still more purely extensional form

to our proposition, by making it mean : Every (or any) man is a mortal.

This proposition raises very interesting questions in the theory of

denoting : for it appears to assert an identity, yet it is plain that what
is denoted by everi/ man is different from what is denoted by a mortal.

TTiese questions, however, interesting as they are, cannot be pursued

here. It is only necessary to realize clearly what are the various

equivalent propositions involved where one class is included in another.

The form most relevant to Mathematics is certainly the one with formal

implication, which will receive a fresh discussion in the following

chapter.

Finally, we must remember that classes are to be derived, by means

of the notion of such that, from other sources than subject-predicate

propositions and their equivalents. Any propositional function in

which a fixed assertion is made of a variable term is to be regarded,

as was explained in Chapter ii, as giving rise to a class of values

satisfying it. This topic requires a discussion of assertions ; but one

strange contradiction, which necessitates the care in discrimination

aimed at in the present chapter, may be mentioned at once.

78. Among predicates, most of the ordinary instances cannot be
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predicated of themselves, though, by introducing negative predicates,

it will be found that there are just as many instances of predicates which

are predicable of themselves. One at least of these, namely predicability,

or the property of being a predicate, is not negative : predicability, as

is evident, is predicable, i.e. it is a predicate of itself. But the most

common instances are negative : thus non-humanity is non-human, and

so on. The predicates which are not predicable of themselves are,

therefore, only a selection from among predicates, and it is natural to

suppose that they form a class having a defining predicate. But if so,

let us examine whether this defining predicate belongs to the class or

not. If it belongs to the class, it is not predicable of itself, for that is

Vthe characteristic property of the class. But if it is not predicable

of itself, then it does not belong to the class whose defining predicate

it is, which is contrary to the hypothesis. Gn the other hand, if it

does not belong to the class whose defining predicate it is, then it is not

predicable of itself, i.e. it m one of those prediefftfcw'ihat are not pre-

dicable of themselves, and therefore^^^ees belong to the class whose

defining predicate it is—again contrary to the hypothesis. Hence from

either hypothesis we can deduce its contradictory. I shall return to

this contradiction in Chapter x ; for the present, I have introduced

it merely as showing that no subtlety in distinguishing is likely to be

excessive.

79. To sum up the above somewhat lengthy discussion. A class,

we agreed, is essentially to be interpreted in extension ; it is either

a single term, or that kind of combination of terms which is indicated

when terms are connected by the word and. But practically, though

not theoretically, this purely extensional method can only be applied

to finite classes. All classes, whether finite or infinite, can be obtained

as the objects denoted by the plurals of class-concepts—jinen, numbers,

points, etc. Starting with predicates, we distinguished two kinds of

proposition, typified by " Socrates is human " and " Socrates has

humanity,'" of which the first uses human as predicate, the second

as a term of a relation. These two classes of propositions, though

very important logically, are not so relevant to Mathematics as their

derivatives. Starting from human, we distinguished (1) the class-concept

Tnan, which differs slightly, if at all, from human; (2) the various

denoting concepts all tnen, every man, any man, a m,an and some man ;

(3) the objects denoted by these concepts, of which the one denoted by
all men was called the class as many, so that all men (the concept) was

called the concept of the class ; (4) the class as one, i.e. the human race.

We had also a classification of propositions about Socrates, dependent

upon the above distinctions, and approximately parallel with them

:

(1) " Socrates is-a man " is nearly, if not quite, identical with " Socrates

has humanity"; (2) "Socrates is a-man" expresses identity between
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Socrates and one of the terms denoted by a man ; (3) " Socrates is one

among men," a proposition which raises difficulties owing to the plurahty

of men; (4) " Socrates belongs to the human race," which alone expresses

a relation of an individual to its class, and, as the possibility of relation

requires, takes the class as one, not as many. We agreed that the null-

class, which has no terms, is a fiction, though there are null class-concepts.

It appeared throughout that, although any symbolic treatment must
work largely with class-concepts and intension, classes and extension are

logically more fundamental for the principles of Mathematics ; and this

may be regarded as our main general conclusion in the present chapter.



CHAPTER VII.

PROPOSITIONAL FUNCTIONS.

80. Ik the preceding chapter an endeavour was made to indicate

the kind of object that is to be called a class, and for purposes of

discussion classes were considered as derived from subject-predicate

propositions. This did not affect our view as to the notion of class

itself; but if adhered to, it would greatly restrict the extension of

the notion. It is often necessary to recognize as a class an object

not defined bv means of a subject-predicate proposition. The explana-

tion of this necessity is to be sought in the theory of assertions and

&uch that.

The general notion of an assertion has been already explained in

connection with formal implication. In the present chapter its scope

and legitimacy are to be critically examined, and its connection with

classes and such that is to be investigated. The subject is full of

difficulties, and the doctrines which I intend to advocate are put forward

with a very limited confidence in their truth.

The notion of siu;h that might be thought, at first sight, to be

capable of definition ; Peano used, in fact, to define the notion by the

proposition " the afs such that .r is an a are the class a." Apart from

further objections, to be noticed immediately, it is to be observed that

the class as obtained from such that is the genuine class, taken in

extension and as many, whereas the a in " w is an a '^
is not the class,

but the class-concept. Thus it is formally necessary, if Peano's pro-

cedure is to be permissible, that we should substitute for " ir's such that

so-and-so " the genuine class-concept " a: such that so-and-so," which

may be regarded a^ obtained from the predicate "such that so-and-so"

or rather, "being an x such that so-and-so," the latter form being

necessary because so-and-so is a propositional function containing w.

But when this purely formal emendation has been made the point

remains that sicch that must often be put before such propositions as

xcRa, where R is a given relation and a a given term. We cannot

reduce this proposition to the form " cc is an a " without using such that ;

for if we ask what a must be, the answer is : a must be such that each
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of its terms, and no other terms, have the relation R to a. To take

examples from daily life : the children of Israel are a class defined by
a certain relation to Israel, and the class can only be defined as the

terms such that they have this relation. Such that is roughly equivalent

to who or which, and represents the general notion of satisfying a

propositional function. But we may go further : given a class a, we
cannot define, in terms of a, the class of propositions " x is an a " for

different values of x. It is plain that there is a relation which each

of these propositions ha^ to the x which occurs in it, and that the

relation in question is determinate when a is given. Let us call the

relation R. Then any entity which is a referent with respect to R
is a proposition of the type " x is an a."" But here the notion of

such that is already employed. And the relation R itself can only be

defined as the relation which holds between " x is an a" and x for all

values of x, and does not hold between any other pairs of terms. Here

such that again appears. The point which is chiefly important in these

remarks is the indefinability of propositional functions. When these

have been admitted, the general notion of one-valued functions is easily

defined. Every relation which is many-one, i.e. every relation for which

a given referent has only one relatum, defines a function : the relatum

is that function of the referent which is defined by the relation in

question. But where the function is a proposition, the notion involved

is presupposed in the symbolism, and cannot be defined by means of it

without a vicious circle : for in the above general definition of a function

propositional functions already occur. In the case of propositions of

the type "a? is an a,'' if we ask what propositions are of this type,

we can only answer "all propositions in which a term is said to be a'"

;

and here the notion to be defined reappears.

81. Can the indefinable element involved in propositional func-

tions be identified with assertion together with the notion of every

proposition containing a given assertion, or an assertion made concerning

every term ? The only alternative, so far as I can see, is to accept the

general notion of a propositional function itself as indefinable, and for

formal purposes this course is certainly the best ; but philosophically,

the notion appears at first sight capable of analysis, and we have to

examine whether or not this appearance is deceptive.

We saw in discussing verbs, in Chapter iv, that when a proposition

is completely analyzed into its simple constituents, these constituents

taken together do not reconstitute it. A less complete analysis of

propositions into subject and assertion has also been considered; and

this analysis does much less to destroy the proposition. A subject and
an assertion, if simply juxtaposed, do not, it is true, constitute a

proposition ; but as soon as the assertion is actually asserted of the

subject, the proposition reappears. The assertion is everything that

remains of the proposition when the subject is omitted : the verb

6—2
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remains an asserted verb, and is not turned into a verbal noun ; or at

any rate the verb retains that curious indefinable intricate relation to

the other terms of the proposition which distinguishes a relating relation

from the same relation abstractly considered. It is the scope and

legitimacy of this notion of assertion which is now to be examined.

Can every proposition be regarded as an assertion concerning any term

occurring in it, or are limitations necessary as to the form of the

proposition and the way in which the term enters into it ?

In some simple cases, it is obvious that the analysis into subject

and assertion is legitimate. In " Socrates is a man," we can plainly

distinguish Socrates and something that is asserted about him ; we
should admit unhesitatingly that the same thing may be said about

Plato or Aristotle. Thus we can consider a class of propositions

containing this assertion, and this will be the class of which a typical

number is represented by " a; is a man." It is to be observed that the

assertion must appear as assertion, not as term : thus " to be a man
is to suffer" contains the same assertion, but used as term, and this

proposition does not belong to the class considered. In the case of

propositions asserting a fixed relation to a fixed term, the analysis

seems equally undeniable. To be more than a yard long, for example,

is a perfectly definite assertion, and we may consider the class of

propositions in which this assertion is made, which will be represented

by the prepositional function " x is more than a yard long." In such

phrases as "snakes which are more than a yard long," the assertion

appears very plainly; for it is here explicitly referred to a variable

subject, not asserted of any one definite subject. Thus if J? be a fixed

relation and a a fixed term, .
. , Ra is a perfectly definite assertion.

(I place dots before the R, to indicate the place where the subject

must be inserted in order to make a proposition.) It may be doubted

whether a relational proposition can be regarded as an assertion con-

cerning the relatum. For my part, I hold that this can be done except

in the case of subject-predicate propositions ; but this question is better

postponed until we have discussed relations *.

82. More difficult questions must now be considered. Is such

a proposition as "Socrates is a man implies Socrates is a mortal," or

"Socrates has a wife implies Socrates has a father," an assertion con-

cerning Socrates or not ? It is quite certain that, if we replace Socrates

by a variable, we obtain a propositional function; in fact, the truth

of this function for all values of the variable is what is asserted in the

corresponding formal implication, which does not, as might be thought

at first sight, assert a relation between two propositional functions.

Now it was our intention, if possible, to explain propositional functions

by means of assertions ; hence, if our intention can be carried out, the

* See § 96.
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above propositions must be assertions concerning Socrates. There is,

however, a very great difficulty in so regarding them. An assertion was
to be obtained from a proposition by simply omitting one of the terms
occurring in the proposition. But when we omit Socrates, we obtain
"... is a man implies ... is a mortal." In this formula it is essential

that, in restoring the proposition, the same term should be substituted

in the two places where dots indicate the necessity of a term. It does

not matter what term we choose, but it must be identical in both places.

Of this requisite, however, no trace whatever appears in the would-be
assertion, and no trace can appear, since all mention of the term to be

inserted is necessarily omitted. AVhen an x is inserted to stand for

the variable, the identity of the term to be inserted is indicated by the

repetition of the letter x ; but in the assertional form no such method is

available. And yet, at first sight, it seems very hard to deny that the

proposition in question tells us a fact about Socrates, and that the same

fact is true about Plato or a plum-pudding or the number 2. It is

certainly undeniable that " Plato is a man implies Plato is a mortal

"

is, in some sense or other, the same function of Plato as our previous

proposition is of Socrates. The natural interpretation of this statement

\\jould be that the one proposition has to Plato the same relation as the

other has to Socrates. But this requires that we should regard the

propositional function in question as definable by means of its relation

to the variable. Such a view, however, requires a propositional function

more complicated than the one we are considering. If we represent'

" a? is a man implies a? is a mortal " by <pj;, the view in question maintains

that (f)X is the term having to x the relation R, where R is some definite

relation. The formal statement of this view is as follows : For all values

of X and y, " z/ is identical with cpx " is equivalent to " ?/ has the relation

R to a?." It is evident that this will not do as an explanation, since it

has far greater complexity than what it was to explain. It would seem

to follow that propositions may have a certain constancy of form, ex-

pressed in the fact that they are instances of a given propositional

function, without its being possible to analyze the propositions into a

constant and a vai'iable factor. Such a view is curious and difficult:

constancy of form, in all other cases, is reducible to constancy of rela-

tions, but the constancy involved here is presupposed in the notion

of constancy of relation, and cannot therefore be explained in the

usual way.

The same conclusion, I think, will result from the case of two

variables. The simplest instance of this case is a-Ry, where i? is a

constant relation, while x and 3/ are independently variable: It seems

evident that this is a propositional function of two independent variables

:

there is no difficulty in the notion of the class of all propositions of the

form ivRt/. This class is involved—or at least all those members of

the class that are true are involved—in the notion of the classes of
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referents and relata with respect to R, and these classes are unhesita-

tingly admitted in such words as parents and children, masters and
servants, husbands and wives, and innumerable other instances from

daily life, as also in logical notions such as premisses and conclusions,

causes and effects, and so on. All such notions depend upon the class

of propositions typified by JcRy, where R is constant while x and y are

variable. Yet it is very difficult to regard xRy as analyzable into the

assertion R concerning x and y, for the very sufficient reason that this

view destroys the sense of the relation, i.e. its direction from x to y,
leaving us with some assertion which is symmetrical with respect to

X and y, such as "the relation R holds between x and «/." Given a

relation and its terms, in fact, two distinct propositions are possible.

Thus if we take R itself to be an assertion, it becomes an ambiguous

assertion : in supplying the terms, if we are to avoid ambiguity, we
must decide which is referent and which relatum. We may quite

legitimately regard . . .Ry as an assertion, as was explained before ; but

here y has become constant. We may then go on to vary y, considering

the class of assertions ...Ry for different values of y ; but this process

does not seem to be identical with that which is indicated by the

independent variability of x and y in the prepositional function xRy.

Moreover, the suggested process requires the variation of an element

in an assertion, namely of y in ...Ry, and this is in itself a new and

difficult notion.

A curious point arises, in this connection, from the consideration,

often essential in actual Mathematics, of a relation of a term to itself

Consider the propositional function xRx, where ^ is a constant relation.

Such functions are required in considering, e.g., the class of suicides or

of self-made men ; or again, in considering the values of the variable

for which it is equal to a cei"tain function of itself, which may often be

necessary in ordinary Mathematics. It seems exceedingly evident, in

this case, that the proposition contains an element which is lost when
it is analyzed into a term x and an assertion R. Thus here again, the

propositional function must be admitted as fundamental.

83. A difficult point arises as to the variation of the concept in a

proposition. Consider, for example, all propositions of the type aRb,

where a and b are fixed terms, and i? is a variable relation. There

seems no reason to doubt that the class-concept "relation between a

and h " is legitimate, and that there is a corresponding class ; but this

requires the admission of such propositional functions as aRb, which,

moreover, are frequently required in actual Mathematics, as, for example,

in counting the number of many-one relations whose referents and relata

are given classes. But if our variable is to have, as we normally

require, an unrestricted field, it is necessary to substitute the pro-

positional function " i? is a relation implies aRb.'''' In this proposition

the implication involved is material, not formal. If the implication were
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formal, the proposition would not be a function of R, but would be
equivalent to the (necessarily false) proposition : "All relations hold

between a and 6.'" Generally we have some such proposition as " aRb
implies

cf) (R) provided R is a, relation," and we wish to turn this into a
formal implication. If 4>{R) is a proposition for all values of R, our

object is effected by substituting "If 'i? is a relation' implies ' aRb,''

then cj) (R).'''' Here R can take all values*, and the if and then is a formal

implication, while the implies is a material implication. If (/> (i?) is not
a propositional function, but is a proposition only when R satisfies ^{R),
where i|r {R) is a propositional function implied by " i? is a relation " for

all values of R, then our formal implication can be put in the form " If

'^ is a relation' implies aRb, then, for all values of R, -^{R) implies

^ (i?),'" where both the subordinate implications are material. As regards

the material implication "
' ii is a relation ' implies «J?6," this is always

a proposition, whereas aRb is only a proposition when i? is a relation.

The new propositional function will only be true when iZ is a relation

which does hold between a and b : when R is not a relation, the ante-

cedent is false and the consequent is not a proposition, so that the

implication is false ; when ^ is a relation which does not hold between

a and b, the antecedent is true and the consequent false, so that again

the implication is false ; only when both are true is the implication true.

Thus in defining the class of relations holding between a and b, the

formally correct course is to define them as the values satisfying ".ff

is a relation implies aRb "—an implication which, though it contains a

variable, is not formal, but material, being satisfied by some only of the

possible values of R. The variable R in it is, in Peano's language, real

and not apparent.

The general principle involved is : If <l>x is only a proposition for

some values of x, then "
' ^a? implies (fjx

' implies (^x " is a proposition

for all values of x, and is true when and only when ^x is true. (The

implications involved are both material.) In some cases, "^a? implies ^a?"

will be equivalent to some simpler propositional function -^x (such as "iZ is

a relation " in the above instance), which may then be substituted for itf

.

Such a propositional function as "i? is a relation implies aRb"
appears even less capable than previous instances of analysis into R and

an assertion about R, since we should have to assign a meaning to " a. . .b,"

where the blank space may be filled by anything, not necessarily by a

relation. There is here, however, a suggestion of an entity which has

not yet been considered, namely the couple with sense. It may be

doubted whether there is any such entity, and yet such phrases as

* It is necessary to assign some meaning (other than a proposition) to aSb when

R is not a relation,

t A propositional function, though for every value of the variahle it is true or

false, is not itself true or false, heing what is denoted hy "any proposition of the

type in question," which is not itself a proposition.
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"R is a relation holding from a to S" seem to show that its rejection

would lead to paradoxes. This point, however, belongs to the theory

of relations, and will be resumed in Chapter ix (§ 98).

From what has been said, it appears that prepositional functions

must be accepted as ultimate data. It follows that formal implication

and the inclusion of classes cannot be generally explained by means of a

relation between assertions, although, where a prepositional function

asserts a fixed relation to a fixed term, the analysis into subject and

assertion is legitimate and not unimportant.

84. It only remains to say a few words concerning the derivation

of classes from prepositional functions. When we consider the a^'s such

that <f)X, where ^a? is a prepositional function, we are introducing a

notion of which, in the calculus of propositions, only a very shadowy use

is made—I mean the notion of truth. We are considering, among
all the propositions of the type <^x, those that are true: the corre-

sponding values of x give the class defined by the function <^x. It must

be held, I think, that every prepositional function which is not null

defines a class, which is denoted by "a^'s such that ^x."" There is thus

always a concept of the class, and the class-concept corresponding will

be the singular, " x such that <^.r." But it may be doubted—indeed the

contradiction with which I ended the preceding chapter gives reason for

doubting—whether there is always a defining predicate of such classes.

Apart from the contradiction in question, this point might appear to be

merely verbal: " being an x such that c^a?,'" it might be said, may always

be taken to be a predicate. But in view of our contradiction, all

remarks on this subject must be viewed with caution. This subject,

however, will be resumed in Chapter x.

85. It is to be observed that, according to the theory of pro-

positional functions here advocated, the ^ in ^x is not a separate and

distinguishable entity : it lives in the propositions of the form <^x, and

cannot survive analysis. I am highly doubtful whether such a view does

not lead to a contradiction, but it appears to be forced upon us, and it

has the merit of enabling us to avoid a contradiction arising from the

opposite view. If ^ were a distinguishable entity, there would be a

proposition asserting <^ of itself, which we may denote by (<^) ; there

would also be a proposition not-</) (<^), denying <^ (0). In this proposi-

tion we may regard ^ as variable; w6 thus obtain a prepositional

function. The question arises: Can the assertion in this prepositional

function be asserted of itself.? The assertion is nen-assertibility of self,

hence if it can be asserted of itself, it cannot, and if it cannot, it can.

This contradiction is avoided by th'e recognition that the functional

part of a prepositional function is not an independent entity. As the

contradiction in question is closely analogous to the ether, concerning

predicates net predicable of themselves, we may hope that a similar

solution will apply there also.



CHAPTER YIII.

THE VARIABLE.

86. The discussions of the preceding chapter eUcited the funda-

mental nature of the variable ; no apparatus of assertions enables us to

dispense with the consideration of the varying of one or more elements

in a proposition while the other elements remain unchanged. The
variable is perhaps the most distinctively mathematical of all notions

;

it is certainly also one of the most difficult to understand. The attempt,

if not the deed, belongs to the present chapter.

The theory as to the nature of the variable, which results from our

previous discussions, is in outline the following. When a given term

occurs as terra in a proposition, that term may be replaced by any other

while the remaining terms are unchanged. The class of propositions

so obtained have what may be called constancy of form, and this con-

stancy of form must be taken as a primitive idea. The notion of a class

of propositions of constant form is more fundamental than the general

notion of class, for the latter can be defined in terms of the former,

but not the former in terms of the latter. Taking any term, a certain

member of any class of propositions of constant form will contain that

term. Thus x, the variable, is what is denoted by any term, and </)a^,

the propositional function, is what is denoted by the proposition of the

form ^ in which x occurs. We may say that x is the x is any (px, where

(j}X denotes the class of propositions resulting from different values of x.

Thus in addition to propositional functions, the notions of a7iy and of

denoting are presupposed in the notion of the variable. This theory,

which, I admit, is full of difficulties, is the least objectionable that I

have been able to imagine. I shall now set it forth more in detail.

87. Let us observe, to begin with, that the explicit mention of

any, some, etc., need not occur in Mathematics : formal implication will

express all that is required. Let us recur to an instance already dis-

cussed in connection with denoting, where a is a class and b a class

of classes. We have
" Any a belongs to any b " is equivalent to " 'a; is an a' implies that

' M is a 6' implies 'x is aw'";
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" Any a belongs to a b"" is equivalent to " 'a? is an a' implies 'there

is a h, say u, such that ir is a m' "*;

"Any a belongs to some V is equivalent to "there is a i, say u, such

that ' ^ is an a" implies 'a? is a m' ";

and so on for the remaining relations considered in Chapter v. The
question arises : How far do these equivalences constitute definitions of

any, a, some, and how far are these notions involved in the symbolism

itself?

The variable is, from the formal standpoint, the characteristic notion

of Mathematics. Moreover it is the method of stating general theorems,

which always mean something different from the intensional propositions

to which such logicians as Mr Bradley endeavour to reduce them. That
the meaning of an CLSsertion about all men or any man is different from

the meaning of an equivalent assertion about the concept man, appears

to me, I must confess, to be a self-evident truth—-as evident as the fact

that propositions about John are not about the nam£ John. This point,

therefore, I shall not argue further. That the variable characterizes

Mathematics will be generally admitted, though it is not generally

perceived to be present in elementary Arithmetic. Elementary Arith-

metic, as taught to children, is characterized by the fact that the numbers

occurring in it are constants ; the answer to any schoolboy's sum is

obtainable without propositions concerning any number. But the fact

that this is the case can only be proved by the help of propositions

about any number, and thus we are led from schoolboy's Arithmetic to

the Arithmetic which uses letters for numbers and proves general

theorems. How very different this subject is from childhood's enemy may
be seen at once in such works as those of Dedekindf and StolzJ. Now
the difference consists simply in this, that our numbers have now become

variables instead of being constants. We now prove theorems concern-

ing n, not concerning 3 or 4< or any other particular number. Thus it is

absolutely essential to any theory of Mathematics to understand the

nature of the variable.

Originally, no doubt, the variable was conceived dynamically, as

something which changed with the lapse of time, or, as is said, as some-

thing which successively assumed all values of a certain class. This

view cannot be too soon dismissed. If a theorem is proved concerning

n, it must not be supposed that w is a kind of arithmetical Proteus,

which is 1 on Sundays and 2 on Mondays, and so on. Nor must it be

supposed that n simultaneously assumes all its values. If n stands for

any integer, we cannot say that n is 1, nor yet that it is 2, nor yet that

* Here "there is a c," where c is any class, is defined as equivalent to "If p
implies p, and ' x m a, c' implies p for all values of or, then p is true."

t Was sind und was sollen die Zahlen ? Brunswick, 1893.

X Allgemeine Arithmetik, Leipzig, 1886.
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it is any other particular number. In fact, n just denotes any number,
and this is something quite distinct from each and all of the numbers.
It is not true that 1 is any number, though it is true that whatever
holds of any number holds of 1. The variable, in short, requires the
indefinable notion of any which was explained in Chapter v.

88. We may distinguish what may be called the tme or formal
variable from the restricted variable. Any term is a concept denoting
the true variable ; if u be a class not containing all terms, any u denotes

a restricted variable. The terms included in the object denoted by the

defining concept of a variable are called the values of the variable : thus

every value of a variable is a constant. There is a certain difficulty

about such propositions as " any number is a number." Interpreted by
formal implication, they offer no difficulty, for they assert merely that

the propositional function " x is a number implies x is a number "' holds

for all values of x. But if "any number" be taken to be a definite

object, it is plain that it is not identical with 1 or 2 or 3 or any number
that may be mentioned. Yet these are all the numbers there are, so

that "any number" cannot be a number at all. The fact is that the

concept "any number" does denote one number, but not a particular

one. This is just the distinctive point about any, that it denotes a term
of a class, but in an impartial distributive manner, with no preference

for one term over another. Thus although .r is a number, and no one
number is x, yet there is here no contradiction, so soon as it is recognized

that X is not one definite term.

The notion of the restricted variable can be avoided, except in regard

to propositional functions, by the introduction of a suitable hypothesis,

namely the hypothesis expressing the restriction itself. But in respect

of propositional functions this is not possible. The x in <^x, where j)X

is a propositional function, is an unrestricted variable ; but the <^x itself

is restricted to the class which we may call 0. (It is to be remembered
that the class is here fundamental, for we found it impossible, without a

vicious circle, to discover any common characteristic by which the class

could be defined, since the statement of any common characteristic is

itself a propositional function.) By making our .r always an unrestricted

variable, we can speak of the variable, which is conceptually identical in

Logic, Arithmetic, Geometry, and all other formal subjects. The terms

dealt with are always all terms ; only the complex concepts that occur

distinguish the various branches of Mathematics.

89. We may now return to the apparent definability of any, some,

and a, in terms of formal implication. Let a and b be class-concepts,

and consider the proposition " any a is a 6." This is to be interpreted

as meaning " a? is an a implies a; is a J." It is plain that, to begin with,

the two propositions do not mean the same thing: for any a is a concept

denoting only a's, whereas in the formal implication x need not be an a.

But we might, in Mathematics,' dispense altogether with " any a is a 6,"
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and content ourselves with the formal implication : this is, in fact,

symbolically the best course. The question to be examined, therefore,

is : How far, if at all, do any and some and a enter into the formal

implication ? (The fact that the indefinite article appears in " x is

an a " and " a? is a 5 " is irrelevant, for these are merely taken as typical

prepositional functions.) We have, to begin with, a class of true

propositions, each asserting of some constant term that if it is an a it is

a b. We then consider the restricted variable, " any proposition of this

class." We assert the truth of any term included among the values of

this restricted variable. But in order to obtain the suggested formula,

it is necessary to transfer the variability from the proposition as a whole

to its variable term. In this way we obtain " a? is an a implies x is 6."

But the genesis remains essential, for we are not here expressing a

relation of two propositional functions " x is an a " and " a? is a 5." If

this were expressed, we should not require the same x both times. Only

one propositional function is involved, namely the whole formula. Each
proposition of the class expresses a relation of one term of the pro-

positional function " a? is an a " to one of " a? is a 6 " ; and we may say,

if we choose, that the whole formula expresses a relation of any term of

"x is an a" to som£ term of "a;' is a 6." We do not so much have

an implication containing a variable as a variable implication. Or

again, we may say that the first x is any term, but the second is some

term, namely the first x. We have a class of implications not containing

variables, and we consider any member of this class. If any member
is true, the fact is indicated by introducing a typical implication con-

taining a variable. This typical implication is what is called a formal

implication : it is any member of a class of material implications. Thus

it would seem that any is presupposed in mathematical formalism,' but

that some and a may be legitimately replaced by their equivalents in

terms of formal implications.

90. Although some may be replaced by its equivalent in terms of

any, it is plain that this does not give the meaning of some. There is,

in fact, a kind of duality of any and some : given a certain propositional

function, if all terms belonging to the propositional function are asserted,

we have any, while if one at least is asserted (which gives what is called

an existence-theorem), we get some. The proposition ^j; asserted with-

out comment, as in " a' is a man implies x is a mortal," is to be taken

to mean that <^x is true for all values of x (or for any value), but it

might equally well have been taken to mean that <^x is true for some

value of X. In this way we might construct a calculus with two kinds

of variable, the conjunctive and the disjunctive, in which the latter

would occur wherever an existence-theorem was to be stated. But this

method does not appear to possess any practical advantages.

91. It is to be observed that what is fundamental is not particular

propositional functions, but the class-concept propositional function. A
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prepositional function is the class of all propositions which arise from
the variation of a single term, but this is not to be considered as a
definition, for reasons explained in the preceding chapter.

92. From propositional functions all other classes can be derived

by definition, with the help of the notion of such that. Given a pro-

positional function <^x, the terms such that, when x is identified with
any one of them, <l>x is true, are the class defined by <^x. This is the

class as many, the class in extension. It is not to be assumed that every

class so obtained has a defining predicate : this subject will be discussed

afresh in Chapter x. But it must be assumed, I think, that a class in

extension is defined by any propositional function, and in particular

that all terms form a class, since many propositional functions {e.g.

aU formal implications) are true of all terms. Here, as with formal

implications, it is necessary that the whole propositional function whose
truth defines the class should be kept intact, and not, even where this

is possible for every value of x, divided into separate propositional

functions. For example, if a and b be two classes, defined by ^x and i^x

respectively, their common part is defined by the product (^x . y^x, where
the product has to be made for every value of x, and then x varied

afterwards. If this is not done, we do not necessarily have the same
X in ^x and yjrx. Thus we do not multiply propositional functions, but
propositions : the new propositional function is the class of products

of corresponding propositions belonging to the previous functions, and
is by no means the product of (j)x and yjrx. It is only in virtue of

a definition that the logical product of the classes defined by <j)X and -yp-x

is the class defined by (j>x . i\rx. And wherever a proposition containing

an apparent variable is asserted, what fs asserted is the truth, for all

values of the variable or variables, of the propositional function corre-

sponding to the whole proposition, and is never a relation of propositional

functions.

93. It appears from the above discussion that the variable is a

very complicated logical entity, by no means easy to analyze correctly.

The following appears to be as nearly correct as any analysis I can make.

Given any proposition (not a propositional function), let a be one of

its terms, and let us call the proposition <^ (a). Then in virtue of the

primitive idea of a propositional function, if x be any term, we can

consider the proposition
(f>

(x), which arises from the substitution of x
in place of a. We thus arrive at the class of all propositions ^ (^').

If all are true, (x) is asserted simply :
<f)

(x) may then be called a

formal truth. In a formal implication, cf) (x),for every value of x, states

an implication, and the assertion of ^{pc) is the assertion of a class of

implications, not of a single implication. If ^ (x) is sometimes true,

the values of x which make it true form a class, which is the class defined

by (^ {x') : the class is said to exist in this case. If (x) is false for all

values of x, the class defined by (p(x) is said not to exist, and as a
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matter of fact, as we saw in Chapter vi, there is no such class, if classes

are taken in extension. Thus x is, in some sense, the object denoted by

any term; yet this can hardly be strictly maintained, for diiFerent

variables may occur in a proposition, yet the object denoted by any

term, one would suppose, is unique. This, however, elicits a new point

in the theory of denoting, namely that any term does not denote,

properly speaking, an assemblage of terms, but denotes one term, only

not one particular definite term. Thus any term may denote different

terms in diflPerent places. We may say : any term has some relation to

any term ; and this is quite a different proposition from : any term has

some relation to itself. Thus variables have a kind of individuality.

This arises, as I have tried to show, from propositional functions.

When a propositional function has two variables, it must be regarded

as obtained by successive steps. If the propositional function <^ {x, y)
is to be asserted for all values of x and y, we must consider the assertion,

for all values of y, of the propositional function <i) (a, y\ where a is

a constant. This does not involve y, and may be represented by ^(a).

We then vary a, and assert -v/r {oc) for all values of x. The process is

analogous to double integration ; and it is necessary to prove formally

that the order in which the variations are made makes no difference

to the result. The individuality of variables appears to be thus ex-

plained. A variable is not any term simply, but any term as entering

into a propositional function. We may say, if ^x be a propositional

function, that x is the term in any proposition of the class of proposi-

tions whose type is ^x. It thus appears that, as regards propositional

functions, the notions of class, of denoting, and of any, are fundamental,

being presupposed in the symbolism employed. With this conclusion,

the analysis of formal implication, which has been one of the principal

problems of Part I, is carried as far as I am able to carry it. May
some reader succeed in rendering it more complete, and in answering the

many questions which I have had to leave unanswered.

/



CHAPTER IX.

RELATIONS.

94. Next after subject-predicate propositions come two types of

propositions which appear equally simple. These are the propositions

in which a relation is asserted between two terms, and those in which

two terms are said to be two. The latter class of propositions will be

considered hereafter; the former must be considered at once. It has

often been held that every proposition can be reduced to one of the

subject-predicate type, but this view we shall, throughout the present

work, find abundant reason for rejecting. It might be held, however,

that all propositions not of the subject-predicate type, and not asserting

numbers, could be reduced to propositions containing two terms and

a relation. This opinion would be more difficult to refute, but this too,

we shall find, has no good grounds in its favour*. We may therefore

allow that there are relations having more than two terms ; but as these

are more complex, it will be well to consider first such as have two

terms only.

A relation between two terms is a concept which occurs in a

proposition in which there are two terms not occurring as concepts f,
and in which the interchange of the two terms gives a different pro-

position. This last mark is required to distinguish a relational

proposition from one of the type " a and b are two," which is identical

with " b and a are two." A relational proposition may be symbolized

by aRb, where R is the relation and a and b are the terms ; and aRb
will then always, provided a and b are not identical, denote a different

proposition from bRa. That is to say, it is characteristic of a relation

of two terms that it proceeds, so to speak,^-om one to the other. This

is what may be called the sense of the relation, and is, as we shall find,

the source of order and series. It must be held as an axiom that aRb
implies and is implied by a relational proposition hR'a, in which the

* See inf., Part IV, Chap, xxv, § 200.

t This description, as we saw above (§ 48), excludes the pseudo-relation of subject

to predicate.
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relation R' proceeds from i to a, and may or may not be the same

relation as R. But even when aRh implies and is implied by hRa,

it must be strictly maintained that these are different propositions.

We may distinguish the term from which the relation proceeds as the

referent, and the term to which it proceeds as the relatum. The sense

of a relation is a fundamental notion, which is not capable of definition.

The relation which holds between h and a whenever R holds between

a and h will be called the converse of R, and will be denoted (following

Schroder) by R. The relation oi R to R is the relation of oppositeness,

or difference of sense ; and this must not be defined (as would seem at

first sight legitimate) by the above mutual implication in any single

case, but only by the fact of its holding for all cases in which the given

relation occurs. The grounds for this view are derived from certain

propositions in which terms are related to themselves not-symmetrically,

i.e. by a relation whose converse is not identical with itself. These

propositions must now be examined.

95. There is a certain temptation to affirm that no term can he

related to itself ; and there is a still stronger temptation to affirm that,

if a term can be related to itself, the relation must be symmetrical,

i.e. identical with its converse. But both these temptations must be

resisted. In the first place, if no term were related to itself, we should

never be able to assert self-identity, since this is plainly a relation.

But since there is such a notion as identity, and since it seems undeniable

that every term is identical with itself, we must allow that a term may
be related to itself. Identity, however, is still a symmetrical relation,

and may be admitted without any great qualms. The matter becomes

far worse when we have to admit not-symmetrical relations of terms

to themselves. Nevertheless the following propositions seem undeniable

;

Being is, or has being ; 1 is one, or has unity ; concept is conceptual

:

term is a term ; class-concept is a class-concept. All these are of one

of the three equivalent types which we distinguished at the beginning of

Chapter v, which may be called respectively subject-predicate proposi-

tions, propositions asserting the relation of predication, and propositions

asserting membership of a class. What we have to consider is, then,

the fact that a predicate may be predicable of itself. It is necessary, for

our present purpose, to take our propositions in the second form (Socrates

has humanity), since the subject-predicate form is not in the above sense

relational. -We may take, as the type of such propositions, " unity has

unity." Now it is certainly undeniable that the relation of predication

is asymmetrical, since subjects cannot in general be predicated of their

predicates. Thus " unity has unity " asserts one relation of unity to

itself, and implies another, namely the converse relation : unity has

to itself both the relation of subject to predicate, and the relation of

predicate to subject. Now if the referent and the relatum are identical,

it is plain that the relatum has to the referent the same relation as the
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referent has to the relatum. Hence if the converse of a relation in

a particular case were defined by mutual implication in that particular

case, it would appear that, in the present case, our relation has two
converses, since two different relations of relatum to referent are implied

by " unity has unity." We must -therefore define the converse of a

relation by the fact that aRb implies and is implied by bRa whatever

a and b may be, and whether or not the relation R holds between them.

That is to say, a and b are here essentially variables, and if we give

them any constant value, we may find that aRb implies and is implied

by bR'a, where R' is some relation other than R.

Thus three points must be noted with regard to relations of two
terms : (1) they all have sense, so that, provided a and b are not

identical, we can distinguish aRb from bRa; (2) they all have a

converse, i.e. a relation R such that aRb implies and is implied by

bRa, whatever a and b may be ; (3) some relations hold between a

term and itself, and such relations are not necessarily symmetrical,

i.e. there may be two different relations, which are each other's con-

verses, and which both hold between a term and itself.

96. For the general theory of relations, especially in its mathe-
matical developments, certain axioms relating classes and relations are

of great importance. It is to be held that to have a given relation to a

given term is a predicate, so that all terms having this relation to this

term form a claiss. It is to be held further that to have a given relation

at all is a predicate, so that all referents with respect to a given relation

form a class. It follows, by considering the converse relation, that all

relata also form a class. These two classes I shall call respectively the

domain and the converse domain of the relation ; the logical sum of the

two I shall call \\\ejield of the relation.

The axiom that all referents with respect to a given relation form a

class seems, however, to require some limitation, and that on account of

the contradiction mentioned at the end of Chapter vi. This contra-

diction may be stated as follows. We saw that some predicates can be

predicated of themselves. Consider now those of which this is not the

case. These are the referents (and also the relata) in what seems like

a complex relation, namely the combination of non-predicability with

identity. But there is no predicate which attaches to all of them and
to no other terms. For this predicate will either be predicable or not

predicable of itself. If it is predicable of itself, it is one of those

referents by relation to which it was defined, and therefore, in virtue

of their definition, it is not predicable of itself. Conversely, if it is not

predicable of itself, then again it is one of the said referents, of all of

which (by hypothesis) it is predicable, and therefore again it is predicable

of itself. This is a contradiction, which shows that all the referents

considered have no exclusive common predicate, and therefore, if defining

predicates are essential to classes, do not form a class.

R. 7



98 T'he Indejinahles of Mathematics [chap, ix

The matter may be put otherwise. In defining the would-be class of

predicates, all those not predicable of themselves have been used up.

The common predicate of all these predicates cannot be one of them,

since for each of them there is at least one predicate (namely itself) of

which it is not predicable. But again, the supposed common predicate

cannot be any other predicate, for if it were, it would be predicable of

itself, i.e. it would be a member of the supposed class of predicates, since

these were defined as those of which it is predicable. Thus no predicate

is left over which could attach to all the predicates considered.

It follows from the above that not every definable collection of

terms forms a class defined by a common predicate. This fact must be

borne in mind, and we must endeavour to discover what properties a

collection must have in order to form such a class. The exact point

established by the above contradiction may be stated as follows : A pro-

position apparently containing only one variable may not be equivalent

to any proposition asserting that the variable in question has a certain

predicate. It remains an open question whether every class must have

a defining predicate.

That all terms having a given relation to a given term form a class

defined by an exclusive common predicate results from the doctrine of

Chapter vii, that the proposition aRb can be analyzed into the subject

a and the assertion Rb. To be a term of which Rb can be asserted

appears to be plainly a predicate. But it does not follow, I think,

that to be a term of which, for some value of y, Ry can be asserted, is

a predicate. The doctrine of propositional functions requires, however,

that all terms having the latter property should form a class. This

class I shall call the domain of the relation R as well as the class of

referents. The domain of the converse relation will be also called the

converse domain, as well as the class of relata. The two domains

together will be called the Jield of the relation—a notion chiefly im-

portant as regards series. Thus if paternity be the relation, fathers form

its domain, children its converse domain, and fathers and children

together its field.

It may be doubted whether a proposition aRb can be regarded as

asserting aR of b, or whether only Ra can be asserted of b. In other

words, is a relational proposition only an assertion concerning the

referent, or also an assertion concerning the relatum.'' If we take the

latter view, we shall have, connected with (say) " a is greater than J,"

four assertions, namely " is greater than 6," " a is greater than," " is less

than a" and "6 is less than." I am inclined myself to adopt this view,

but I know of no argument on either side.

97. We can form the logical sum and product of two relations or

of a class of relations exactly as in the case of classes, except that here

we have to deal with double variability. In addition to these ways of

combination, we have also the relative product, which is in general non-
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commutative, and therefore requires that the number of factors should

be finite. If R, S be two relations, to say that their relative product

RS holds between two terms a;, z is to say that there is a term «/ to

which X has the relation R, and which itself has the relation S to z. Thus
brother-in-law is the relative product of wife and brother or of sister

and husband : father-in-law is the relative product of wife and father,

whereas the relative product of father and wife is mother or step-mother.

98. There is a temptation to regard a relation as definable in

extension as a class of couples. This has the formal advantage that it

avoids the necessity for the primitive proposition asserting that every

couple has a relation holding between no other pair of terms. But it is

necessary to give sense to the couple, to distinguish the referent from the

relatum : thus a couple becomes essentially distinct from a class of two

terms, and must itself be introduced as a primitive idea. It would seem,

viewing the matter philosophically, that sense can only be derived from

some relational proposition, and that the assertion that a is referent and

b relatum already involves a purely relational proposition in which a and

b are terms, though the relation asserted is only the general one of

referent to relatum. There are, in fact, concepts such as greater, which

occur otherwise than as terms in propositions having two terms (§§ 48, 54)

;

and no doctrine of couples can evade such propositions. It seems there-

fore more correct to take an intensional view of relations, and to identify

them rather with class-concepts than with classes. This procedure is

formally more convenient, and seems also nearer to the logical facts.

Throughout Mathematics there is the same rather curious relation of

intensional and extensional points of view : the symbols other than

variable terms {i.e. the variable class-concepts and relations) stand for

intensions, while the actual objects dealt with are always extensions.

Thus in the calculus of relations, it is classes of couples that are relevant,

but the symbolism deals with them by means of relations. This is

precisely similar to the state of things explained in relation to classes,

and it seems unnecessary to repeat the explanations at length.

99. Mr Bradley, in Appearance and Reality, Chapter iii, has based

an argument against the reality of relations upon the endless regress

arising from the fact that a relation which relates two terms must

be related to each of them. The endless regress is undeniable, if

relational propositions are taken to be ultimate, but it is very doubtful

whether it forms any logical diflficulty. V\'e have abeady had occasion

(§ 55) to distinguish two kinds of regress, the one proceeding merely to

perpetually new implied propositions, the other in the meaning of a

proposition itself; of these two kinds, we agreed that the former, since

the solution of the problem of infinity, has ceased to be objectionable,

while the latter remains inadmissible. We have to inquire which kind

of regress occurs in the present instance. It may be urged that it is

part of the very meaning of a relational proposition that the relation

7—2
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involved should have to the terms the relation expressed in saying that

it relates them, and that this is what makes the distinction, which we

formerly (§ 54) left unexplained, between a relating relation and a relation

in itself. It may be urged, however, against this view, that the assertion

of a relation between the relation and the terms, though implied, is no

part of the original proposition, and that a relating relation is dis-

tinguished from a relation in itself by the indefinable element of assertion

which distinguishes a proposition from a concept. Against this it

might be retorted that, in the concept " difference of a and 6," difference

relates a and h just as much as in the proposition " a and 6 differ"; but

to this it may be rejoined that we found the difference of a and 6, except

in so far as some specific point of difference may be in question, to be

indistinguishable from bare difference. Thus it seems impossible to

prove that the endless regress involved is of the objectionable kind.

We may distinguish, I think, between "a exceeds h"" and "a is greater

than 6," though it would be absurd to deny that people usually mean

the same thing by these two propositions. On the principle, from which

I can see no escape, that every genuine word must have some meaning,

the IS and than must form part of " a is greater than 5," which thus

contains more than two terms and a relation. The is seems to state

that a has to greater the relation of referent, while the than states

similarly that h has to greater the relation of relatum. But " a exceeds

V may be held to express solely the relation of a to h, without in-

cluding any of the implications of further relations. Hence we shall

have to conclude that a relational proposition aRh does not include

in its meaning any relation of a or 6 to R, and that the endless regress,

though undeniable, is logically quite harmless. With these remarks,

we may leave the further theory of relations to later Parts of the present

work.



CHAPTER X.

THE CONTRADICTION.

100. Before taking leave of fundamental questions, it is necessary

to examine more in detail the singular contradiction, already mentioned,

with regard to predicates not predicable of themselves. Before attempt- (

ing to solve this puzzle, it will be well to make some deductions connected

with it, and to state it in various different forms. I may mention that I

was led to it in the endeavour to reconcile Cantor's proof thanHefeliih
be no greatest cardinal number with the very plausible supposition that

j

the_class|[^][fflTerms_(which we have seen to be essential to all formal

propositions) has necessarily the greatest possible number of members *

Let w be a~class^^coricept which can be asserted of itself, i.e. such that

" w is a re." Instances are class-coTicept, and the negations of ordinary

class-concepts, e.g. not-man. Then (a) if a' be contained in another class w,

since w \s a, w, w \s a, v \ consequently there is a term of v which is

a class-concept that can be asserted of itself. Hence by contraposition,

(/3) if M be a class-concept none of whose members are class-concepts

that can be asserted of themselves, no class-concept contained in u can

be asserted of itself Hence further, (7) if u be any class-concept what-

ever, and u the class-concept of those members of u which are not

predicable of themselves, this class-concept is contained in itself, and

none of its members are predicable of themselves ; hence by (/S) u' is not

predicable of itself. Thus u is not a u, and is therefore not a u ; for

the terms of u that are not terms of u' are all predicable of themselves,

which u is not. Thus (8) if u be any class-concept whatever, there is a

class-concept contained in u which is not a member of u, and is also one

of those class-concepts that are not predicable of themselves. So far, our

deductions seem scarcely open to question. But if we now take the last

of them, and admit the class of those class-concepts that cannot be

asserted of themselves, we find that this class must contain a class-concept

not a member of itself and yet not belonging to the class in question.

We may observe also that, in virtue of what we have proved in (^), the

dass of class-concepts which cannot be asserted of themselves, which we

* See Part V, Chap, xuii, § 344 ff.
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will call w, contains as members of itself all its sub-classes, although it
^

easy to prove that every class has more sub-classes than terms. Aga|

if 7/ be any term of w, and w' be the whole of w except y, then w', be/ng

a sub-class of w, is not a w' but is a w, and therefore is y. Hence each

class-concept which is a term of w has all other terms of w as its

extension. It follows that the concept bicycle is a teaspoon, and teaspoon

is a bicycle. This is plainly absurd, and any number of similar

absurdities can be proved.

101. Let us leave these paradoxical consequences, and attempt the

exact statement of the contradiction itself. We have first the statement

in terms of predicates, which has been given already. If a? be a predicate,

X may or may not be predicable of itself. Let us assume that "not-

predicable of oneself" is a predicate. Then to suppose either that this

predicate is, or that it is not, predicable of itself, is self-contradictory.

The conclusion, in this case, seems obvious :
" not-predicable of oneself"

is not a predicate.

Let us now state the same contradiction in terms of class-concepts.

A class-concept may or may not be a term of its own extension. " Class-

concept ,which is not a term of its own extension" appears to be a class-

concept. But if it is a term of its own extension, it is a class-concept

which is not a term of its own extension, and vice versa. Thus we must

conclude, against appearances, that " class-concept which is not a term of

its own extension" is not a class-concept.

In terms of classes the contradiction appears even more extraordinary.

A class as one may be a term of itself as many. Thus the class of all

classes is a class ; the class of all the terms that are not men is not a man,

and so on. Do all the classes that.have this property form a class ? If

so, is it as one a member of itself as many or not ? If it is, then it is

one of the classes which, as ones, are not members of themselves as many,

1^

and vice versa. Thus we must conclude again that the classes which as

ones are not members of themselves as many do not form a class—or

rather, that they do not form a class as one, for the argument cannot

show that they do not form a class as many.

102. A similar result, which, however, does not lead to a contradic-

tion, may be proved concerning any relation. Let i? be a relation, and
consider the class w of terms which do not have the relation R to them-
selves. Then it is impossible that there should be any term a to which
all of them and no other terras have the relation R. For, if there were

such a term, the propositional function " oo does not have the relation R
to X " would be equivalent to " x has the relation R to «." Substituting

a for X throughout, which is legitimate since the equivalence is formal,

we find a contradiction. When in place of R we put e, the relation of

a term to a class-concept which can be asserted of it, we get the above
contradiction. The reason that a contradiction emerges here is that
we have taken it as an axiom that any propositional function containing
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only one variable is equivalent to asserting membership of a class defined

by the prepositional function. Either this axiom, or the principle that

every class can be taken as one term, is plainly false, and there is no

fundamental objection to dropping either. But having dropped the

former, the question arises : Which propositional functions define classes

which are single terms as well as many, and which do not ? And with

this question our real difficulties begin.

Any method by which we attempt to establish a one-one or many-
one correlation of all terms and all propositional functions must omit at

least one propositional function. Such a method would exist if all

propositional functions could be expressed in the form ...eu, since this

form correlates u with ...eu. But the impossibility of any such correla-

tion is proved as follows. Let (p^ be a propositional function correlated

with X ; then, if the correlation covers all terms, the denial of 4)x {oc) will

be a propositional function, since it is a proposition for all values of x.

But it cannot be included in the correlation ; for if it were correlated

with a, 4>a (x) would be equivalent, for all values of x, to the denial of

^a:(a7) ; but this equivalence is impossible for the value a, since it makes

<jf)a(a) equivalent to its own denial. It follows that there are more

propositional functions than terms—a result which seems plainly impos-

sible, although the proof is as convincing as any in Mathematics. We
shall shortly see how the impossibility is removed by the doctrine of

logical types.

103. The first method which suggests itself is to seek an ambiguity

in the notion of e. But in Chapter vi we distinguished the various

meanings as far as any distinction seemed possible, and we have just

seen that with each meaning the same contradiction emerges. Let us,

however, attempt to state the conti'adiction throughout in terms of

propositional functions. Every propositional function which is not null,

we supposed, defines a class, and every class can certainly be defined by

a propositional function. Thus to say that a class as one is not a

member of itself as many is to say that the class as one does not satisfy

the function by which itself as many is defined. Since all propositional

functions except such as are null define classes, all will be used up, in

considering all classes having the above property, except such as do not

have the above property. If any propositional function were satisfied

by every class having the above property, it would therefore necessarily

be one satisfied also by the class w of all such classes considered as a

single term. Hence the class w does not itself belong to the class w,

and therefore there must be some propositional function satisfied by the

terms of w but not by w itself. Thus the contradiction re-emerges, and

we must suppose, either that there is no such entity as w, or that there

is no propositional function satisfied by its terms and by no others.

It might be thought that a solution could be found by denying the

legitimacy of variable propositional functions. If we denote by k^, for
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the moment, the class of values satisfying
<f),

our prepositional function

is the denial of 4> i^4>)> where <j) is the variable. The doctrine of

Chapter vii, that cj) is not a separable entity, might make such a variable

seem illegitimate ; but this objection can be overcome by substitut-

ing for (/) the class of propositions <f>cc, or the relation of <f)x to x.

Moreover it is impossible to exclude variable propositional functions

altogether. Wherever a variable class or a variable relation occurs,

we have admitted a variable propositional function, which is thus

essential to assertions about every class or about every relation. The
definition of the domain of a relation, for example, and all the general

propositions which constitute the calculus of relations, would be swept

away by the refusal to allow this type of variation. Thus we require

some further characteristic by which to distinguish two kinds of varia-

tion. This characteristic is to be found, I think, in the independent

variability of the function and the argument. In general, ^x is itself

a function of two variables, ({> and x ; of these, either may be given a

constant value, and either may be varied without reference to the other.

But in the type of propositional functions we are considering in this

Chapter, the argument is itself a function of the propositional function

:

instead of <px, we have {f{4>)}i wheref{^) is defined as a function of

<p. Thus when <p is varied, the argument of which
(f>

is asserted is

varied too. Thus " « is an a? " is equivalent to :
" <p can be asserted of

the class of terms satisfying c^," this class of terms being x. If here

<p is varied, the argument is varied at the same time in a manner
dependent upon the variation of (j). For this reason, (j) {/"{(b)}, though
it is, a definite proposition when x is assigned, is not a propositional

function, in the ordinary sense, when x is variable. Propositional

functions of this doubtful type may be called quadratic forms, because

the variable enters into them in a way somewhat analogous to that in

which, in Algebra, a variable appears in an expression of the second

degree.

104. Perhaps the best way to state the suggested solution is to say

that, if a collection of terms can only be defined by a variable pro-

positional function, then, though a class as many may be admitted,

a class as one must be denied. When so stated, it appears that propo-

sitional functions may be varied, provided the. resulting collection is

never itself made into the subject in the original propositional function.

In such cases there is only a class as many, not a class as one. We took
it as axiomatic that the class as one is to be foufid wherever there is

a class as many ; but this axiom need not be universally admitted,

and appears to have been the source of the contradiction. By denying
it, therefore, the whole difficulty will be overcome.

A class as one, we shall say, is an object of the same type as its

terms ; i.e. any propositional function ^ (x) which is significant when one
of the terms is substituted for x is also significant when the class as one
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is substituted. But the class as one does not always exist, and the class

as many is of a different type from the terms of the class, even when the

class has only one term, i.e. there are propositional functions </> (u) in

which u may be the class as many, which are meaningless if, for u, we

substitute one of the terms of the class. And so " x is one among x's
"

is not a proposition at all if the relation involved is that of a term to its

class as many ; and this is the only relation of whose presence a pro-

positional function always tissures us. In this view, a class as many may
be a logical subject, but in propositions of a difFere'.it kind from those in

which its terms are subjects ; of any object other t aan a single term, the

question whether it is one or many will have different answers according

to the proposition in which it occurs. Thus we have " Socrates is one

among men," in which men are plural ; but " men are one among species

of animals," in which men are singular. It is the distinction of logical

types that is the key to the whole mystery*.

105. Other ways of evading the contradiction, which might be

suggested, appear undesirable, on the ground that they destroy too

many quite necessary kinds of propositions. It might be suggested

that identity is introduced in " x is not an a? " in a way which is not

permissible. But it has been already shown that relations of terms

to themselves are unavoidable, and it may be observed that suicides

or self-made men or the heroes of Smiles's Self-Help are all defined

by relations to themselves. And generally, identity enters in a very

similar way into formal implication, so that it is quite impossible to

reject it.

A natural suggestion for escaping from the contradiction would be

to demur to the notion of all terms or of all classes. It might be

urged that no such sum-total is conceivable ; and if all indicates a whole,

our escape from the cgntradiction requires us to admit this. But we

have already abundantly seen that if this view were maintained against

any term, all formal truth would be impossible, and Mathematics, whose

characteristic is the statement of truths concerning amy term, would be

abolished at one stroke. Thus the correc^ statement of formal truths
j

requires the notion of any term or every term, but not the collective

notion of all terms .

'

TTshould be observed, finally, that no pecuhar philosophy is involved

in the above contradiction, which springs directly from common sense,

and can only be solved by abandoning some common-sense assumption.

Only the Hegelian philosophy, which nourishes itself on contradictions,

can remain indifferent, because it finds similar problems everywhere. In

any other doctrine, so direct a challenge demands an answer, on pain

of a confession of impotence. Fortunately, no other similar difficulty,

so far as I know, occurs in any other portion of the Principles of

Mathematics.

* On this subject, see Appendix.
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106. We may now briefly review the conclusions arrived at in

Part I. Pure Mathematics was defined as the class of propositions

asserting formal implications and containing no constants except logical

constants. And logical constants are : Implication, the relation of a

term to a class of which it is a member, the notion of such that, the

notion of relation, and such further notions as are involved in formal

implication, which we found (§ 93) to be the following: propositional

function, class*, denoting, and any or every term. This definition brought

Mathematics into ve -y close relation to Logic, and made it practically

identical with Symbol c Logic. An examination of Symbolic Logic justi-

fied the above enumeration of mathematical indefinables. In Chapter iii

we distinguished implication and formal implication. The former holds

between any two propositions provided the first be false or the second

true. The latter is not a relation, but the assertion, for every value

of the variable or variables, of a propositional function which, for every

value of the variable or variables, asserts an implication. Chapter iv

distinguished what may be called things from predicates and relations

(includirxg the is of predications among relations for this purpose). It

was shown that this distinction is connected with the doctrine of

substance and attributes, but does not lead to the traditional results.

Chapters v and vi developed the theory of predicates. In the former

of these chapters it was shown that certain concepts, derived from

predicates, occur in propositions not about themselves, but about com-

binations of terms, such as are indicated by aZZ, every, any, a, some, and

the. Concepts of this kind, we found, are fundamental in Mathematics,

and enable us to deal with infinite classes by means of propositions of

finite complexity. In Chapter vi we distinguished predicates, class-

concepts, concepts of classes, classes as many, and classes as one. We
agreed that single terms, or such combinations as result from and, are

classes, the latter being classes as many ; and that classes as many
are the objects denoted by concepts of classes, which are the plurals

of class-concepts. But in the present chapter we decided that it is

necessary to distinguish a single term from the class whose only member
it is, and that consequently the null-class may be admitted.

In Chapter vii we resumed the study of the verb. Subject-predicate

propositions, and such as express a fixed relation to a fixed term, could

be analyzed, we found, into a subject and an assertion ; but this analysis

becomes impossible when a given term enters into a proposition in a

more complicated manner than as referent of a relation. Hence it

became necessary to take propositional function as a primitive notion.

A propositional function of one variable is any proposition of a set

defined by the variation of a single term, while the other terms remain

* The notion of class in general, we decided, could be replaced, as an indefinable,

by that of the class of propositions defined by a propositional function.
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constant. But in general it is impossible to define or isolate the

constant element in a propositional function, since what remains, when
a certain term, wherever it occurs, is left out of a proposition, is in

general no discoverable kind of entity. Thus the term in question

must be not simply omitted, but replaced by a variable.

The notion of the variable, we found, is exceedingly complicated.

The X is not simply any term, but any term with a certain individuality;

for if not, any two variables would be indistinguishable. We agreed

that a variable is any terra qua term in a certain propositional function,

and that variables are distinguished by the propositional functions in

which they occur, or, in the case of several variables, by the place they

occupy in a given multiply variable propositional function. A variable,

we said, is the term in any proposition of the set denoted by a given

propositional function.

Chapter ix pointed out that relational propositions are ultimate,

and that they all have sense : i.e. the relation being the concept as such

in a proposition with two terms, there is another proposition containing

the same terms and the same concept as such, as in "A is greater

than 5" and " B is greater than A."" These two propositions, Jjjjwugh

different, contain precisely the same constituents. This is a charkcteristic

of relations, and an instance of the loss resulting from analysis. Rela-

tions, we agreed, are to be taken intensionally, not as classes of couples*.

Finally, in the present chapter, we examined the contradiction re-

sulting from the apparent fact that, if w be the class of all classes which

as single terms are not members of themselves as many, then w as one

can be proved both to be and not to be a member of itself as many.
The solution suggested was that it is necessary to distinguish various

types of objects, namely terms, classes of terms, classes of classes, classes

of couples of terms, and so on ; and that a propositional function (px in

general requires, if it is to have any meaning, that a; should belong to

some one type. Thus xex was held to be meaningless, because e requires

that the relatum should be a class composed of objects which are of the

type of the referent. The class as one, where it exists, is, we said, of the

same type as its constituents ; but a quadratic propositional function in

general appears to define only a class as many, and the contradiction

proves that the class as one, if it ever exists, is certainly sometimes

absent. ^
* On this point, however, see Appendix.
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CHAPTEE XI.

DEFINITION OF CARDINAL NUiMBERS.

107. We have now briefly reviewed the apparatus of general logical

notions with which Mathematics operates. In the present Part, it is to

be shown how this apparatus suffices, without new indefinables or new
postulates, to establish the whole theory of cardinal integers as a special

branch of Logic*. No mathematical subject has made, in recent years,

greater advances than the theory of Arithmetic. The movement in

favour of correctness in deduction, inaugurated by Weierstrass, has been

brilliantly continued by Dedekind, Cantor, Frege, and Peano, and attains

what seems its final goal by means of the logic of relations. As the

modem mathematical theory is but imperfectly known even by most

mathematicians, I shall begin this Part by four chapters setting forth

its outlines in a non-symbolic form. I shall then examine the process

of deduction from a philosophical standpoint, in order to discover, if

possible, whether any unperceived assumptions have covertly intruded

themselves in the course of the argument.

108. It is often held that both number and particular numbers are

indefinable. Now definability is a word which, in Mathematics, has a

precise sense, though one which is relative to some given set of notions
"f.

Given any set of notions, a term is definable by means of these notions

when, and only when, it is the only term having to certain of these

notions a certain relation which itself is one of the said notions. But
philosophically, the word definition has not, as a rule, been employed in

this sense; it has, in fact, been restricted to the analysis of an idea

into its constituents. This usage is inconvenient and, I think, useless

;

moreover it seems to overlook the fact that wholes are not, as a

* Cantor has shown that it is necessary to separate the study of Cardinal and

Ordinal numbers, which are distinct entities, of which the former are simpler, but of

which both are essential to ordinary Mathematics. On Ordinal numbers, cf. Chaps.

XXIX, XXXVIII, infra.

t See Peano, F. 1901, p. 6 S. and Padoa, "Theorie Algebrique des Nombres

Entiers," Congres, Vol. iii, p. 314 ff.
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rule, determinate when their constituents are given, but are themselves

new entities (which may be in some sense simple), defined, in the

mathematical sense, by certain relations to their constituents. I shall,

therefore, in future, ignore the philosophical sense, and speak only of

mathematical definability. I shall, however, restrict this notion more

than is done by Professor Peano and his disciples. They hold that the

various branches of Mathematics have various indefinables, by means of

which the remaining ideas of the said subjects are defined. I hold

—

and it is an important part of my purpose to prove—that all Pure

Mathematics (including Geometry and even rational Dynamics) contains

only one set of indefinables, namely the fundamental logica]_^oncepts

discussed in Part I. When the various logical constants have been

enumerated, it is somewhat arbitrary which of them we regard as

indefinable, though there are apparently some which must be indefinable

in any theory. But my contention is, that the indefinables of Pure

Mathematics are all of this kind, and that the presence of any other

indefinables indicates that our subject belongs to Applied Mathematics.

Moreover, of the three kinds of definition admitted by Peano—the

nominal definition, the definition by postulates, and the definition by
abstraction*—I recognize only the nominal: the others, it would seem,

are only necessitated by Peano's refusal to regard relations as part of the

fundamental apparatus of logic, and by his somewhat undue haste in

regarding as an individual what is really a class. These remarks will be

best explained by considering their application to the definition of

cardinal numbers.

109. It has been common in the past, among those who regarded

numbers as definable, to make an exception as regards the number 1,

and to define the remainder by its means. Thus 2 was 1 + 1, 3 was

2+1, and so on. This method was only applicable to finite numbers,

and made a tiresome difference between 1 and other numbers ; moreover

the meaning of + was commonly not explained. We are able now-a-

days to improve greatly upon this method. In the first place, since

Cantor has shown how to deal with the infinite, it has become both

desirable and possible to deal with the fundamental properties of numbers

in a way which is equally applicable to finite and infinite numbers. In

the second place, the logical calculus has enabled us to give an exact

definition of arithmetical addition ; and in the third place, it has become
as easy to define and 1 as to define any other number. In order to

explain how this is done, 1 shall first set forth the definition of numbers

by abstraction ; 1 shall then point out formal defects in this definition,

and replace it by a nominal definition.

Numbers are, it will be admitted, applicable essentially to classes.

It is true that, where the number is finite, individuals may be enumerated

* Cf. Burali-Forti, " Sur les differentes definitions du nombre reel," Congres, iii,

p. 294 if.
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to make up the given number, and may be counted one by one without

any mention of a class-concept. But all finite collections of individuals

form classes, so that what results is after all the number of a class.

And where the number is infinite, the individuals cannot be enumerated,

but must be defined by intension, i.e. by some common property in

virtue of which they form a class. Thus when any class-concept is

given, there is a certain number of individuals to which this class-concept

is applicable, and the number may therefore be regarded eis a property

of the class. It is this view of numbers which has rendered possible the

whole theory of infinity, since it relieves us of the necessity of enume-

rating the individuals whose number is to be considered. This view

depends fundamentally upon the notion of all, the numerical conjunction

as we agreed to call it (§ 59).' All men, for example, denotes men con-

joined in a certain way ; and it is as thus denoted that they have a

number. Similarly all numbers or all points denotes numbers or points

conjoined in a certain way, and as thus conjoined numbers or points have

a number. Numbers, then, are to be regarded as properties of classes.

The next question is : Under what circumstances do two classes have

the same number.'^ The answer is, that they have the same number
when their terms can be correlated one to one, so that any one term of

either corresponds to one and only one term of the other. This requires

that there should be some one-one relation whose domain is the one

class and whose converse domain is the other class. Thus, for example,

if in a community all the men and all the women are married, and

polygamy and polyandry are forbidden, the number of men must be the

same as the number of women. It might be thought that a one-one

relation could not be defined except by reference to the number 1. But
this is not the case. A relation is one-one when, if x and x' have the

relation in question to y, then x and x' are identical ; while if x has the

relation in question to y and y', then y and y' are identical. Thus it is

possible, without the notion of unity, to define what is meant by a one-

one relation. But in order to provide for the case of two classes which

have no terms, it is necessary to modify slightly the above account of

what is meant by saying that two classes have the same number. For if

there are no terms, the terms cannot be correlated one to one. We
must say: Two classes have. the same number when, and only when, there

is a one-one relation whose domain includes the pne class, and which is

such that the class of correlates of the terms of the one class is identical

with the other class. From this it appears that two classes having no

terms have always the same number of terms ; for if we take any one-

one relation whatever, its domain includes the null-class, and the class

of correlates of the null-class is again the null-class. When two classes

have the same number, they are said to be similar.

Some readers may suppose that a definition of what is meant by

saying that two classes have the same numbfer is wholly unnecessary.
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The way to find out, they may say, is to count both classes. It is such

notions as this which have, until very recently, prevented the exhibition

of Arithmetic as a branch of Pure Logic. For the question immediately

arises : What is meant by counting ? To this question we usually get

only some irrelevant psychological answer, as, that counting consists in

successive acts of attention. In order to count 10, I suppose that ten

acts of attention are required : certainly a most useful definition of the

number 10 ! Counting has, in fact, a good meaning, which is not

psychological. But this meaning is highly complex ; it is only applicable

to classes which can be well-ordered, which are not known to be all

classes ; and it only gives the number of the class when this number is

finite— a rare and exceptional case. We must not, therefore, bring in

counting where the definition of numbers is in question.

The relation of similarity between classes has the three properties of

being reflexive, symmetrical, and transitive ; that is to say, if u, v, w be

classes, u is similar to itself; if u be similar to v, v is similar to u\ and

if u be similar to v, and v to w, then u is similar to w. These properties

all follow easily from the definition. Now these three properties of a

relation are held by Peano and common sense to indicate that when the

relation holds between two terms, those two terms have a certain common
property, and vice versa. This common property we call^their number*.

This is the definition of numbers by abstraction.

110. Now this definition by abstraction, and generally the process

employed in such definitions, suffers from an absolutely fatal formal

defect : it does not show that only one object satisfies the definition!

.

Thus instead of obtaining one common property of similar classes, which

is the number of the classes in question, we obtain a class of such

properties, with no means of deciding how many terms this class contains.

In order to make this point clear, let us examine what is meant, in the

present instance, by a common property. What is meant is, that any

class has to a certain entity, its number, a relation which it has to nothing

else, but which all similar classes (and no other entities) have to the said

number. That is, there is a many-one relation which every class has to

its number and to nothing else. Thus, so far as the definition by

abstraction can show, any set of entities to each of which some class has

a certain many-one relation, and to one and only one of which any given

class has this relation, and which are such that all classes similar to a

given class have this relation to one and the same entity of the set,

appear as the set of numbers, and any entity of this set is the number of

some class. If, then, there are many such sets of entities—and it is easy

* Cf. Peano, F. 1901, § 32, -0, Note.

t On the necessity of this condition, cf. Padoa, loc. cit, p. 324. Padoa appears
not to perceive, however, that all definitions define the single individual of a class

:

when what is defined is a class^ this must be the only term of some class of classes.
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to prove that there are an infinite number of them—every class will

have many numbers, and the definition wholly fails to define the number
of a class. This argument is perfectly general, and shows that definition

by abstraction is never a logically valid process.

111. There are two ways in which we may attempt to remedy this

defect. One of these consists in defining as the number of a class the

whole class of entities, chosen one from each of the above sets of entities,

to which all classes similar to the given class (and no others) have some
many-one relation or other. But this method is practically useless, since

all entities, without exception, belong to every such class, so that every

class will have as its number the class of all entities of every sort and
description. The other remedy is more practicable, and applies to all

the cases in which Peano employs definition by abstraction. This
,

method is, to define as the number of a class the class of all classes

similar to the given class. Membership of this class of classes (considered

as a predicate) is a common property of all the similar classes and of no
others ; moreover every class of the set of similar classes has to the set

a relation which it has to nothing else, and which every class has to its

own set. Thus the conditions are completely fulfilled by this class of

classes, and it has the merit gf being determinate when a class is given,

and of being different for two classes which are not similar. This, then,

is an irreproachable definition of the number of a class in purely logical

terms.

To regard a number as a class of classes must appear, at first sight,

a wholly indefensible paradox. Thus Peano {F. 1901, §32) remarks that
" we cannot identify the number of [a class] a with the class of classes in

question [i.e. the class of classes similar to a], for these objects have

different properties." He does not tell us what these properties are, and
for my part I am unable to discover them. Probably it appeared to him
immediately evident that a number is not a class of classes. But some-

thing may be said to mitigate the appearance of paradox in this view.

In the first place, such a woi-d as couple or trio obviously does denote a

class of classes. Thus what we have to say is, for example, that " two
men" means "logical product of class of men and couple," and "there are

two men" means "there is a class of men which is also a couple." In the

second place, when we remember that a class-concept is not itself a col-

lection, but a property by which a collection is defined, we see that, if we
define the number as the class-concept, not the class, a number is really

defined as a common property of a set of similar classes and of nothing

else. This view removes the appearance of paradox to a great degree.

There is, however, a philosophical difficulty in this view, and generally in

the connection of classes and predicates. It may be that there are many
predicates common to a certain collection of objects and to no others. In

this case, these predicates are all regarded by Symbolic Logic as equivalent,

and any one of them is said to be equal to any other. Thus if the

8—2
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predicate were defined by the collection of objects, we should not obtain,

in general, a single predicate, but a class of predicates; for this class of

predicates we should require a new class-concept, and so on. The only

available class-concept would be " predicability of the given collection of

terms and of no others." But in the present case, where the collection is

defined by a certain relation to one of its terms, there is some danger of

a logical error. Let m be a class; then the number of u, we said, is the

cla^s of classes similar to u. But "similar to m" cannot be the actual

concept which constitutes the number of m; for, if v be similar to u,

"similar to w" defines the same class, although it is a different concept.

Thus we require, as the defining, predicate of the class of similar classes,

some concept which does not have any special relation to one or more of

the constituent classes. In regard to everv particular number that may
be mentioned, whether finite or infinite, such a predicate is, as a matter

of fact, discoverable; but when all we are told about a number is that it

is the number of some class u, it is natural that a special reference to ic

should appear in the definition. This, however, is not the point at issue.

The real point is, that what is defined is the same whether we use the

predicate "similar to w" or "similar to i'," provided u is similar to v.

This shows that it is not the class-concept or defining predicate that is

defined, but the class itself whose terms are the various classes which are

similar to u or to v. It is such classes, therefore, and not predicates such

as "similar to w," that must be taken to constitute numbers.

Thus, to sum up : Mathematically, a number is nothing but a class of

similar classes: this definition allows the deduction of aU the usual

properties of numbers, whether finite or infinite, and is the only one (so

far as I know) which is possible in terms of the fundamental concepts of

general logic. But philosophically we may admit that every collection

of similar classes has some common predicate applicable to no entities

except the classes in question, and if we can find, by inspection, that

there is a certain class of such common predicates, of which one and only

one applies to each collection of similar classes, then we mav, if we see

fit, call this particular class of predicates the class of numbers. For my
part, I do not know whether there is any such class of predicates, and
1 do know that, if there be such a class, it is wholly irrelevant to Ma-
thematics. Wherever Mathematics derives a common property from a

reflexive, symmetrical, and transitive relation, all mathematical purposes

of the supposed common property are completely served when it is

replaced by the class of terms having the given relation to a given term

;

and this is precisely the case presented by cardinal numbers. For the

future, therefore, I shall adhere to the above definition, since it is at

once precise and adequate to aU mathematical uses.



CHAPTER XII.

ADDITION AND MULTIPLICATION.

112. In most mathematical accounts of arithmetical operations we
find the error of endeavouring to give at once a definition which shall be

applicable to rationals, or even to real numbers, without dwelling at

sufficient length upon the theory of integers. For the present, integers

alone will occupy us. The definition of integers, given in the preceding

chapter, obviously does not admit of extension to fractions ; and in fact

the absolute difference between integers and fractions, even between

integers and fractions whose denominator is unity, cannot possibly be too

strongly emphasized. What rational fractions are, and what real numbers
are, I shall endeavour to explain at a later stage

;
positive and negative

numbers also are at present excluded. The integers with which we are

now concerned are not positive, but signless. And so the addition and

multiplication to be defined in this chapter are only applicable to integers

;

but they have the merit of being equally applicable to finite and infinite

integers. Indeed, for the present, I shall rigidly exclude all propositions

which involve either the finitude or the infinity of the numbers considered.

113. There is only one fundamental kind of addition, namely the

logical kind. All other kinds can be defined in terms of this and logical

multiplication. In the present chapter the addition of integers is to be

defined by its means. Logical addition, as was explained in Part I,

is the same as disjunction; if p and q are propositions, their logical

sura is the proposition "jO or 9," and if u and v are classes, their

logical sum is the class "« or »," i.e. the class to which belongs every

term which either belongs to u or belongs to v. The logical sum

of two classes u and v may be defined in terms of the logical product

of two propositions, £is the class of terms belonging to every class

in which both u and v are contained*. This definition is not essen-

tially confined to two classes, but may be extended to a class of

classes, whether finite or infinite. Thus if le be a class of classes, the

logical sum of the classes composing k (called for short the sum of h) is

* F. 1901, § 2, Prop. 1-0.
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the class of terms belonging to every class which contains every class

which is a term of h. It is this notion which underlies arithmetical

addition. . If A; be a class of classes no two of which have any common

terms (called for short an exclusive class of classes), then the arith-

metical sum of the numbers of the various classes of k is the number of

terms in the logical sum of k. This definition is absolutely general, and

applies equally whether k or any of its constituent classes be finite

or infinite. In order to assure ourselves that the resulting number

depends only upon the numbers of the various classes belonging to k, and

not upon the particular class k that happens to be chosen, it is necessary

to prove (as is easily done) that if k' be another exclusive class of classes,

similar to k, and every member of k is similar to its correlate in k', and

vke versa, then the number of terms in the sum of k is the same as the

number in the sum of k'. Thus, for example, suppose k has only two

terms, ?< and », and suppose u and v have no common part. Then the

number of terms in the logical sum of u and v is the sum of the number

of terms in u and in v\ and if u' be similar to u, and v' to », and w', »'

have no common part, then the sum of u and v is similar to the

sum of u and v.

114. With regard to this definition of a sum of numbers, it is to be

observed that it cannot be freed from reference to classes which have the

numbers in question. The number obtained by summation is essentially

the number of the logical sum of a certain class of classes or of some

similar class of similar classes. The necessity of this reference to classes

emerges when one number occurs twice or oftener in the summation. It

is to be observed that the numbers concerned have no order of summation,

so that we have no such proposition as the commutative law : this pro-

position, as introduced in Arithmetic, results only from a defective

symbolism, which causes an order among the symbols which has no

correlative order in what is symbolized. But owing to the absence of

order, if one number occurs twice in a summation, we cannot distinguish

a first and a second occurrence of the said number. If we exclude a

reference to classes which have the said number, there is no sense in the

supposition of its occurring twice : the summation of a class of numbers

can be defined, but in that case, no number can be repeated. In the

above definition of a sum, the numbers concerned are defined as the

numbers of certain classes, and therefore it is not necessary to decide

whether any number is repeated or not. But in order to define, without

reference to particular classes, a sum of numbers of which some are

repeated, it is necessary first to define multiplication.

This point may be made clearer by considering a special case, such as

1-1-1. It is plain that we cannot take the number 1 itself twice over,

for there is one number 1, and there are not two instances of it. And if

the logical addition of 1 to itself were in question, we should find that

1 and 1 is 1, according to the general principle of Symbolic Logic. Nor
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can we define 1 + 1 as the arithmetical sum of a certain class of numbers.
This method can be employed as regards 1 + 2, or any sum in which no
number is repeated; but as regards 1 + 1, the only class of numbers
involved is the class whose only member is 1, and since this class has one
member, not two, we cannot define 1 + 1 by its means. Thus the full

definition of 1 + 1 is as follows : 1 + 1 is the number of a class w which
is the logical sum of two classes u and v which have no common term
and have each only one term. The chief point to be observed is, that
logical addition of classes is the fundamental notion, while the arith-

metical addition of numbers is wholly subsequent.

115. The general definition of multiplication is due to Mr A. N.

Whitehead*. It is as follows. Let ^ be a class of classes, no two of

which have any term in common. Form what is called the multiplicative

class of k, i.e. the class each of whose terms is a class formed by choosing

one and only one term from each of the classes belonging to li. Then
the number of terms in the multiplicative class of k is the product of all

the numbers of the various classes composing It. This definition, like

that of addition given above, has two merits, which make it preferable

to any other hitherto suggested. In the first place, it introduces no
order among the numbers multiplied, so that there is no need of the

commutative law, which, here as in the case of addition, is concerned

rather with the symbols than with what is symbolized. In the second

place, the above definition does not require us to decide, concerning any

of the numbers involved, whether they are finite or infinite. Cantor has

given f definitions of the sum and product of two numbers, which do not

require a decision as to whether these numbers are finite or infinite.

These definitions can be extended to the sum and product of stxiyjinite

number of finite or infinite numbers ; but they do not, as they stand,

allow the definition of the sum or product of an infinite number of

numbers. This grave defect is remedied in the above definitions, which

enable us to pursue Arithmetic, as it ought to be pursued, without

introducing the distinction of finite and infinite until we wish to study

it. Cantor's definitions have also the formal defect of introducing an

order among the numbers summed or multiplied : but this is, in his

case, a mere defect in the symbols chosen, not in the ideas which he

symbolizes. Moreover it is not practically desirable, in the case of the

sum or product of two numbers, to avoid this formal defect, since the

resulting cumbi-ousness becomes intolerable.

116. It is easy to deduce from the above definitions the usual

connection of addition and multiplication, which may be thus stated.

If A; be a class of b mutually exclusive classes, each of which contains

a terms, then the logical sum of A; contains ax-b termsj. It is also

* American Journal of Mathematics, Oct. 1902.

t Math. Annalen, Vol. xlvi, § 3. X See Whitehead, loc. cit.
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easy to obtain the definition of a!', and to prove the associative and dis-

tributive laws, and the formal laws for powers, such as «*«" = «*+". But

it is to be observed that exponentiation is not to be regarded as a new
independent operation, since it is merely an application of multipli-

cation. It is true that exponentiation can be independently defined,

as is done by Cantor*, but there is no advantage in so doing. Moreover

exponentiation unavoidably introduces ordinal notions, since a* is not in

general equal to 6*. For this reason we cannot define the result of an

infinite number of exponentiations. Powers, therefore, are to be regarded

simply as abbreviations for products in which all the numbers multiplied

together are equal.

From the data which we now possess, all those propositions which

hold equally of finite and infinite numbers can be deduced. The next

step, therefore, is to consider the distinction between the finite and the

infinite.

* Loc. cit., § 4.
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FINITE AND INFINITE.

117. The purpose of the present chapter is not to discuss the philo-

sophical difficulties concerning the infinite, which are postponed to

Part V. For the present I wish merely to set forth briefly the mathe-

matical theory of finite and infinite as it appears in the theory of

cardinal numbers. This is its most fundamental form, and must be

understood before the ordinal infinite can be adequately explained*.

Let u be any class, and let v! be a class formed by taking away one

term x from u. Then it may or may not happen that u is similar to u.

For example, if u be the class of all finite numbers, and w' the class of

all finite numbers except 0, the terms of?/ are obtained by adding 1 to each

of the terms of u, and this correlates one term of u with one of it! and vice

versa, no term of either being omitted or taken twice over. Thus u is

similar to u. But if u consists of all finite numbers up to n, where n is

some finite number, and u' consists of all these except 0, then u is not

similar to u. If there is one term x which can be taken away from ii to

leave a similar class u', it is easily proved that if any other term «/ is

taken away instead of x we also get a class similar to u. When it is

possible to take away one term from u and leave a class u similar to u,

we say that u is an infinite class. When this is not possible, we say that

u is a.finite class. From these definitions it follows that the null-class is

finite, since no term can be taken from it. It is also easy to prove that

if M be a finite class, the class formed by adding one term to u is finite
;

and conversely if this class is finite, so is u. It follows from the definition

that the numbers of finite classes other than the null-class are altered

by subtracting 1, while those of infinite classes are unaltered by this

operation. It is easy to prove that the same holds of the addition of 1.

118. Among finite classes, if one is a proper part of another, the

one has a smaller number of terms than the other. (A proper part is

a part not the whole.) But among infinite classes, this no longer holds.

* On the present topic cf. Cantor, Math. Annalen, Vol. xlvi, §§ .5, 6, where

most of what follows will be found.
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This distinction is, in fact, an essential part of the above definitions of

the finite and the infinite. Of two infinite classes, one may have a

greater or a smaller number of terms than the other. A class u is said

to be greater than a class v, or to have a number greater than that of v,

when the two are not similar, but v is similar to a proper part of u. It

is known that if u is similar to a proper part of v, and » to a proper

part of u (a case which can only arise when u and v are infinite), then u
is similar to »; henCe "m is gi-eater than w" is inconsistent with "d is

greater than m." ^^t is not at present known whether, of two different

infinite numbers, one must be greater and the other less. But it is known

that there is a least infinite number, i.e. a number which is less than any

different infinite number. This is the number of finite integers, which

will be denoted, in the present work, by Mq*- This number is capable of

several definitions in which no mention is made of the finite numbers. In

the first place it may be defined (as is implicitly done by Cantorf) by means

of the principle of mathematical induction. This definition is as follows:

fto is the number of any class u which is the domain of a one-one relation .

R, whose converse domain is contained in but not coextensive with w,

and ^^'hich is such that, calling the term to which x has the relation R
the successor of x, if s be any class to which belongs a term of u which is

not a successor of any other term of u, and to which belongs the successor

of every term of u which belongs to s, then every term of u belongs to s.

Or again, we may define Oo as follows. Let P be a transitive and asym-

metrical relation, and let any two different terms of the field of P have the

relation P or its converse. Further let any class u contained in the field

of P and having successors {i.e. terms to which every term of u has the

relation P) have an immediate successor, i.e. a term whose predecessors

either belong to u or precede some term of u ; let there be one term of

the field of P which has no predecessors, but let every term which has

predecessors have successors and also have an immediate predecessor

;

then the number of terms in the field of P is a,,. Other definitions may
be suggested, but as all are equivalent it is not necessary to multiply

them. The following characteristic is important : Every class whose

number is «„ can be arranged in a series having consecutive terms, a

beginning but no end, and such that the number of predecessors of any

term of the series is finite ; and any series having these characteristics

has the number a,,.

It is very easy to show that every infinite class contains classes whose

number is a„. For let u be such a class, and let x„ be a term of u.

Then u is similar to the class obtained by taking away x^, which we will

call the class u^. Thus u^ is an infinite class. From this we can take

* Cantor employs for this number the Hebrew Aleph with the suffix 0, but this

notation is inconvenient.

t Math. Annalen, Vol. xi.vi, § 6.
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away a term x^, leaving an infinite class u^, and so on. The series of

terms x^, x^,... is contained in u, and is of the type which has the

number Oo- From this point we can advance to an alternative definition

of the finite and the infinite by means of mathematical induction, which

must now be explained.

119. If n be any finite number, the number obtained by adding

1 to n is also finite, and is difl^erent from n. Thus beginning with

we can form a series of numbers by successive additions of 1. We
may define finite numbers, if we choose, as those numbers that can be

obtained from by such steps, and that obey mathematical induction.

That is, the class of finite numbers is the class of numbers which is

contained in every class s to which belongs and the successor of every

number belonging to s, where the successor of a number is the number
obtained by adding 1 to the given number. Now «„ is not such a

number, since, in virtue of propositions already proved, no such number
is similar to a part of itself. Hence also no number greater than Oj

is finite according to the new definition. But it is easy to prove that

every number less than «„ is finite with the new definition as with the

old. Hence the two definitions are equivalent. Thus we may define

finite numbers either as those that can be reached by mathematical

induction, starting from and increasing by 1 at each step,lor as those

of classes which are not similar to the parts of themselves obtained by

taking away single terms. These two definitions are both frequently

employed, and it is important to realize that either is a consequence

of the other. Both will occupy us much hereafter ; for the present

it is only intended, without controversy, to set forth the bare outlines

of the mathematical theory of finite and infinite, leaving the details to

be filled in during the course of the work.



CHAPTER XIV.

THEORY OF FINITE NUMBERS.

120. Having now clearly distinguished the finite from the infinite,

we can devote ourselves to the consideration of finite numbers. It is

customary, in the best treatises on the elements of Arithmetic*, not to

define number or particular finite numbers, but to begin with certain

axioms or primitive propositions, from which all the ordinary results

are shown to follow. This method makes Arithmetic into an in-

dependent study, instead of regarding it, as is done in the present

work, as merely a development, without new axioms or indefinables, of a

certain branch of general Logic. For this reason, the method in question

seems to indicate a less degree of analysis than that adopted here. I

shall nevertheless begin by an exposition of the more usual method,

and then proceed to definitions and proofs of what are usually taken

as indefinables and indemonstrables. For this purpose, I shall take

Peano's exposition in the Farmulairef, which is, so far as I know,

the best from the point of view of accuracy and rigour. This exposition

has the inestimable merit of showing that all Arithmetic can be de-

veloped from three fundamental notions (in addition to those of general

Logic) and five fundamental propositions concerning these notions. It

proves also that, if the three notions be regarded as determined by the

five propositions, these five propositions are mutally independent. This

is shown by finding, for each set of four out of the five propositions,

an interpretation which renders the remaining proposition false. It

therefore only remains, in order to connect Peano's theory with that

here adopted, to give a definition of the three fundamental notions and

a demonstration of the five fundamental propositions. When once this

has been accomplished, we know with certainty that everything in the

theory of finite integers follows.

* Except Frege's Grundgexetze der Arithmetik (Jena, 1893).

t P. 1901, Part II and F. 1899, § 20 S. F. 1901 diifers from earlier editions in

making " number is a class " a primitive proposition. I regard this as unnecessary,

since it is implied by "0 is a number." I therefore follow the earlier editions.
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Peano's three indefinables are 0, finite integer*, and simcessor of.

It is assumed, as part of the idea of succession (though it would,

I think, be better to state it as a separate axiom), that every number
has one and only one successor. (By successor is meant, of course,

immediate successor.) Peano's primitive propositions are then the

following. (1) is a number. (2) If « is a number, the successor of

a is a number. (3) If two numbers have the same successor, the two
numbers are identical. (4) is not the successor of any number.

(5) If ,9 be a class to which belongs and also the successor of evei-y

number belonging to s, then every number belongs to *. The last of

these propositions is the principle of mathematical induction.

121. The mutual independence of these five propositions has been

demonstrated by Peano and Padoa as followsf. (1) Giving the usual

meanings to and successor, but denoting by number finite integers

other than 0, all the above propositions except the first are true.

(2) Giving the usual meanings to and successor, but denoting by
number only finite integers less than 10, or less than any other specified

finite integer, all the above propositions are true except the second.

(3) A series which begins by an antiperiod and then becomes periodic

(for example, the digits in a decimal which becomes recurring after a

certain number of places) will satisfy all the above propositions except

the third. (4) A periodic series (such as the hours on the clock)

satisfies all except the fourth of the primitive propositions. (5) Giving

to successor the meaning greater by 2, so that the successor of is 2,

and of 2 is 4, and so on, all the primitive propositions are satisfied

except the fifth, which is not satisfied if * be the class of even numbers

including 0. Thus no one of the five primitive propositions can be

deduced from the other four.

122. Peano points out (loc. cit.) that other classes besides that of

the finite integers satisfy the above five propositions. What he says

is as follows :
" There is an infinity of systems satisfying all the primitive

propositions. They are all verified, e.g., by replacing member and by
number other than and 1. All the systems which satisfy the primitive

propositions have a one-one correspondence with the numbers. Number
is what is obtained from all these systems by abstraction ; in other

words, number is the system which has all the properties enunciated

in the primitive propositions, and those only." This observation appears

to me lacking in logical correctness. In the first place, the question

arises : How are the farious systems distinguished, which agree in satis-

fying the primitive propositions ? How, for example, is the system

beginning with 1 distinguished from that beginning with ? To this

* Throughout the rest of this chapter, I shall use number as synonymous with

finite integer.

t F. 18S>9, p. 30.
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question two different answers may be given. We may say that and

1 are both primitive ideas, or at least that is so, and that therefore

and 1 can be intrinsically distinguished, as yellow and blue are dis-

tinguished. But if we take this view—which, by the way, will have to

be extended to the other primitive ideas, number and succession—we

shall have to say that these three notions are what I call constants,

and that there is no need of any such process of abstraction as Peano

speaks of in the definition of number. In this method, 0, number, and

succession appear, like other indefinables, as ideas which must be simply

recognized. Their recognition yields what mathematicians call the

existence-theorem, i.e. it assures us that there really are numbers.

But this process leaves it doubtful whether numbers are logical constants

or not, and therefore makes Arithmetic, according to the definition in

Part I, Chapter i, prima facie a branch of Applied Mathematics. More-

over it is evidently not the process which Peano has in mind. The
other answer to the question consists in regarding 0, number, and

succession as a class of three ideas belonging to a certain class of trios

defined by the five primitive propositions. It is very easy so to state

the matter that the five primitive propositions become transformed into

the nominal definition of a certain class of trios. There are then no

longer any indefinables or indemonstrables in our theory, which has

become a pure piece of Logic. But 0, number and succession become

variables, since they are only determined as one of the class of trios

:

moreover the existence-theorem now becomes doubtful, since we cannot

know, except by the discovery of at least one actual trio of this class,

that there are any such trios at all. One actual trio, however, would

be a constant, and thus we require some method of giving constant

values to 0, number, and succession. What we can show is that, if there

is one such trio, there are an infinite number of them. For by striking

out the first term from any class satisfying the conditions laid down
concerning number, we always obtain a class which again satisfies the

conditions in question. But even this statement, since the meaning of

number is still in question, must be differently worded if circularity

is to be avoided. Moreover we must ask ourselves : Is any process of

abstraction from all systems satisfying the five axioms, such as Peano

contemplates, logically possible ? Every term of a class is the term it

is, and satisfies some proposition which becomes false when another term

of the class is substituted. There is therefore no term of a class which

has merely the properties defining the class and no others. What
Peano's process of abstraction really amounts to is the consideration of

the class and variable members of it, to the exclusion of constant

members. For only a variable member of the class will have only the

properties by which the class is defined. Thus Peano does not succeed

in indicating any constant meaning for 0, number, and succession, nor

in showing that any constant meaning is possible, since the existence-

\ \
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theorem is not proved. His only method, therefore, is to say that at

least one such constant meaning can be immediately perceived, but is

not definable. This method is not logically unsound, but it is wholly

different from the impossible abstraction vi^hich he suggests. And the

proof of the mutual independence of his five primitive propositions is

only necessary in order to show that the definition of the class of trios

determined by them is not redundant. Redundancy is not a logical

error, but merely a defect of what may be called style. My object, in

the above account of cardinal numbers, has been to prove, from general

Logic, that there is one constant meaning which satisfies the above five

propositions, and that this constant meaning should be called number,

or rather finite cardinal number. And in this way, new indefinables

and indemonstrables are wholly avoided ; for when we have shown that

the class of trios in question has at least one member, and when this

member has been used to define number, we easily show that the class

of trios has an infinite number of members, and we define the class

by means of the five properties enumerated in Peano's primitive proposi-

tions. For the comprehension of the connection between Mathematics

and Logic, this point is of very great importance, and similar points will

occur constantly throughout the present work.

123. In order to bring out more clearly the difference between

Peano's procedure and mine, I shall here repeat the definition of the

class satisfying his five primitive propositions, the definition of finite

number, and the proof, in the case of finite numbers, of his five primitive

propositions.

The class of classes satisfying his axioms is the same as the class of

classes whose cardinal number is «„, i.e. the class of classes, according to

my theory, which is a^. It is most simply defined as follows : Oo is the

class of classes u each of which is the domain of some one-one relation R
(the relation of a term to its successor) which is such that there is at

least one term which succeeds no other term, every term which succeeds

has a successor, and u is contained in any class s which contains a term

of u having no predecessors, and also contains the successor of every

term of u which belongs to s. This definition includes Peano's five

primitive propositions and no more. Thus of every such class all the

usual propositions in the arithmetic of finite numbers can be proved:

addition, multiplication, fractions, etc. can be defined, and the whole of

analysis can be developed, in so far as complex numbers are not involved.

But in this whole development, the meaning of the entities and relations

which occur is to a certain degree indeterminate, since the entities and

the relation with which we start are variable members of a certain class.

Moreover, in this whole development, nothing shows that there are such

classes as the definition speaks of.

In the logical theory of cardinals, we start from the opposite end.

We first define a certain class of entities, and then show that this class
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of entities belongs to the class «„ above defined. This is done as follows.

(1) is the class of classes whose only member is the null-class. (2) A
number is the class of all classes similar to any one of themselves. (3) 1 is

the class of all classes which are not null and are such that, if x belongs to

the class, the class without x is the null-class ; or such that, if x and y
belong to the class, then x and y are identical. (4) Having shown that

if two classes be similar, and a class of one term be added to each, the

sums are similar, we define that, if w be a number, w + 1 is the number
resulting from adding a unit to a class of n terms. (5) Finite numbers

are those belonging to every class * to which belongs 0, and to which

n + \ belongs if n belongs. This completes the definition of finite

numbers. We then have, as regards the five propositions which Peano
assumes: (1) is a number. (2) Meaning w -1-1 by the successor of n,

if « be a number, then w -f 1 is a number. (3) If n-\- l=7ra-|-l, then

n = m. (4) If n be any number, n + 1 is different from 0. (5) If s be

a class, and belongs to this class, and if when n belongs to it, w -f-

1

belongs to it, then all finite numbers belong to it. Thus all the five

essential properties are satisfied by the class of finite numbers as above

defined. Hence the class of classes «„ has members, and the class finite

number is one definite member of «„. There is, therefore, from the

mathematical standpoint, no need whatever of new indefinables or

indemonstrables in the whole of Arithmetic and Analysis.



CHAPTER XV.

ADDITION OF TERMS AND ADDITION OF CLASSES.

124. Having now briefly set forth the mathematical theory of

cardinal numbers, it is time to turn our attention to the philosophical

questions raised by this theory. I shall begin by a few preliminary

remarks as to the distinction between philosophy and mathematics, and
as to the function of philosophy in such a subject as the foundations of

mathematics. The following observations are not necessarily to be
regarded as applicable to other branches of philosophy, since they are

derived specially from the consideration of the problems of logic.

The distinction of philosophy and mathematics is broadly one of

point of view : mathematics is constructive and deductive, philosophy is

critical, and in a cei-tain impersonal sense controversial. Wherever we
have deductive reasoning, we have mathematics ; but the principles of

deduction, the recognition of indefinable entities, and the distinguishing

between such entities, are the business of philosophy. Philosophy is, in

fact, mainly a question of insight and perception. Entities which are

perceived by the so-called senses, such as colours and sounds, are, for

some reason, not commonly regarded as coming within the scope of

philosophy, except as regards the more abstract of their relations ; but
it seems highly doubtful whether any such exclusion can be maintained.

In any case, however, since the present work is essentially unconcerned

with sensible objects, we may confine our remarks to entities which are

not regarded as existing in space and time. Such entities, if we are to

know anything about them, must be also in some sense perceived, and
must be distinguished one from another; their relations also must be
in part immediately apprehended. A certain body of indefinable entities

and indemonstrable propositions must form the starting-point for any

mathematical reasoning ; and it is this starting-point th^t concerns the

philosopher. When the philosopher's work has been perfectly accom-

plished, its results can be wholly embodied in premisses from which

deduction may proceed. Now it follows from the very nature of such

inquiries that results may be disproved, but can never be proved. The
disproof will consist in pointing out contradictions and inconsistencies

;

E. 9
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but the absence of these can never amount to proof. All depends, in

the end, upon immediate perception ; and philosophical argument,

strictly speaking, consists mainly of an endeavour to cause the reader to

perceive what has been perceived by the author. The argument, in

short, is not of the nature of proof, but of exhortation. Thus the

question of the present chapter : Is there any indefinable set of entities

commonly called numbers, and different from the set of entities above

defined .'' is an essentially philosophical question, to be settled by in-

spection rather than by accurate chains of reasoning.

125. In the present chapter, we shall examine the question whether

the above definition of cardinal numbers in any way presupposes some

more fundamental sense of number. There are several ways in which

this may be supposed to be the ease. In the first place, the individuals

which compose classes seem to be each in some sense one, and it might

be thought that a one-one relation could not be defined without in-

troducing the number 1. In the second place, it may very well be

questioned whether a class which has only one term can be distinguished

from that one term. And in the third place, it may be held that the

notion of class presupposes number in a sense different from that above

defined : it may be maintained that classes arise from the addition of

individuals, as indicated by the word and, and that the logical addition

of classes is subsequent to this addition of individuals. These questions

demand a new inquiry into the meaning of one and of class, and here,

I hope, we shall find ourselves aided by the theories set forth in Part I.

As regards the fact that any individual or term is in some sense one,

this is of course undeniable. But it does not follow that the notion of

one is presupposed when individuals are spoken of: it may be, on the

contrary, that the notion of term or individual is the fundamental one,

from which that of one is derived. This view was adopted in Part I,

and there seems no reason to reject it. And as for one-one relations,

they are defined by means of identity, without any mention of one, as

follows : J? is a one-one relation if, when x and x have the relation R to

y, and x has the relation R to y and y', then x and x' are identical, and
so are y and y'. It is true that here x, y, af, y are each one term, but

this is not (it would seem) in any way presupposed in the definition.

This disposes (pending a new inquiry into the nature of classes) of the

first of the above objections.

The next question is as to the distinction between a class containing

only one member, and the one member which it contains. If we could

identify a class with its defining predicate or class-concept, no diflficulty

would arise on this point. When a certain predicate attaches to one

and only one term, it is plain that that term is not identical with the

predicate in question. But if two predicates attach to precisely the

same terms, we should say that, although the predica.tes are different,

the classes which they define are identical, i.e. there is only one class
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which both define. If, for example, all featherless bipeds are men, and
all men are featherless bipeds, the classes men and featherless bipeds are

identical, though man differs from featherless biped. This shows that a
class cannot be identified with its class-concept or defining predicate.

There might seem to be nothing left except the actual terms, so that
when there is only one term, that term would have to be identical with
the class. Yet for many formal reasons this view cannot give the
meaning of the symbols which stand for classes in symbolic logic. For
example, consider the class of numbers which, added to 3, give 5. This

' is a class containing no terms except the number 2. But we can say

that 2 is a member of this class, i.e. it has to the class that peculiar

indefinable relation which terms have to the classes they belong to.

This seems to indicate that the class is different from the one term.

The point is a prominent one in Peano's Symbolic Logic, and is con-

nected with his distinction between the relation of an individual to its

class and the relation of a class to another in which it is contained.

Thus the class of numbers which, added to 3, give 5, is contained in the

class of numbers, but is not a number; whereas 2 is a number, but is

not a class contained in the class of numbers. To identify the two
relations which Peano distinguishes is to cause havoc in the theory of

infinity, and to destroy the formal precision of many arguments and
definitions. It seems, in fact, indubitable that Peano's distinction is

just, and that some way must be found of discriminating a term from
a class containing that term only.

126. In order to decide this point, it is necessary to pass to our
third difficulty, and reconsider the notion of class itself. This notion

appears to be connected with the notion of denoting, explained in Part I,

Chapter v. We there pointed out five ways of denoting, one of which
we called the numerical conjunction. This was the kind indicated by all.

This kind of conjunction appears to be that which is relevant in the

case of classes. For example, man being the class-concept, all men will

be the class. But it will not be all men qua concept which will be the

class, but what this concept denotes, i.e. certain terms combined in the

particular way indicated by all. The way of combination is essential,

since any man or some man is plainly not the class, though either denotes

combinations of precisely the same terms. It might seem as though, if

we identify a class with the numerical conjunction of its terms, we must
deny the distinction of a term from a class whose only member is that

term. But we found in Chapter x that a class must be al«'a}s an object

of a different logical type from its members, and that, in order to avoid

the proposition xeaj, this doctrine must be extended even to classes

which have only one member. How far this forbids us to identify

classes with numerical conjunctions, I do not profess to decide ; in any
case, the distinction between a term and the class whose only member
it is must be made, and yet classes must be taken extensionally to the

9—2
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degree involved in their being determinate when their members are

given. Such classes are called by Frege Werthverldufe; and cardinal

numbers are to be regarded as classes in this sense.

127. There is still, however, a certain difficulty, which is this : a

class seems to be not many terms, but to be itself a single term, even

when many terms are members of the class. This difficulty would seem

to indicate that the class cannot be identified with all its members, but

is rather- to be regarded as the whole which they compose. In order,

however, to state the difficulty in an unobjectionable manner, we must

exclude unity and plurality from the statement of it, since these notions

were to be defined by means of the notion of class. And here it may be

well to clear up a point which is likely to occur to the reader. Is the

notion of one presupposed every time we speak of a term ? A term,

it may be said, means one term, and thus no statement can be made
concerning a term without presupposing otic. In some sense of one, this

proposition seems indubitable. Whatever is, is one : being and one, as

Leibniz remarks, are convertible terms*. It is difficult to be sure how
far such statements are merely grammatical. For although whatever

is, is one, yet it is equally true that whatever are, are many. But the

truth seems to be that the kind of object which is a class, i.e. the kind

of object denoted by all men, or by any concept of a class, is not one

except where the class has only one term, and must not be made a single

logical subject. There is, as we said in Part I, Chapter vi, in simple cases an

associated single term which is the class as a whole ; but this is sometimes

absent, and is in any case not identical with the class as many. But in

this view there is not a contradiction, as in the theory that verbs and

adjectives cannot be made subjects ; for assertions can be made about

classes as many, but the subject of such assertions is many, not one only

as in other assertions. " Brown and Jones are two of Miss Smith's

suitors " is an assertion about the class " Brown and Jones,'" but not

about this class considered as a single term. Thus one-ness belongs, in

this view, to a certain type of logical subjects, but classes which are not

one may yet have assertions made about them. Hence we conclude that

one-ness is implied, but not presupposed, in statements about a term,

and " a term " is to be regarded as an indefinable.

128. It seems necessary, however, to make a distinction as regards

the use of one. The sense in which every object is one, which is

apparently involved in speaking of an object, is, as Frege urges i", a very

shadowy sense, since it is applicable to everything alike. But the sense

in which a class may be said to have one member is quite precise.

A class u has one member when u is not nuU, and "a? and y are it's"

implies " x is identical with i/." Here the one-ness is a property of the

* Ed. Gerhardt, ii, p. 300.

t Grundlagen der Arithmetik, BreslaUj 1884, p. 40.



126-130] Addition of Terms and Addition of Classes 133

class, which may therefore be called a unit-class. The x which is its

only member may be itself a class of many terms, and this shows that

the sense of one involved in one term or a term is not relevant to

Arithmetic, for many terms as such may be a single member of a class

of classes. One, therefore, is not to be asserted of terms, but of classes

having one member in the above-defined sense ; i.e. " u is one," or better
"

II, is a unit " means " u is not null, and ' x and y are m's ' implies ' x
and y are identical \" The member of u, in this case, will itself be none
or one or many if m is a class of classes ; but if m is a class of terms,

the member of u will be neither none nor one nor many, but simply

a term.

129. The commonly received view, as regards finite numbers, is that

they result from counting, or, as some philosophers would prefer to

say, from synthesizing. Unfortunately, those who hold this view have

not analyzed the notion of counting : if they had done so, they would
have seen that it is very complex, and presupposes the very numbers
which it is supposed to generate.

The process of counting has, of course, a psychological aspect, but

this is quite irrelevant to the theory of Arithmetic. What I wish now
to point out is the logical process involved in the act of counting, which

is as follows. When we say one, two, three, etc., we are necessarily

considering some one-one relation which holds between the numbers used

in counting and the objects counted. What is meant by the " one, two,

three " is that the objects indicated by these numbers are their correlates

with respect to the relation which we have in mind. (This relation, by
the way, is usually extremely complex, and is apt to involve a reference

to our state of mind at the moment.) Thus we correlate a class of objects

with a class of numbers ; and the class of numbers consists of all the

numbers from 1 up to some number n. The only immediate inference to be

drawn from this correlation is, that the number of objects is the same as

the number of numbers from 1 up to n. A further process is required to

show that this number of numbers is n, which is only true, as a matter

of fact, when n is finite, or, in a certain wider sense, when n is a„ (the

smallest of infinite numbers). Moreover the process of counting gives us

no indication as to what the numbers are, as to why they form a series,

or as to how it is to be proved (in the cases where it is true) that there

are n numbers from 1 up to n. Hence counting is irrelevant in the

foundations of Arithmetic ; and with this conclusion, it may be dismissed

until we come to order and ordinal numbers.

130. Let us return to the notion of the numerical conjunction. It

is plain that it is of such objects as "J and 5," "J and B and C,"

that numbers other than one are to be asserted. We examined such

objects, in Part I, in relation to classes, with which we found them to

be identical. Now we must investigate their relation to numbers and

plurality.
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The nation to be now examined is the notion of a numerical

conjunction or, more shortly, a collection. This is not to be identified,

to begin with, with the notion of a class, but is to receive a new and

independent treatment. By a collection I mean what is conveyed by
" A and B " or " A and B and C," or any other enumeration of definite

terms. The collection is defined by the actual mention of the terms,

and the terms are connected by and. It would seem that arid represents

a fundamental way of combining terms, and it might be urged that

just this way of combination is essential if anything is to result of which

a number other than 1 is to be asserted. Collections do not presuppose

numbers, since they result simply from the terms together with and:

they could only presuppose numbers in the particular case where the

terras of the collection themselves presupposed numbers. There is a

grammatical difficulty which, since no method exists of avoiding it,

must be pointed out and allowed for. A collection, grammatically, is

one, whereas A and B, or A and B and C, are essentially many. The
strict meaning of collection is the whole composed of many, but since a

word is needed to denote the many themselves, I choose to use the word

collection in this sense, so that a collection, according to the usage here

adopted, is many and not one.

As regards what is meant by the combination indicated by and, it

gives what we called before the numerical conjunction. That is A and

B is what is denoted by the concept of a class of which A and B are

the only terms, and is precisely A and B denoted in the way which is

indicated by all. We may say, if u be the class-concept corresponding

to a class of which A and B are the only terms, that "all m's" is a

concept which denotes the terms A, B combined in a certain way, and

A and B are those terms combined in precisely that way. Thus A and
B appears indistinguishable from the class, though distinguishable from

the class-concept and from the concept of the class. Hence if w be a

class of more than one term, it seems necessary to hold that u is not

one, but many, since u is distinguished both from the class-concept and
from the whole composed of the terms of u*. Thus we are brought back

to the dependence of numbers upon classes ; and where it is not said

that the classes in question are finite, it is practically necessary to begin

with class-concepts and the theory of denoting, not with the theory of

and which has just been given. The theory of and applies practically

only to finite numbers, and gives to finite numbers a position which is

different, at least psychologically, from that of infinite numbers. There

* A conclusive reason against identifying a class with the whole composed of its

terms is^ that one of these terms may be the class itself, as in the case "class is a

class," or rather "classes are one among classes." The logical type of the class c/as*

is of an infinite order, and therefore the usual objection to " xtoc" does not apply in

this case.
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are, in short, two ways of defining particular finite classes, but there is

only one practicable way of defining particular infinite classes, namely

by intension. It is largely the habit of considering classes primarily

from the side of extension which has hitherto stood in the way of a

correct logical theory of infinity.

131. Addition, it should be carefully observed, is not primarily a

method of forming numbers, but of forming classes or collections. If

we add 5 to ^, we do not obtain the number 2, but we obtain A and B,

which is a collection of two terms, or a couple. And a couple is defined

as follows : M is a couple if u has terms, and if, if a? be a term of u, there

is a term of u different from x, but if oo, y be different terms of m, and z

differs from x and from y, then every class to which z belongs differs

from u. In this definition, only diversity occurs, together with the

notion of a class having terms. It might no doubt be objected that we
have to take just two terms x, y in the above definition : but as a

matter of fact any finite number can be defined by induction without

introducing more than one term. For, if n has been defined, a class u
has w + 1 terms when, if a? be a term of m, the number of terms of u
which differ from x is n. And the notion of the arithmetical sum w +

1

is obtained from that of the logical sum of a class of n terms and a class

of one term. When we say 1 + 1 = 2, it is not possible that we should

mean 1 and 1, since there is only one 1 : if we take 1 as an individual,

1 and 1 is nonsense, while if we take it as a class, the rule of Symbolic

Logic applies, according to which 1 and 1 is 1. Thus in the corresponding

logical proposition, we have on the left-hand side terms of which 1 can

be asserted, and on the right-hand side we have a couple. That is,

1-1-1=2 means " one term and one term are two terms," or, stating the

proposition in terms of variables, "if u has one term and v has one

term, and u differs from », their logical sum has two terms." It is to be

observed that on the left-hand side we have a numerical conjunction of

propositions, while on the right-hand side we have a proposition con-

cerning a numerical conjunction of terms. But the true premiss, in the

above proposition, is not the conjunction of the three propositions, but

their logical product. This point, however, has little importance in the

present connection.

132. Thus the only point which remains is this : Does the notion

of a term presuppose the notion of 1 ? For we have seen that all

numbers except involve in their definitions the notion of a term, and

if this in turn involves 1, the definition of 1 becomes circular, and 1 will

have to be allowed to be indefinable. This objection to our procedure

is answered by the doctrine of § 128, that a term is not om in the sense

which is relevant to Arithmetic, or in the sense which is opposed to

many. The notion of any term is a logical indefinable, presupposed in

formal truth and in the whole theory of the variable ; but this notion is

that of the variable conjunction of terms, which in no way involves the
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number 1. There is therefore nothing circular in defining the number 1

by means of the notion of a term or of any term.

To sum up : Numbers are classes of classes, namely of all classes

similar to a given class. Here classes have to be understood in the

sense of numerical conjunctions in the case of classes having many
terms ; but a class may have no terms, and a class of one term is distinct

from that term, so that a class is not simply the sum of its terms. Only

classes have numbers ; of what is commonly called one object, it is not

true, at least in the sense required, to say that it is one, as appears from

the fact that the object may be a class of many terms. " One object

"

seems to mean merely " a logical subject in some proposition." Finite

numbers are not to be regarded as generated by counting, which on the

contrary presupposes them ; and addition is primarily logical addition,

first of propositions, then of classes, from which latter arithmetical

addition is derivative. The assertion of numbers depends upon the fact

that a class of many terms can be a logical subject without being

arithmetically one. Thus it appeared that no philosophical argument

could overthrow the mathematical theory of cardinal numbers set forth

in Chapters xi to xiv.



CHAPTER XVI.

WHOLE AND PART.

133. Foe the comprehension of analysis, it is necessary to investigate

the notion of whole and part, a notion which has been wrapped in

obscurity—though not without certain more or less valid logical

reasons—by the writers who may be roughly called Hegelian. In the

present chapter I shall do my best to set forth a straightforward and

non-mystical theory of the subject, leaving controversy as far as possible

on one side. It may be well to point out, to begin with, that I shall

use the word whole as strictly correlative to part, so that nothing will

be called a whole unless it has parts. Simple terms, such as points,

instants, colours, or the fundamental concepts of logic, will not be called

wholes.

Terms which are not classes may be, as we saw in the preceding

chapter, of two kinds. The first kind are simple : these may be

characterized, though not defined^ by the fact that the propositions

asserting the being of such terms have no presuppositions. The second

kind of terms that are not classes, on the other hand, are complex, and

in their case, their being presupposes the being of certain other terms.

Whatever is not a class is called a unit, and thus units are either simple

or complex. A complex unit is a whole ; its parts are other units,

whether simple or complex, which are presupposed in it. This suggests

the possibility of defining whole and part by means of logical priority,

a suggestion which, though it must be ultimately rejected, it will be

necessary to examine at length.

134. Wherever we have a one-sided formal implication, it may be

urged, if the two propositional functions involved are obtainable one from

the other by the variation of a single constituent, then what is implied

is simpler than what implies it. Thus "Socrates is a man" implies

" Socrates is a mortal," but the latter proposition does not imply the

former: also the latter proposition is simpler than the former, since

man is a concept of which mortal forms part. Again, if we take

a proposition asserting a relation of two entities A and B, this

proposition implies the being of A and the being of B, and the being of
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the relation, none of which implies the proposition, and each of which is

simpler than the proposition. There will only be equal complexity

—

according to the theory that intension and extension vary inversely as

one another—in cases of mutual implication, such as "A is greater

than 5" and "B is less than ^." Thus we might be tempted to set up

the following definition : A is said to be part of B when B is implies

A M, but A is does not imply B is. If this definition could be main-

tained, whole and part would not be a new indefinable, but would be

derivative from logical priority. There are, however, reasons why such

an opinion is untenable.

The first objection is, that logical priority is not a simple relation

;

implication is simple, but logical priority of ^ to 5 requires not only

"5 implies A^"" but also "^ does not imply 5." (For convenience,

I shall say that A impliea B when A is implies B is.) This state of

things, it is true, is realized when A is part of B ; but it seems necessary

to regard the relation of whole to part as something simple, which must

be different from any possible relation of one whole to another which is

not part of it. This would not result from the above definition. For

example, "A is greater and better than 5" implies "B is less than ^,"

but the converse implication does not hold : yet the latter proposition is

not part of the former*

Another objection is derived from such cases as redness and colour.

These two concepts appear to be equally simple : there is no specification,

other and simpler than redness itself, which can be added to colour to

produce redness, in the way in which specifications will turn mortal into

man. Hence A is red is no more complex than A is coloured, although

there is here a one-sided implication. Redness, in fact, appears to be

(when taken to mean one particular shade) a simple concept, which,

although it implies colour, does not contain colour as a constituent.

The inverse relation of extension and intension, therefore, does not hold

in all cases. For these reasons, we must reject, in spite of their very

close connection, the attempt to define whole and part by means of

implication.

135. Having failed to define wholes by logical priority, we shall

not, I think, find it possible to define them at all. The relation of

whole and part is, it would seem, an indefinable and ultimate relation,

or rather, it is several relations, often confounded, of which one at least

is indefinable. The relation of a part to a whole must be differently

discussed according to the nature both of the whole and of the parts.

Let us begin with the simplest case, and proceed gradually to those that

are more elaborate.

(1) Whenever we have any collection of many terms, in the sense

explained in the preceding chapter, there the terms, provided there is

* See Part IV, Chap, xxvii.
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some non-quadratic propositional function which they all satisfy, together

form a whole. In the preceding chapter we regarded the class as formed by

all the terms, but usage seems to show no reason why the class should not

equally be regarded as the whole composed of all the terms in those cases

where there is such a whole. The first is the class as many, the second

the class as one. Each of the terms then has to the whole a certain

indefinable relation*, which is one meaning of the relation of whole and
part. The whole is, in this case, a whole of a particular kind, which

I shall call an aggregate : it differs from wholes of other kinds by the

fact that it is definite as soon as its constituents are known.

(2) But the above relation holds only between the aggregate and

the single terms of the collection composing the aggregate : the relation

to our aggregate of aggregates containing some but not all the terms

of our aggregate, is a different relation, though also one which would be

commonly called a relation of part to whole. For example, the relation

of the Greek nation to the human race is different from that of Socrates

to the human race ; and the relation of the whole of the primes to the

whole of the numbers is different from that of 2 to the whole of the

numbers. This most vital distinction is due to Peanof. The relation

of a subordinate aggregate to one in which it is contained can be defined,

as was explained in Part I, by means of implication and the first kind of

relation of part to whole. If u, v be two aggregates, and for every

value of a? " x is aw" implies " x is a v,'" then, provided the converse

implication does not hold, u is a prpper part (in the second sense) of v.

This sense of whole and part, therefore, is derivative and definable.

(3) But there is another kind of whole, which may be called a uniti/.

Such a whole is always a proposition, though it need not be an asserted

proposition. For example, "A differs from 5," or "^'s difference from

5,'" is a complex of which the parts are A and B and difference ; but

this sense of whole and part is different from the previous senses, since

"A differs from .B" is not an aggregate, and has no parts at all in the

first two senses of parts. It is parts in this third sense that are chiefly

considered by philosophers, while the first two senses are those usually

relevant in symbolic logic and mathematics. This third sense of paii; is

the sense which corresponds to analysis : it appears to be indefinable,

like the first sense

—

i.e., I know no way of defining it. It must be held

that the three senses are always to be kept distinct : i.e., if A is part

of B in one sense, while B is part of C in another, it must not be

inferred (in general) that A is part of C in any of the three senses. But

we may make a fourth general sense, in which anything which is part in

* Which may, if we choose, be taken as Peano's f. The objection to this

meaning for e is that not every propositional function defines a whole of the kind

required. The whole differs from the class as many by being of the same type as its

terms.

t Cf. e.g. F. 1901, § 1, Prop. 4. 4, note (p. 12).
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any sense, or part in one sense of part in another, is to be called a part.

This sense, however, has seldom, if ever, any utility in actual discussion.

136. The difference between the kinds of wholes is important,

and illustrates a fundamental point in Logic. I shall therefore repeat

it in other words. Any collection whatever, if defined by a non-quadratic

propositional function, though as such it is many, yet composes a whole,

whose parts are the terms of the collection or any whole composed of some

of the terms of the collection. It is highly important to realize the differ-

ence between a whole and all its parts, even in this case where the difference

is a minimum. The word collection, being singular, applies more strictly

to the whole than to all the parts ; but convenience of expression has led

me to neglect grammar, and speak of all the terms as the collection.

The whole formed of the terms of the collection I call an aggregate.

Such a whole is completely specified when all its simple constituents are

specified ; its parts have no direct connection inter se, but only the

indirect connection involved in being parts of one and the same whole.

But other wholes occur, which contain relations or what may be called

predicates, not occurring simply as terms in a collection, but as relating

or qualifying. Such wholes are always propositions. These are not

completely specified when their parts are all known. Take, as a simple

instance, the proposition "A differs from B,'" where J and B are simple

terms. The simple parts of this whole are A and B and difference ; but

the enumeration of these three does not specify the whole, since there

are two other wholes composed of the same parts, namely the aggregate

formed of A and B and difference, and the proposition "B differs

from AJ" In the former case, although the whole was different from

all its parts, yet it was completely specified by specifying its parts ; but

in the present case, not only is the whole different, but it is not even

specified by specifying its parts. We cannot explain this fact by saying

that the parts stand in certain relations which are omitted in the

analysis ; for in the above case oi "A differs from B,'''' the relation was

included in the analysis. The fact seems to be that a relation is one

thing when it relates, and another when it is merely enumerated as a

term in a collection. There are certain fundamental difficulties in this

view, which however I leave aside as irrelevant to our present purpose*.

Similar remarks apply to A is, which is a whole composed of A and
Being, but is different from the whole formed of the collection A and
Being. A is one raises the same point, and so does A and B are two.

Indeed all propositions raise this point, and we may distinguish them
among complex terms by the fact that they raise it.

Thus we see that there are two very different classes of wholes, of

which the first will be called aggregates, while the second will be called

unities. ( Unit is a word having a quite different application, since what-

* See Part I, Chap, iv, esp. § 54.
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ever is a class which is not null, and is such that, if x and «/ be members
of it, X and «/ are identical, is a unit.) Each class of wholes consists of

terms not simply equivalent to all their parts ; but in the case of unities,

the whole is not even specified by its parts. For example, the parts J,
greater than, B, may compose simply an aggregate, or either of the
propositions "A is greater than B^ "B is greater than Ar Unities
thus involve problems from which aggregates are free. As aggregates
are more specially relevant to mathematics than unities, I shall in

future generally confine myself to the former.

137. It is important to realize that a whole is a new single term,
distinct from each of its parts and from all of them: it is one, not many*,
and is related to the parts, but has a being distinct from theirs. The
reader may perhaps be inclined to doubt whether there is any need of
wholes other than unities ; but the following reasons seem to make
aggregates logically unavoidable. (1) We speak of one collection, one
manifold, etc., and it would seem that in all these cases there really is

something that is a single term. (2) The theory of fractions, as we shall

shortly see, appears to depend partly upon aggregates. (3) We shall find

it necessary, in the theory of extensive quantity, to assume that aggregates,

even when they are infinite, have what may be called magnitude of

divisibility, and that two infinite aggregates may have the same number
of terms without having the same magnitude of divisibility: this theory,

we shall find, is indispensable in metrical geometry. For these reasons,

it would seem, the aggregate must be admitted as an entity distinct

from all its constituents, and having to each of them a certain ultimate

and indefinable relation.

138. I have already touched on a very important logical doctrine,

which the theory of whole and part brings into prominence—I mean the

doctrine that analysis is falsification. Whatever can be analyzed is a

whole, and we have already seen that analysis of wholes is in some
measure falsification. But it is important to realize the very narrow
limits of this doctrine. We cannot conclude that the parts of a whole

are not really its parts, nor that the parts are not presupposed in the

whole in a sense in which the whole is not presupposed in the parts, nor

yet that the logically prior is not usually simpler than the logically

subsequent. In short, though analysis gives us the truth, and nothing

but the truth, yet it can never give us the whole truth. This is the

only sense in which the doctrine is to be accepted. In any wider sense,

it becomes merely a cloak for laziness, by giving an excuse to those who
dislike the labour of analysis.

139. It is to be observed that what we called classes as one may
always, except where they contain one term or none, or are defined by
quadratic propositional functions, be interpreted as aggregates. The

* I.e. it is of the same logical type as its simple parts.
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logical product of two classes as one wiU be the common part (in the

second of our three senses) of the two aggregates, and their sum will

be the aggregate which is identical with or part of (again in the second

sense) any aggregate of which the two given aggregates are parts, but is

neither identical with nor part of any other aggregate*- The relation

of whole and part, in the second of our three senses, is transitive and

asymmetrical, but is distinguished from other such relations by the fact

of allowing logical addition and multiplication. It is this peculiarity

which forms the basis of the Logical Calculus as developed by writers

previous to Peano and Frege (including Schroder)t. But wherever infinite

wholes are concerned it is necessary, and in many other cases it is

practically unavoidable, to begin with a class-concept or predicate or

propositional function, and obtain the aggregate from this. Thus the

theory of whole and part is less fundamental logically than that of

predicates or class-concepts or propositional functions ; and it is for

this reason that the consideration of it has been postponed to so late

a stage.

* Cf. Peano, F. 1901, § 2, Prop. I'O (p. 19).

t See e.g. his Algebra der Logik, \o\. i (Leipzig, 1890).



CHAPTEE XVII.

INFINITE WHOLES.

140. In the present chapter the special difficulties of infinity are

not to be considered : all these are postponed to Part V. My object

now is to consider two questions: (1) Are there any infinite wholes.?

(2) If so, must an infinite whole which contains parts in the second of

our three senses be an aggregate of parts in the first sense ? In order to

avoid the reference to the first, second and third senses, I propose hence-

forward to use the following phraseology : A part in the first sense is to

be called a term of the whole* ; a part in the second sense is to be called

a part simply ; and a part in the third sense will be called a constituent

of the whole. Thus terms and parts belong to aggregates, while con-

stituents belong to unities. The consideration of aggregates and unities,

where infinity is concerned, must be separately conducted. I shall begin

with aggregates.

An infinite aggregate is an aggregate corresponding to an infinite

class, i.e. an aggregate which has an infinite number of terms. Such

aggregates are defined by the fact that they contain parts which have

as many terms as themselves. Our first question is : Are there any such

aggregates ?

Infinite aggregates are often denied. Even Leibniz, favourable as

he was to the actual infinite, maintained that, where infinite classes are

concerned, it is possible to make valid statements about any term of the

class, but not about all the terms, nor yet about the whole which (as he

would say) they do 7wt compose f. Kant, again, has been much criticised

for maintaining that space is an infinite given whole. Many maintain

that every aggregate must have a finite number of terras, and that

where this condition is not fulfilled there is no true whole. But I do

not believe that this view can be successfully defended. Among those

who deny that space is a given whole, not a few would admit that what

they are pleased to call a finite space may be a given whole, for instance,

* A part in this sense will also be sometimes called a simple or indivisible part,

t Cf. Phil. Werke, ed. Gerhardt, ii, p. 316 ; also i, p. 338, v, pp. 144^5.
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the space in a room, a box, a bag, or a book-case. But such a space is

only finite in a psychological sense, i.e. in the sense that we can take it

in at a glance : it is not finite in the sense that it is an aggregate of a

finite number of terms, nor yet a unity of a finite number of constituents.

Thus to admit that such a space can be a whole is to admit that there

are wholes which are not finite. (This does not follow, it should be

observed, from the admission of material objects apparently occupying

finite spaces, for it is always possible to hold that such objects, though

apparently continuous, consist really of a large but finite number of

material points.) With respect to time, the same argument holds : to

say, for example, that a certain length of time elapses between sunrise

and sunset, is to admit an infinite whole, or at least a whole which is not

finite. It is customary with philosophers to deny the reality of space

and time, and to deny also that, if they were real, they would be

aggregates. I shall endeavour to show, in Part VI, that these denials

are supported by a faulty logic, and by the now resolved difficulties of

infinity. Since science and common sense join in the opposite view, it

will therefore be accepted ; and thus, since no argument a priori can

now be adduced against infinite aggregates, we derive from space and

time an argument in their favour.

Again, the natural numbers, or the fractions between and 1, or the

sum-total of all colours, are infinite, and seem to be true aggregates

:

the position that, although true propositions can be made about any

number, yet there are no true propositions about all numbers, could be

supported formerly, as Leibniz supported it, by the supposed contra-

dictions of infinity, but has become, since Cantor's solution of these

contradictions, a wholly unnecessary paradox. And where a collection

can be defined by a non-quadratic prepositional function, this must be

held, I think, to imply that there is a genuine aggregate composed

of the terms of the collection. It may be observed also that, if there

were no infinite wholes, the word Universe would be wholly destitute of

meaning.

141. We must, then, admit infinite aggregates. It remains to ask

a more difficult question, namely : Are we to admit infinite unities ?

This question may also be stated in the form : Are there any

infinitely complex propositions .'' This question is one of great logical

importance, and we shall require much care both in stating and in

discussing it.

The first point is to be clear as to the meaning of an infinite unity.

A unity will be infinite when the aggregate of all its constituents is

infinite, but this scarcely constitutes the meaning of an infinite unity.

In order to obtain the meaning, we must introduce the notion of a

simple constituent. We may observe, to begin with, that a constituent

of a constituent is a constituent of the unity, i.e. this form of the

relation of part to whole, like the second, but unlike the first form, is
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transitive. A simple constituent may now be defined as a constituent

which itself has no constituents. We may assume, in order to eliminate

the question concerning aggregates, that no constituent of our unity is

to be an aggregate, or, if there be a constituent which is an aggregate,

then this constituent is to be taken as simple. (This view of an aggre-

gate is rendered legitimate by the fact that an aggregate is a single term,

and does not have that kind of complexity which belongs to propositions.)

With this the definition of a simple constituent is completed.

We may now define an infinite unity as follows : A unity is finite

when, and only when, the aggregate of its simple constituents is finite.

In all other cases a unity is said to be infinite. We have to inquire

whether there are any such unities*.

If a unity is infinite, it is possible to find a constituent unity, which

again contains a constituent unity, and so on without end. If there be

any unities of this nature, two cases ave primaJucie possible. (1) There
may be simple constituents of our unity, but these must be infinite in

number. (2) There may be no simple constituents at all, but all

constituents, without exception, may be complex ; or, to take a slightly

more complicated case, it may happen that, although there are some
simple constituents, yet these and the unities composed of them do not

constitute all the constituents of the original unity. A unity of either

of these two kinds will be called infinite. The two kinds, though
distinct, may be considered together.

An infinite unity will be an infinitely complex proposition : it will

not be analyzable in any way into a finite number of constituents. It

thus diflPers radically from assertions about infinite aggregates. For
example, the proposition " any number has a successor " is composed of

a finite number of constituents : the number of concepts entering into it

can be enumerated, and in addition to these there is an infinite aggregate

of terms denoted in the way indicated by ani/, which counts as one

constituent. Indeed it may be said that the logical purpose which is

served by the theory of denoting is, to enable propositions of finite

complexity to deal with infinite classes of terms : this object is effected

by all, any, and every, and if it were not effected, every general pro-

position about an infinite class would have to be infinitely complex.

Now, for my part, I see no possible way of deciding whether propositions

of infinite complexity are possible or not ; but this at least is clear, that

all the propositions known to us (and, it would seem, all propositions

that we can know) are of finite complexity. It is only by obtaining

such propositions about infinite classes that we are enabled to deal with

infinity ; and it is a remarkable and fortunate fact that this method is

successful. Thus the question whether or not there are infinite unities

must be left unresolved ; the only thing we can say, on this subject, is

* In Leibniz's philosophy, all contingent things are infinite unities.

R. 10
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that no such unities occur in any department of human knowledge, and

therefoi-e none such are relevant to the foundations of mathematics.

142. I come now to our second question : Must an infinite whole

which contains parts be an aggregate of terms ? It is often held, for

example, that spaces have parts, and can be divided ad lib., but that

they have no simple parts, i.e. they are not aggregates of points. The

same view is put forward as regards periods of time. Now it is plain

that, if our definition of a part by means of terms {i.e. of the second

sense of part by means of the first) was correct, the present problem can

never arise, since parts only belong to aggregates. But it may be urged

that the notion of part ought to be taken as an indefinable, and that

therefore it may apply to other wholes than aggi'egates. This will

require that we should add to aggregates and unities a new kind of

whole, corresponding to the second sense of part. This will be a whole

which has parts in the second sense, but is not an aggregate or a unity.

Such a whole seems to be what many philosophers are fond of calling a

continuum, and space and time are often held to afford instances of such

a whole.

Now it may be admitted that, among infinite wholes, we find a

distinction which seems relevant, but which, I believe, is in reality

merely psychological. In some cases, we feel no doubt as to the terms,

but great doubt as to the whole, while in others, the whole seems

obvious, but the terms seem a precarious inference. The ratios between

and 1, for instance, are certainly indivisible entities ; but the whole

aggregate of ratios between and 1 seems to be of the nature of a

construction or inference. On the other hand, sensible spaces and times

seem to be obvious wholes ; but the inference to indivisible points and

instants is so obscure as to be often regarded as illegitimate. This

distinction seems, however, to have no logical basis, but to be wholly

dependent on the nature of our senses. A slight familiarity with co-

ordinate geometry suffices to make a fiiiite length seem strictly analogous

to the stretch of fractions between and 1. It must be admitted,

nevertheless, that in cases where, as with the fractions, the indivisible

parts are evident on inspection, the problem with which we are con-

cerned does not arise. But to infer that all infinite wholes have

indivisible parts merely because this is known to be the case with some

of them, would certainly be rash. The general problem remains,

therefore, namely : Given an infinite whole, is there a universal reason

for supposing that it contains indivisible parts ?

143. In the first place, the definition of an infinite whole must not

be held to deny that it has an assignable number of simple parts which

do not reconstitute it. For example, the stretch of fra.ctions from to 1

has three simple parts, ^, i, f. But these do not reconstitute the

whole, that is, the whole has other parts which are not parts of the

assigned parts or of the sum of the assigned parts. Again, if we form a
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whole out of the number 1 and a hne an inch long, this whole cei-tainly

has one simple part, namely 1. Such a case as this may be excluded by
asking whether every part of our whole either is simple or contains

simple parts. In this case, if our whole be formed by adding n simple

terms to an infinite whole, the n simple terms can be taken away, and

the question can be asked concerning the infinite whole which is left.

But again, the meaning of our question seems hardly to be : Is our

infinite whole an actual aggregate of innumerable simple parts ? This is

doubtless an important question, but it is subsequent to the question we

are asking, which is : Are there always simple parts at all ? We may
observe that, if a finite number of simple parts be found, and taken

away from the whole, the remainder is always infinite. For if not, . it

would have a finite number ; and since the term of two finite numbers is

finite, the original whole would then be finite. Hence if it can be

shown that every infinite whole contains one simple part, it follows that

it contains an infinite number of them. For, taking away the one

simple part, the remainder is an infinite whole, and therefore has a new

simple part, and so on. It follows that every part of the whole either is

simple, or contains simple parts, provided that every infinite whole has

at least one simple part. But it seems as hard to prove this as to prove

that every infinite whole is an aggregate.
,

If an infinite whole be divided into a finite number of parts, one at

least of these parts must be infinite. If this be again divided, one of its

parts must be infinite, and so on. Thus no finite number of divisions

will reduce all the parts to finitude. Successive divisions give an endless

series of parts, and in such endless series there is (as we shall see in

Parts IV and V) no manner of contradiction. Thus there is no method

of proving by actual division that every infinite whole must be an

aggregate. So far as this method can show, there is no more reason for

simple constituents of infinite wholes than for a first moment in time or

a last finite number.

But perhaps a contradiction may emerge in the present case from the

connection of whole and part with logical priority. It certainly seems a

greater paradox to maintain that infinite wholes do not have indivisible

parts than to maintain that there is no first moment in time or furthest

limit to space. This might be explained by the fact that we know many
simple terms, and some infinite wholes undoubtedly composed of simple

terms, whereas we know of nothing suggesting a beginning of time or

space. But it may perhaps have a more solid basis in logical priority.

For the simpler is always implied in the more complex, and therefore

there can be no truth about the more complex unless there is truth

about the simpler. Thus in the analysis of our infinite whole, we are

always dealing with , entities which would not be at all unless their

constituents were. This makes a real difference from the time-series, for

example : a moment does not logically presuppose a previous moment,

10—2



148 Number [chap, xvn

and if it did it would perhaps be self-contradictory to deny a first

moment, a& it has been held (for the same reason) self-contradictory to

deny a First Cause. It seems to follow that infinite wholes would not

have Being at all, unless there were innumerable simple Beings whose

Being is presupposed in that of the infinite wholes. For where the

presupposition is false, the consequence is false also. Thus there seems

a special reason for completing the infinite regress in the case of infinite

wholes, which does not exist where other asymmetrical transitive relations

are concerned. This is another instance of the peculiarity of the relation

of whole and part : a relation so important and fundamental that almost

all our philosophy depends upon the theory we adopt in regard to it.

The same argument may be otherwise stated by asking how our

infinite wholes are to be defined. The definition must not be infinitely

complex, since this would require an infinite unity. Now if there is any

definition which is of finite complexity, this cannot be obtained from

the parts, since these are either infinitely numerous (in the case of an

aggregate), or themselves as complex as the whole (in the case of a

whole which is not an aggregate). But any definition which is of finite

complexity will necessarily be intensional, i.e. it will give some character-

istic of a collection of terms. There seems to be no other known method
of defining an infinite whole, or of obtaining such a whole in a way not

involving any infinite unity.

The above argument, it must be admitted, is less conclusive than

could be wished, considering the great importance of the point at issue.

It may, however, be urged in support of it that all the arguments on

the other side depend upon the supposed difficulties of infinity, and are

therefore wholly fallacious ; also that the procedure of Geometry and

Dynamics (as will be shown in Parts VI and VII) imperatively demands
points and instants. In all applications, in short, the results of the

doctrine here advocated are far simpler, less paradoxical, and more
logically satisfactory, than those of the opposite view. I shall therefore

assume, throughout the remainder of this work, that all the infinite

wholes with which we shall have to deal are aggregates of terms.



CHAPTER XVIII.

RATIOS AND FRACTIONS.

144. The present chapter, in so far as it deals with relations of

integers, is essentially confined to finite integers : those that are infinite

have no relations strictly analogous to what are usually called ratios.

But I shall distinguish ratios, as relations between integers, from
fractions, which are relations between aggregates, or rather between
their magnitudes of divisibility ; and fractions, we shall find, may
express relations which hold where both aggregates are infinite. It will

be necessary to begin with the mathematical definition of ratio, before

proceeding to more general considerations.

Ratio is commonly associated with multiplication and division, and
in this way becomes indistinguishable from fractions. But multiplication

and division are equally applicable to finite and infinite numbers, though
in the case of infinite numbers they do not have the properties which

connect them with ratio in the finite case. Hence it becomes desirable

to develop a theory of ratio which shall be independent of multiplication

and division.

Two finite numbers are said to be consecutive when, if m be a class

having one of the numbers, and one term be added to u, the resulting

class has the other number. To be consecutive is thus a relation which

is one-one and asymmetrical. If now a number a has to a number b

the wth power of this relation of consecutiveness (powers of relations

being defined by relative multiplication), then we have a + n = h. This

equation expresses, between a and &, a one-one relation which is deter-

minate when n is given. If now the »«th power of this relation holds

between a and 6', we shall have a' + mn = h'. Also we may define mn as

+ mn. If now we have three numbers a, b, c such that aJ) = c, this

equation expresses between a and c a one-one relation which is deter-

minate when b is given. Let us call this relation B. Suppose we have

also a'b' = c. Then a has to a' a relation which is the relative product

of B and the converse of B", where B' is derived from b' as B was derived

from b. This relation we define as the ratio of a to a. This theory

has the advantage that it applies not only to finite integers, but to
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all other series of the same type, i.e. all series of type the which I call

progressions.

145. The only point which it is important, for our present purpose,

to observe as regards the above definition of ratios is, that they are

one-one relations between finite integers, which are with one exception

asymmetrical, which are such that one and only one holds between any

specified pair of finite integers, which are definable in terms of consecu-

tiveness, and which themselves form a series having no first or last term

and having a term, and therefore an infinite number of terms, between

any two specified terms. From the fact that ratios are relations it

results that no ratios are to be identified with integers : the ratio of 2 to

1, for example, is a wholly different entity from 2. When, therefore,

we speak of the series of ratios as containing integers, the integers said

to be contained are not cardinal numbers, but relations which have a

certain one-one correspondence with cardinal numbers. The same remark

applies to positive and negative numbers. The «th power of the relation

of consecutiveness is the positive number + n, which is plainly a wholly

different concept from the cardinal number n. The confusion of entities

with others to which they have some important one-one relation is an

error to which mathematicians are very liable, and one which has

produced the greatest havoc in the philosophy of mathematics. We
shall find hereafter innumerable other instances of the same error, and it

is well to realize, as early as possible, that any failure in subtlety of

distinctions is sure, in this subject at least, to cause the most disastrous

consequences.

There is no difficulty in connecting the above theory of ratio with

the usual theory derived from multiplication and division. But the

usual theory does not show, as the present theory does, why the infinite

integers do not have ratios strictly analogous to those of finite integers.

The fact is, that ratio depends upon consecutiveness, and consecutiveness

as above defined does not exist among infinite integers, since these are

unchanged by the addition of 1.

It should be observed that what is called addition of ratios demands
a new set of relations among ratios, relations which may be called

positive and negative ratios, just as certain relations among integers are

positive and negative integers. This subject, however, need not be

further developed.

146. The above theory of ratio has, it must be confessed, a highly

artificial appearance, and one which makes it seem extraordinary that

ratios should occur in daily life. The fact is, it is not ratios, but
fractions, that occur, and fractions are not purely arithmetical, but are

really concerned with relations of whole and part.

Propositions asserting fractions show an important difference from
those asserting integers. We can say A is one, A and B are two, and
so on ; but we cannot say A is one-third, or A and B are two-thirds.
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There is always need of some second entity, to which our first has some
fractional relation. We say A is one-third of C, A and B together are

two-thirds of C, and so on. Fractions, in short, are either relations of

a simple part to a whole, or of two wholes to one another. But it

is not necessary that the one whole, or the simple part, should be part

of the other whole. In the case of finite wholes, the matter seems
simple : the fi-action expresses the ratio of the number of parts in the

one to the number in the other. But the consideration of infinite

wholes will show us that this simple theory is inadequate to the facts.

147. There is no doubt that the notion of half a league, or half

a day, is a legitimate notion. It is therefore necessary to find some
sense for fractions in which they do not essentially depend upon number.
For, if a given period of twenty-four hours is to be divided into two
continuous portions, each of which is to be half of the whole period,

there is only one way of doing this : but Cantor has shown that every

possible way of dividing the period into two continuous portions divides

it into two portions having the same number of terms. There must be,

therefore, some other respect in which two periods of twelve hours are

equal, while a period of one hour and another of twenty-three hours

are unequal. I shall have more to say upon this subject in Part III

;

for the present I will point out that what we want is of the nature of a

magnitude, and that it must be essentially a property of ordered wholes.

I shall call this property magnitude qf' divisibility . To say now that A is

one-half of B means : 5 is a whole, and if B be divided into two similar

parts which have both the same magnitude of divisibility as each other,

then A has the same magnitude of divisibility as each of these parts.

We may interpret the fraction ^ somewhat more simply, by regarding

it as a relation (analogous to ratio so long as finite wholes are concerned)

between two magnitudes of divisibility. Thus finite integral fractions

(such as njl) will measure the relation of the divisibility of an aggregate

of n terms to the divisibility of a single term ; the converse relation will

be 1/n. Thus here again we have a new class of entities which is in

danger of being confused with finite cardinal integers, though in reality

quite distinct. Fractions, as now interpreted, have the advantage (upon

which aU metrical geometry depends) that they introduce a discrimina-

tion of greater and smaller among infinite aggregates having the same

number of terms. We shall see more and more, as the logical inadequacy

of the usual accounts of measurement is brought to light, how absolutely

essential the notion of magnitude of divisibility really is. Fractions,

then, in the sense in which they may express relations of infinite

aggregates—and this is the sense which they usually have in daily life

—

are really of the nature of relations between magnitudes of divisibility

;

and magnitudes of divisibility are only measured by number of parts

where the aggregates concerned are finite. It may also be observed

(though this remark is anticipatory) that, whereas ratios, as above
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defined, are essentially rational, fractions, in the sense here given to

them, are also capable of irrational values. But the development of

this topic must be left for Part V.

148. We may now sum up the results obtained in Part II. In the

first four chapters, the modern mathematical theory of cardinal integers,

as it results from the joint labours of arithmeticians and symbolic

logicians, was briefly set forth. Chapter xi explained the notion of

similar classes, and showed that the usual formal properties of integers

result from defining them as classes of similar classes. In Chapter xii,

we showed how arithmetical addition and multiplication both depend

upon logical addition, and how both may be defined in a way which

applies equally to finite and infinite numbers, and to finite, and infinite

sums and products, and which moreover introduces nowhere any idea of

order. In Chapter xiii, we gave the strict definition of an infinite class,

as one which is similar to a class resulting from taking away one of its

terms ; and we showed in outline how to connect this definition with the

definition of finite numbers by mathematical induction. The special

theory of finite integers was discussed in Chapter xiv, and it was shown

how the primitive propositions, which Peano proves to be sufficient in

this subject, can all be deduced from our definition of finite cardinal

integers. This confirmed us in the opinion that Arithmetic contains no

indefinables or indemonstrables beyond those of general logic.

We then advanced, in Chapter xv, to the consideration of philoso-

phical questions, with a view of testing critically the above mathematical

deductions. We decided to regard both tervi and a term as indefinable,

and to define the number 1, as well as all other numbers, by means of these

indefinables (together with certain others). We also found it necessary

to distinguish a class from its class-concept, since one class may have

several different class-concepts. We decided that a class consists of all

the terms denoted by the class-concept, denoted in a certain indefinable

manner ; but it appeared that both common usage and the majority of

mathematical purposes would allow us to identify a class with the whole

formed of the terms denoted by the class-concept. The only reasons

against this view were, the necessity of distinguishing a class containing

only one term from that one term, and the fact that some classes are

members of themselves. We found also a distinction between finite and

infinite classes, that the former can, while the latter cannot, be defined

extensionally, i.e. by actual enumeration of their terms. We then

proceeded to discuss what may be called the addition of individuals,

i.e. the notion involved in "J and 5" ; and we found that a more or less

independent theory oi finite integers can be based upon this notion.

But it appeared finally, in virtue of our analysis of the notion of class,

that this theory was really indistinguishable from the theory previously

expounded, the only difference being that it adopted an extensional

definition of classes.
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Chapter xvi dealt with the relation of whole and part. We found
that there are two indefinable senses of this relation, and one definable

sense, and that there are two correspondingly different sorts of wholes,

which we called unities and aggregates respectively. We saw also that,

by extending the notion of aggregates to single terms and to the nuU-
class, we could regard the whole of the traditional calculus of Symbolic
Logic as an algebra specially applicable to the relations of wholes and
parts in the definable sense. We considered next, in Chapter xvii, the

notion of an infinite whole. It appeared that infinite unities, even if

they be logically possible, at any rate never appear in anything accessible

to human knowledge. But infinite aggregates, we found, must be ad-

mitted ; and it seemed that all infinite wholes which are not unities

must be aggregates of terms, though it is by no means necessary that the

terms should be simple. (They must, however, owing to the exclusion

of infinite unities, be assumed to be oifinite complexity.)

In Chapter xviii, finally, we considered ratios and fractions : the former

were found to be somewhat complicated relations of finite integers, while

the latter were relations between the divisibilities of aggregates. These
divisibilities being magnitudes, their further discussion belongs to Part III,

in which the general nature of quantity is to be considered.





PART III.

QUANTITY.





CHAPTER XIX.

THE MEANING OF MAGNITUDE.

149. Among the traditional problems of mathematical philosophy,

few are more important than the relation of quantity to number.

Opinion as to this relation has luidergone many revolutions. Euclid,

as is evident from his definitions of ratio and proportion, and indeed

from his whole procedure, was not persuaded of the applicability of

numbei-s to spatial magnitudes. When Des Cartes and Vieta, by the

introduction of co-ordinate Geometry, made this applicability a funda-

mental postulate of their systems, a new method was founded, which,

however fruitful of results, involved, like most mathematical advances of

the seventeenth century, a diminution of logical precision and a loss in

subtlety of distinction. What was meant by measurement, and whether

aU spatial magnitudes were susceptible of a numerical measure, were

questions for whose decision, until very lately, the necessary mathe-

matical instrument was lacking; and even now much remains to be

done before a complete answer can be given. The view prevailed that

number and quantity were the objects of mathematical investigation,

and that the two were so similar as not to require careful separation.

Thus number was applied to quantities without any hesitation, and
conversely, where existing numbers were found inadequate to measure-

ment, new ones were created on the sole ground that every quantity

must have a numerical measure.

All this is now happily changed. Two different lines of argument,

conducted in the main by different men, have laid the foundations both

for large generalizations, and for thorough accuracy in detail. On the

one hand, Weiei-strass, Dedekind, Cantor, and their followers, have

pointed out that, if irrational numbers are to be significantly employed as

measures of quantitative fractions, they must be defined without reference

to quantity ; and the same men who showed the necessity of such a

definition have supplied the want which they had created. In this way,

during the last thirty or forty years, a new subject, which has added

quite immeasurably to theoretical correctness, has been created, which

may legitimately be called Arithmetic; for, starting with integers, it
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succeeds in defining whatever else it requires—rationals, limits, ir-

rationals, continuity, and so on. It results that, for all Algebra and

Analysis, it is unnecessary to assume any material beyond the integers,

which, as we have seen, can themselves be defined in logical terms.

It is this science, far more than non-Euclidean Geometry, that is really

fatal to the Kantian theory of a priori intuitions as the basis of

mathematics. Continuity and irrationals were formerly the strongholds

of the school who may be called intuitionists, but these strongholds are

theirs no longer. Arithmetic has grown so as to include all that can

strictly be called pure in the traditional mathematics.

150. But, concurrently with this purist's reform, an opposite advance

has been eflfected. New branches of mathematics, which deal neither

with number nor with quantity, have been invented; such are the

Logical Calculus, Projective Geometry, and—in its essence—^the Theory

of Groups. Moreover it has appeared that measurement—if this means

the correlation, with numbers, of entities which are not numbers or

aggregates—is not a prerogative of quantities : some quantities cannot

be measured, and some things which are not quantities (for example

anharmonic ratios projectively defined) can be measured. Measurement,

in fact, as we shall see, is applicable to all series of a certain kind—a kind

which excludes some quantities and includes some things which are

not quantities. The separation between number and quantity is thus

complete : each is wholly independent of the other. Quantity, moreover,

has lost the mathematical importance which it used to possess, owing to

the fact that most theorems concerning it can be generalized so as to

become theorems concerning order. It would therefore be natural

to discuss order before quantity. As all propositions concerning order

can, however, be established independently for particular instances of

order, and as quantity will afford an illustration, requiring slightly less

effort of abstraction, of the principles to be applied to series in general

;

as, further, the theory of distance, which forms a part of the theory of

order, presupposes somewhat controversial opinions as to the nature

of quantity, I shall follow the more traditional course, and consider

quantity first. My aim will be to give, in the present chapter, a theory

of quantity which does not depend upon number, and then to show the

peculiar relation to number which is possessed by two special classes of

quantities, upon which depends the measurement of quantities wherever

this is possible. The whole of this Part, however—and it is important

to realize this—is a concession to tradition ; for quantity, we shall find,

is not definable in terms of logical constants, and is not properly a

notion belonging to pure mathematics at all. I shall discuss quantity

because it is traditionally supposed to occur in mathematics, and because

a thorough discussion is required for disproving this supposition ; but

if the supposition did not exist, I should avoid all mention of any such

notion as quantity.
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151. In fixing the meaning of such a term as quantityor magnihide,

one is faced with the difficulty that, however one may define the word,

one must appear to depart from usage. This difficulty arises wherever

two characteristics have been commonly supposed inseparable which,

upon closer examination, are discovered to be capable of existing apart.

In the case of magnitude, the usual meaning' appears to imply (1) a

capacity for the relations of greater and less, (2) divisibility. Of these

characteristics, the first is supposed to imply the second. But as I

propose to deny the implication, I must either admit that some things

which are indivisible are magnitudes, or that some things which are

greater or less than others are not magnitudes. As one of these de-

partures from usage is unavoidable, I shall choose the former, which

I believe to be the less serious. A magnitude, then, is to be defined as

anything which is greater or less than something else.

It might be thought that equality should be mentioned, along with

greater and less, in the definition of magnitude. We shall see reason

to think, however—paradoxical as such a view may appear—that what

can be greater or less than some term, can never be equal to any term

whatever, and vice versa. This will require a distinction, whose necessity

will become more and more evident as we proceed, between the kind of

terms that can be equal, and the kind that can be greater or less. The
former I shall call quantities, the latter magnitudes. An actual foot-

rule is a quantity : its length is a magnitude. Magnitudes are more

abstract than quantities : when two quantities are equal, they have the

sanu magnitude. The necessity of this abstraction is the first point to

be established.

152. Setting aside magnitudes for the moment, let us consider

quantities. A quantity is anything which is capable of quantitative

equality to something else. Quantitative equality is to be distinguished

from other kinds, such as arithmetical or logical equality. All kinds

of equality have in common the three properties of being reflexive,

symmetrical, and transitive, i.e. a term which has this relation at all

has this relation to itself; if A has the relation to B, B has it to J ;

if A has it to B, and B to C, A has it to C*. What it is that dis-

tinguishes quantitative equality from other kinds, and whether this

kind of equality is analyzable, is a further and more difficult question,

to which we must now proceed.

There are, so far as I know, three main views of quantitative

equality. There is (1) the traditional view, which denies quantity as

* On the independence of these three properties, see Peano, Revue de Mathematique,

VII, p. 22. The reflexive property is not strictly necessary ; what is properly necessary

and what is alone (at first sight at any rate) true of quantitative equality, is, that there

exists at least one pair of terms having the relation in question. It follows then from

the other two properties that each of these terms has to itself the relation in

question.
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an independent idea, and asserts that two terms are equal when, and

only when, they have the same number of parts. (2) There is what may
be called the relative view of quantity, according to which equal, greater

and less are all direct relations between quantities. In this view we

have no need of magnitude, since sameness of magnitude is replaced

by the symmetrical and transitive relation of equality. (3) There is

the absolute theory of quantity, in which equality is not a direct relation,

but is to be analyzed into possession of a common magnitude, i.e. into

sameness of relation to a third term. In this case there,wiU be a special

kind of relation of a term to its magnitude ; between two magnitudes

of the same kind there will be the relation of greater and less ; while

equal, greater and less will apply to quantities only in virtue of their

relation to magnitudes. The difference between the second and third

theories is exactly typical of a difference which arises in the case of many
other series, and notably in regard to space and time. The decision

is, therefore, a matter of very considerable importance.

153. (1) The kind of equality which consists in having the same

number of parts has been already discussed in Part II. If this be

indeed the meaning of quantitative equality, then quantity introduces

no new idea. But it may be shown, I think, that greater and less have

a wider field than whole and part, and an independent meaning. The
arguments may be enumerated as follows : (a) We must admit indi-

visible quantities ; (/3) where the number of simple parts is infinite,

there is no generalization of number which will give the recognized

results as to inequality ; (7) some relations must be allowed to be

quantitative, and relations are not even conceivably divisible ; (S) even

where there is divisibility, the axiom that the whole is greater than the

part must be allowed to be significant, and not a result of definition.

(a) Some quantities are indivisible. For it is generally admitted

that some psychical existents, such as pleasure and pain, are quantitative.

If now equality means sameness in the number of indivisible parts, we

shall have to regard a pleasure or a pain as consisting of a collection

of units, aU perfectly simple, and not, in any significant sense, equal

inter se ; for the equality of compound pleasui-es results on this hypothesis,

solely from the number of simple ones entering into their composition,

so that equality is formally inapplicable to indivisible pleasures. If, on

the other hand, we allow pleasures to be infinitely divisible, so that no

unit we can take is indivisible, then the number of units in any given

pleasure is wholly arbitrary, and if there is to be any equahty of

pleasures, we shall have to admit that any two units may be significantly

called equal or unequal*. Hence we shall require for equality some

meaning other than sameness as to the number of parts. This latter

* I shall never use the word unequal to mean merely not equal, but always to

mean greater or less, i.e. not equal, though of the same kind of quantities.
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theory, however, seems unavoidable. For there is not only no reason

to regard pleasures as consisting of definite sums of indivisible units,

but further—as a candid consideration will, I think, convince anyone

—

two pleasures can always be significantly judged equal or unequal.

However small two pleasures may be, it must always be significant to

say that they are equal. But on the theory I am combating, the judg-

ment in question would suddenly cease to be significant when both

pleasures were indivisible units. Such a view seems wholly unwarrant-

able, and I cannot believe that it has been consciously held by those*

who have advocated the premisses from which it follows.

(yS) Some quantities are infinitely divisible, and in these, whatever

definition we take of infinite number, equality is not coextensive with

sameness in the number of parts. In the first place, equality or

inequality must always be definite : concerning two quantities of the

same kind, one answer must be right and the other wrong, though it is

often not in our power to decide the alternative. From this it follows

that, where quantities consist of an infinite number of parts, if equality

or inequality is to be reduced to number of parts at all, it must be

reduced to number of simple parts ; for the number of complex parts

that may be taken to make up the whole is wholly arbitrary. But
equality, for example in Geometry, is far narrower than sameness in the

number of parts. The cardinal number of parts in any two continuous

portions of space is the same, as we know from Cantor ; even the ordinal

number or type is the same for any two lengths whatever. Hence if

there is to be any spatial inequality of the kind to which Geometry and

common-sense have accustomed us, we must seek some other meaning for

equality than that obtained from the number of parts. At this point

I shall be told that the meaning is very obvious : it is obtained from

superposition. Without trenching too far on discussions which belong

to a later part, I may observe (a) that superposition applies to matter,

not to space, (6) that as a criterion of equality, it presupposes that the

matter superposed is rigid, (f) that rigidity means constancy as regards

metrical properties. This shows that we cannot, without a vicious

circle, define spatial equality by superposition. Spatial magnitude is, in

fact, as indefinable as every other kind ; and number of parts, in this case

as in all others where the number is infinite, is wholly inadequate even

as a criterion.

(7) Some relations are quantities. This is suggested by the above

discussion of spatial magnitudes, where it is very natural to base equality

upon distances. Although this view, as we shall see hereafter, is not

wholly adequate, it is yet partly true. There appear to be in certain

spaces, and there certainly are in some series (for instance that of the

* E.g. Mr Bradley, "What do we mean by the Intensity of Psychical States.'"

Mind, N. S. Vol. iv ; see esp. p. 6.

E. 11
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rational numbers), quantitative relations of distance among the various

terms. Also similarity and difference appear to be quantities. Consider

for example two shades of colour. It seems undeniable that two shades

of red are more similar to each other than either is to a shade of blue

;

^yet there is no common property in the one case which is not found in

the other also. Red is a mere collective name for a certain series of

shades, and the only reason for giving a collective name to this series

lies in the close resemblance between its terms. Hence red must not be

regarded as a common property in virtue of which two shades of red

resemble each other. And since relations are not even conceivably

divisible, greater and less among relations cannot depend upon number

of parts.

(S) Finally, it is well to consider directly the meanings of greater

and less on the one hand, and of whole and part on the other. Euclid's

axiom, that the whole is greater than the part, seems undeniably signi-

ficant; but on the traditional view of quantity, this axiom would be

a mere tautology. This point is again connected with the question

whether superposition is to be taken as the meaning of equality, or as a

mere criterion. On the latter view, the axiom must be significant, and

we cannot identify magnitude with number of parts*.

154. (2) There is therefore in quantity something over and above

the ideas which we have hitherto discussed. It remains to decide between

the relative and absolute theories of magnitude.

The relative theory regards equal quantities as not possessed of any

common property over and above that of imequal quantities, but as

distinguished merely by the mutual relation of equality. There is no

such thing as a magnitude, shared by equal quantities. We must not

say : This and that are both a yard long ; we must say : This and that

are equal, or are both equal to the standard yard in the Exchequer.

Inequality is also a direct relation between quantities, not between

magnitudes. There is nothing by which a set of equal quantities are

distinguished from one which is not equal to them, except the relation of

equality itself. The course of definition is, therefore, as foUows : We
have first a quality or relation, say pleasure, of which there are various

instances, specialized, in the case of a quality, by temporal or spatio-

temporal position, and in the case of a relation, by the terms between

which it holds. Let us, to fix ideas, consider quantities of pleasure.

Quantities of pleasure consist merely of the complexes pleasure at such a

time, and pleasure at stcch another time (to which place may be added, if

it be thought that pleasures have position in space). In the analysis of

a particular pleasure, there is, according to the relational theory, no

other element to be found. But on comparing these particular pleasures,

* Compare, with the above discussion, Meinong, Ueber die Bedeutung des Weber-
schen Gesetzes, Hamburg and Leipzig, 1896 ; especially Chap, i, § 3.
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we find that any two have one and only one of three relations, equal,

greater, and less. Why some have one relation, some another, is a

question to which it is theoretically and strictly impossible to give an

answer ; for there is, ex hypothesl, no point of difference except temporal

or spatio-temporal position, which is obviously irrelevant. Equal quan-

tities of pleasure do not agree in any respect in which unequal ones

differ : it merely happens that some have one relation and some another.

This state of things, it must be admitted, is curious, and it becomes

still more so when we examine the indemonstrable axioms which the

relational theory obliges us to assume. They are the following (J, B, C
being all quantities of one kind) :

(a) A—B,ovA is greater than B, or A is less than B.

(b) A being given, there is always a B, which may be identical

with A, such that A =B.
(c) IiA=B,thenB = A.

(d) li A=B &ndB = C, then A = C.

(e) If A is greater than B, then B is less than A.

(f) If A is greater than B, and B is greater than C, then A is

greater than C.

(g) If A is greater than B, and B=C, then A is greater than C.

(h) li A= B, and B is'greater than C, then A is greater than C.

From (b), (c), and (d) it follows that A=A*. From (e) and (/) it

follows that, ifA is less than B, and B is less than C, then A is less than

C ; from (c), (e), and (h) it follows that, if A is less than B, and B = C,

then A is less than C ; from (c), (e), and (g) it follows that, it A=B, and

B is less than C, then A is less than C. (In the place of (b) we may put

the axiom: If ^ be a quantity, then A=A.) These axioms, it will be

observed, lead to the conclusion that, in any proposition asserting

equality, excess, or defect, an equal quantity may be substituted any-

where without affecting the truth or falsehood of the proposition.

Further, the proposition A=A is an essential part of the theory. Now
the first of these facts strongly suggests that what is relevant in quanti-

tative propositions is not the actual quantity, but some property which

it shares with other equal quantities. And this suggestion is almost

demonstrated by the second fact, A ^ A. For it may be laid down that

the only unanalyzable symmetrical and transitive relation which a term

can have to itself is identity, if this be indeed a relation. Hence the

relation of equality should be analyzable. Now to say that a relation is

analyzable is to say either that it consists of two or more relations

between its terms, which is plainly not the case here, or that, when it is

said to hold between two terms, there is some third term to which both

are related in ways which, when compounded, give the original relation.

* This does not follow from (c) and (d) alone, since they do not assert that A is

ever equal to B. See Peano, loc. cit.

11—2
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Thus to assert that A is jB's grandparent is to assert that there is some

third person C, who is ^'s son or daughter and ^'s father or mother.

Hence if equality be analyzable, two equal terms must both be related to

some third term ; and since a term may be equal to itself, any two equal

terms must have the same relation to the third term in question. But

to admit this is to admit the absolute theory of magnitude.

A direct inspection of what we mean when we say that two terms

are equal or unequal will reinforce the objections to the relational

theory. It seems preposterous to maintain that equal quantities have

absolutely nothing in common beyond what is shared by unequal

quantities. Moreover unequal quantities are not merely different : they

are different in the specific manner expressed by saying that one is

greater, the other less. Such a difference seems quite unintelligible

unless there is some point of difference, where unequal quantities are

concerned, which is absent where quantities are equal. Thus the rela-

tional theory, though apparently not absolutely self-contradictory, is

complicated and paradoxical. Both the complication and the paradox,

we shall find, are entirely absent in the absolute theory.

155. (3) In the absolute theory, there is, belonging to a set of

equal quantities, one definite concept, namely a certain magnitude.

Magnitudes are distinguished among concepts by the fact that they

have the relations of greater and less (or at least one of them) to other

terms, which are therefore also magnitudes. Two magnitudes cannot

be equal, for equality belongs to quantities, and is defined as possession

of the same magnitude. Every magnitude is a simple and indefinable

concept. Not any two magnitudes are one greater and the other less

;

on the contrary, given any magnitude, those which are greater or less

than that magnitude form a certain definite class, within which any two

are one greater and the other less. Such a class is called a hind of

magnitude. A kind of magnitude may, however, be also defined in

another way, which has to be connected with the above by an axiom.

Every magnitude is a magnitude of something—^pleasure, distance, area,

etc.—and has thus a certain specific relation to the something of which

it is a magnitude. This relation is very peculiar, and appears to be

incapable of further definition. All magnitudes which have this relation

to one and the same something {e.g. pleasure) are magnitudes of one

kind ; and with this definition, it becomes an axiom to say that, of two

magnitudes of the- same kind, one is greater and the other less.

156. An objection to the above theory may be based on the

relation of a magnitude to that whose magnitude it is. To fix our

ideas, let us consider pleasure. A magnitude of pleasure is so much

pleasure, such and such an intensity of pleasure. It seems difficult to

regard this, as the absolute theory demands, as a simple idea : there

seem to be two constituents, pleasure and intensity. Intensity need not

be intensity of pleasure, and intensity of pleasiu'e is distinct from
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abstract pleasure. But what we require for the constitution of a certain

magnitude of pleasure is, not intensity in general, but a certain specific

intensity ; and a specific intensity cannot be indiiferently of pleasure or

of something else. We cannot first settle how much we will have, and

then decide whether it is to be pleasure or mass. A specific intensity

must be of a specific kind. Thus intensity and pleasure are not in-

dependent and coordinate elements in the definition of a given amount

of pleasure. There are different kinds of intensity, and different magni-

tudes in each kind ; but magnitudes in different kinds must be different.

Thus it seems that the common element, indicated by the term intensity

or magnitude, is not any thing intrinsic, that can be discovered by analysis

of a single term, but is merely the fact of being one term in a relation of

inequality. Magnitudes are defined by the fact that they have this

relation, and they do not, so far as the definition shows, agree in any-

thing else. The class to which they all belong, like the married portion

of a community, is defined by mutual relations among its terms, not by

a common relation to some outside term—unless, indeed, inequality

itself were taken as such a term, which would be merely an unnecessary

complication. It is necessary to consider what may be called the

extension or field of a relation, as well as that of a class-concept: and

magnitude is the class which forms the extension of inequality. Thus '

magnitude of pleasure is complex, because it combines magnitude and

pleasure; but a particular magnitude of pleasure is not complex, for

magnitude does not enter into its concept at all. It is only a magnitude

because it is greater or less than certain other terms; it is only a magni-

tude of pleasure because of a certain relation which it has to pleasure.

This is more easily understood where the particular magnitude has a

special name. A yard, for instance, is a magnitude, because it is greater

than a foot ; it is a magnitude of length, because it is what is called

a length. Thus all magnitudes are simple concepts, and are classified,-

into kinds by their relation to some quality or relation. The quantities

which are instances of a magnitude are particularized by spatio-temporal

position or (in the case of relations which are quantities) by the terms

between which the relation holds. Quantities are not properly greater

or less, for the relations of greater and less hold between their

magnitudes, which are distinct from the quantities.

When this theory is applied in the enumeration of the necessary

axioms, we find a very notable simplification. The axioms in which

equality appears have all become demonstrable, and we require only the

following (Z,, M, N being magnitudes of one kind) :

(a) No magnitude is greater or less than itself.

{h) L is greater than M or Lis less than M.
(c) If L is greater than M, then M is less than L.

(d) If L is greater than M and M is greater than N, then L is

greater than N.
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The difficult axiom which we formerly called (6) is avoided, as are the

other axioms concerning equality; and those that remain are simpler

than oxn: former set.

157. The decision between the absolute and relative theories can

be made at once by appealing to a certain general principle, of very

wide application, which I propose to call the principle of Abstraction.

This principle asserts that, whenever a relation, of which there are

instances, has the two properties of being symmetrical and transitive,

then the relation in question is not primitive, but is analyzable into

sameness of relation to some other term ; and that this common relation

is such that there is only one term at most to which a given term can be

so related, though many terms may be so related to a given term.

(That is, the relation is like that of son to father : a man may have

many sons, but can have only one father.)

This principle, which we have already met with in connection with

cardinals, may seem somewhat elaborate. It is, however, capable of

proof, and is merely a careful statement of a very common assumption.

It is generally held that all relations are analyzable into identity or

diversity of content. Though I entirely reject this view, I retain, so far

as symmetrical transitive relations are concerned, what is reaU}' a some-

what modified statement of the traditional doctrine. Such relations, to

adopt more usual phraseology, are always constituted by possession of

a common property. But a common property is not a very precise

conception, and will not, in most of its ordinary significations, formally

fulfil the function of analyzing the relations in question. A common
quality of two terms is usually regarded a;S a predicate of those terms.

But the whole doctrine of subject and predicate, as the only form of

which propositions are capable, and the whole denial of the ultimate

reality of relations, are rejected by the logic advocated in the present

work. Abandoning the word predicate, we may say that the most

general sense which can be given to a common property is this : A
common property of two terms is any third term to which both have

one and the same relation. In this general sense, the possession of

a common property is symmetrical, but not necessarily transitive. In

order that it may be transitive, the relation to the common property

must be such that only one term at most can be the property of any

given term*. Such is the relation of a quantity to its magnitude, or of

an event to the time at which it occurs : given one term of the relation,

namely the referent, the other is determinate, but given the other, the

one is by no means determinate. Thus it is capable of demonstration

that the possession of a common property of the type in question always

* The proof of these assertions is mathematical, and depends upon the Logic

of Relations ; it will be fomid in my article " Sur la Logique des Relations,"

R. d. M. VII, No. 2, § 1, Props. 6. 1, and 6. 2.
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leads to a symmetrical transitive relation. \Vhat the principle of

abstraction asserts is the converse, that such relations only spring from
common properties of the above type *. It should be observed that the

relation of the terms to what I have called their common property can

never be that which is usually indicated by the relation of subject to

predicate, or of the individual to its class. For no subject (in the

received view) can have only one predicate, and no individual can belong

to only one class. The relation of the terms to their common property

is, in general, different in different cases. In the present case, the

quantity is a complex of which the magnitude forms an element : the

relation of the quantity to the magnitude is fui-ther defined by the

fact that the magnitude has to belong to a certain class, namely that of

magnitudes. It must then be taken as an axiom (as in the case of

colours) that two magnitudes of the same kind cannot coexist in one
spatio-temporal place, or subsist as relations between the same pair of

terms; and this supplies the required uniqueness of the magnitude. It

is such synthetic judgments of incompatibilitv that lead to negative

judgments ; but this is a purely logical topic, upon which it is not

necessary to enlarge in this connection. —
158. We mav now sum up the above discussion in a brief statement

of results. There are a certain pair of indefinable relations, called

g7-eater and less ; these relations are asymmetrical and transitive, and

are inconsistent the one with the other. Each is the converse of the

other, in the sense that, whenever the one holds between A and B, the

other holds between B and A. The terms which are capable of these

relations are magnitiuks. Every magnitude has a certain peculiar

relation to some concept, expressed bv saving that it is a magnitude q/"that

concept. Two magnitudes which have this relation to the same concept

are said to be of the same kind ; to be of the same kind is the necessary

and sufficient condition for the relations of greater and less. When a

magnitude can be particularized by temporal, spatial, or spatio-temporal

position, or when, being a relation, it can be particularized by taking

into a consideration a pair of terms between which it holds, then the

magnitude so particularized is called a quantity. Two magnitudes of

the same kind can never be particularized by exactly the same specifi-

cations. Two quantities which result from particularizing the same

magnitude are said to be equal.

Thus oui- indefinables are (1) greater and less, (2) every particular

magnitude. Our indemonstrable propositions are

:

* The principle is proved by showing that, if iJ be a symmetrical transitive

relation, and a a term of the iield of R, a has, to the class of terms to which it has

the relation B taken as a whole, a many-one relation which, relationally multiplied

by its converse, is equal to R. Thus a magnitude may, so far as formal arguments

are concerned, be identified with a class of equal quantities.
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(1) Every magnitude has to some term the relation which makes

it of a certain kind.

(2) Any two magnitudes of the same kind are one greater and the

other less.

(3) Two magnitudes of the same kind, if capable of occupying space

or time, cannot both have the same spatio-temporal position; if relations,

can never be both relations between the same pair of terms.

(4) No magnitude is greater than itself.

(5) If A is greater than B, B is less than A, and vice versa.

(6) If A is greater than B and B is greater than C, then A is

greater than C*.

Further axioms characterize various species of magnitudes, but the

above seem alone necessary to magnitude in general. None of them

depend in any way upon number or measurement ; hence we may be

undismayed in the presence of magnitudes which cannot be divided or

measured, of which, in the next chapter, we shall find an abundance of

instances.

Note to Chapter XIX. The work of Herr Meinong on Weber's Law,

already alluded to, is one from which I have learnt so much, and with

which I so largely agree, that it seems desirable to justify myself on

the points in which I depart from it. This work begins (| 1) by a

characterization of magnitude as that which is limited towards zero.

Zero is understood as the negation of magnitude, and after a discussion,

the following statement is adopted (p. 8):

" That is or has magnitude, which allows the interpolation of terms

between itself and its contradictory opposite."

Whether this constitutes a definition, or a mere criterion, is left

doubtful {ib.), but in either case, it appears to me to be undesirable as

a fundamental characterization of magnitude. It derives support, as

Herr Meinong points out (p. 6 «.), from its similarity to Kanfs

"Anticipations of Perception f." But it is, if I am not mistaken, liable

to several grave objections. In the first place, the whole theory of zero

is most difficult, and seems subsequent, rather than prior, to the theory

of other magnitudes. And to regard zero as the contradictory opposite

of other magnitudes seems erroneous. The phrase should denote the

class obtained by negation of the class " magnitudes of such and such

a kind"; but this obviously would not yield the zero of that kind of

magnitude. Whatever interpretation we give to the phrase, it would

seem to imply that we must regard zero as not a magnitude of the kind

whose zero it is. But in that case it is not less than the magnitudes of

the kind in question, and there seems no particular meaning in saying

* It is not necessary in (5) and (6) to add " A, B, C being magnitudes," for the

above relations of greater and less are what define magnitudes, and the addition

would therefore be tautological.

t Reine Vernunft, ed. Hartenstein (1867), p. 158.
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that a lesser magnitude is between zero and a greater magnitude. And
in any case, the notion of between, as we shall see in Part IV, demands
asymmetrical relations among the terms concerned. These relations, it

would seem, are, in the case of magnitude, none other than greater and

less, which are therefore prior to the betweenness of magnitudes, and
more suitable to definition. I shall endeavour at a later stage to give

what I conceive to be the true theory of zero ; and it will then appear

how difficult this subject is. It can hardly be wise, therefore, to introduce

zero in the first account of magnitude. Other objections might be urged,

as, for instance, that it is doubtful whether all kinds of magnitude have

a zero ; that in discrete kinds of magnitude, zero is unimportant ; and
that among distances, where the zero is simply identity, there is hardly

the same relation of zero to negation or non-existence as in the case of

qualities such as pleasure. But the main reason must be the logical

inversion involved in the introduction of between before any asymmetrical

relations have been specified from which it could arise. This subject

will be resumed in Chapter xxii. '



CHAPTER XX.

THE RANGE OF QUANTITY.

159. The questions to be discussed in the present chapter are these

:

What kinds of terms are there which, by their common relation to a

number of magnitudes, constitute a class of quantities of one kind.''

Have all such terms anything else in common ? Is there any mark

which will ensure that a term is thus related to a set of magnitudes ?

What sorts of terms are capable of degree, or intensity, or greater and

less ?

The traditional view regards divisibility as a common mark of all

terms having magnitude. We have already seen that there is no

a priori ground for this view. We are now to examine the question

inductively, to find as many undoubted instances of quantities as possible,

and to inquire whether they all have divisibility or any other common
mark.

Any term of which a greater or less degree is possible contains under

it a collection of magnitudes of one kind. Hence the comparative form

in grammar is prima facie evidence of quantity. If this evidence were

conclusive, we should have to admit that all, or almost all, qualities are

susceptible of magnitude. The praises and reproaches addressed by

poets to their mistresses would afford comparatives and superlatives

of most known adjectives. But some circumspection is required in

using evidence of this grammatical nature. There is always, I think,

some quantitative comparison wherever a comparative or superlative

occurs, but it is often not a comparison as regards the quality indicated

by grammar.
'^O ruddier than the cherry,

O sweeter than the herry,

O nymph more bright

Than moonshine light,"

are lines containing three comparatives. As regards sweetness and

brightness, we have, I think, a genuine quantitative comparison ; but as

regards iniddiness, this may be doubted. The comparative here—and

generally where colours are concerned—indicates, I think, not more of a
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given colour, but more likeness to a standard colour. Various shades of

colour are supposed to be arranged in a series, such that the difference

of quality is greater or less according as the distance in the series is

greater or less. One of these shades is the ideal " ruddiness," and others

are called more or less ruddy according as they are nearer to or further

from this shade in the series. The same explanation applies, I think,

to such terms as whiter, blacker, redder. The true quantity involved

seems to be, in all these cases, a relation, namely the relation of similarity.

The diiFerence between two shades of colour is certainly a difference of

quality, not merely of magnitude ; and when we say that one thing is

redder than another, we do not imply that the two are of the same shade.

If there were no difference of shade, we should probably say one was
brighter than the other, which is quite a different kind of comparison.

But though the difference of two shades is a difference of quality, yet, as

the possibility of serial arrangement shows, this difference of quality is

itself susceptible of degrees. Each shade of colour seems to be simple

and unanalyzable ; but neighbouring colours in the spectrum are certainly

more similar than remote colours. It is this that gives continuity to

coloui-s. Between two shades of colour, A and B, we should say, there

is always a third colour C; and this means that C resembles A or B
more than B or A does. But for such relations of immediate resemblance,

we should not be able to arrange colours in series. The resemblance

must be immediate, since all shades of colour are unanalyzable, as appears

from any attempt at description or definition*. Thus we have an
indubitable case of relations which have magnitude. The difference or

resemblance of two colours is a relation, and is & rjiagnitude ; for it is

greater or less than other differences or resemblances.

160. I have dwelt upon this case of colours, since it is one instance

of a very important class. When any number of terms can be arranged

in a series, it frequently happens that any two of them have a relation

which may, in a generalized sense, be called a distance. This relation

suffices to generate a serial arrangement, and is always necessarily a

magnitude. In all such cases, if the terms of the series have names, and

if these names have comparatives, the comparatives indicate, not more
of the term in question, but more likeness to that term. Thus, if we

suppose the time-series to be one in which there is distance, when an

event is said to be more recent than another, what is meant is that its

distance from the present was less than that of the other. Thus recentness

is not itself a quality of the time or of the event. What are quantitatively

* On the subject of tlie resemblances of colours, see Meinong, "Abstrahiren und

Vergleichen," Zeitschrift f. Psych, u. Phys. d. Sinnesorgane, Vol. xxiv, p. 72 ff.

I am not sure that I agree with the whole of Meinong's argument, but his general

conclusion, "dass die Umfangscollective des Aehnlichen Allgemeinheiten darstellen,

an denen die Abstraction wenigstens unmittelbar keinen Antheil hat" (p. 78),

appears to me to be a correct and important logical principle.
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compared in such cases are relations, not qualities. The case of colours

is convenient for illustration, because colours have names, and the

difference of two colours is generally admitted to be qualitative. But

/ the principle is of very wide application. The importance of this class

of magnitudes, and the absolute necessity of clear notions as to their

nature, will appear more and more as we proceed. The whole philosophy

of space and time, and the doctrine of so-called extensive magnitudes,

depend throughout upon a clear understanding of series and distance.

Distance must be distinguished from mere difference or unlikeness.

It holds only between terms in a series. It is intimately connected with

order, and implies that the terms between which it holds have an ultimate

and simple difference, not one capable of analysis into constituents.

It implies also that there is a more or less continuous passage, through

other terms belonging to the same series, from one of the distant terms

to the other. Mere difference per se appears to be the bare minimum of

a relation, being in fact a precondition of almost all relations. It is

always absolute, and is incapable of degrees. Moreover it holds between

any two terms whatever, and is hardly to be distinguished from the

assertion that they are two. But distance holds only between the

members of certain series, and its existence is then the source of the

series. It is a specific relation, and it has sense ; we can distinguish

the distance of A from B from that of B from A. This last mark

alone suffices to distinguish distance from bare difference.

It might perhaps be supposed that, in a series in which there is

distance, although the distance AB must be greater than or less than AC,

yet the distance BD need not be either greater or less than AC. For

example, there is obviously more difference between the pleasure

derivable from £5 and that derivable from d&lOO than between that

from £5 and that from ^20. But need there be either equality or

inequality between the difference for £1 and £9f) and that for £5 and

^100 .P This question must be answered affirmatively. For ^C is

greater or less than BC, and BC is greater or less than BD ; hence AC,

,
BC and also BC, BD are magnitudes of the same kind. Hence AC, BD
are magnitudes of the same kind, and if not identical, one must be the

greater and the other the less. Hence, when there is distance in a series,

any two distances are quantitatively comparable.

It should be observed that all the magnitudes of one kind form

a series, and that their distances, therefore, if they have distances, are

again magnitudes. But it must not be supposed that these can, in

general, be obtained by subtraction, or are of the same kind as the

magnitudes whose differences they express. Subtraction depends, as a

rule, upon divisibility, and is therefore in general inapplicable to

indivisible quantities. The point is important, and will be treated

in detail in the following chapter.

Thus nearness and distance are relations which have magnitude.
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Are there any other relations having magnitude ? This may, I think,

be doubted*. At least I am unaware of any other such relation, though
I know no way of disproving their existence.

161. There is a difficult class of terms, usually regarded as mag-
nitudes, apparently implying relations, though certainly not always

relational. These are differential coefficients, such as velocity and
acceleration. They must be borne in mind in all attempts to generalize

about magnitude, but owing to their complexity they require a special

discussion. This will be given in Part V ; and we shall then find that

differential coefficients are never magnitudes, but only real numbers, or

segments in some series.

162. All the magnitudes dealt with hitherto have been, strictly

speaking, indivisible. Thus the question arises : Are there any divisible

magnitudes ? Here I think a distinction must be made. A magnitude

is essentially one, not many. Thus no magnitude is correctly expressed

as a number of terms. But may not the quantity which has magnitude

be a sum of parts, and the magnitude a magnitude of divisibility ? If so,

every whole consisting of parts will be a single term possessed of the pro-

perty of divisibility. The more parts it consists of, the gi-eater is its

divisibility. On this supposition, divisibility is a magnitude, of which we
may have a greater or less degree ; and the degree of divisibility corresponds

exactly, in finite wholes, to the number of parts. But though the whole

which has divisibility is of course divisible, yet its divisibility, which alone

is strictly a magnitude, is not properly speaking divisible. The divisibility

does not itself consist of parts, but only of the property of having parts.

It is necessary, in order to obtain divisibility, to take the whole strictly

as one, and to regard divisibility as its adjective. Thus although, in

this case, we have numerical measurement, and all the mathematical

consequences of division, yet, philosophically speaking, our magnitude is

still indivisible.

There are difficulties, however, in the way of admitting divisibility as

a kind of magnitude. It seems to be not a property of the whole, but

merely a relation to the parts. It is difficult to decide this point, but a

good deal may be said, I think, in support of divisibility as a simple

quality. The whole has a certain relation, which for convenience we may
call that of inclusion, to all its parts. This relation is the same whether

there be many parts or few ; what distinguishes a whole of many parts is

that it has many such relations of inclusion. But it seems reasonable to

suppose that a whole of many parts differs from a whole of few parts in

some intrinsic respect. In fact, wholes may be arranged in a series

according as they have more or fewer parts, and the serial arrangement

implies, as we have already seen, some series of properties differing more
or less Yrom each other, and agreeing when two wholes have the same

* Cf. Meinong, Ueber die Bedeutung des Weber scken Gesetzes, Hamburg and
Leipzig, 1896, p. 23.
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finite number of parts, but distinct from number of parts in finite

wholes. These properties can be none other than greater or less degrees

of divisibility. Thus magnitude of divisibility would appear to be a

simple property of a whole, distinct from the number of parts included

in the whole, but correlated with it, provided this number be finite. If

this view can be maintained, divisibility may be allowed to remain as a

numerically measurable, but not divisible, class of magnitudes. In this

class we should have to place lengths, areas and volumes, but not

distances. At a later stage, however, we shall find that the divisibility

of infinite wholes, in the sense in which this is not measured by cardinal

numbers, must be derived through relations in a way analogous to that

in which distance is derived, and must be really a property of relations*.

Thus it would appear, in any case, that all magnitudes are in-

divisible. This is one common mark which they all possess, and so far

as I know, it is the only one to be added to those enumerated in

Chapter xix. Concerning the range of quantity, there seems to be no

further general proposition. Very many simple non-relational terms

have magnitude, the principal exceptions being colours, points, instants

and numbers.

163. Finally, it is important to remember that, on the theory

adopted in Chapter xix, a given magnitude of a given kind is a simple

concept, having to the kind a relation analogous to that of inclusion in

a class. When .the kind is a kind of existents, such as pleasm-e, what

actually exists is never the kind, but various particular magnitudes of

the kind. Pleasure, abstractly taken, does not exist, but various amounts

of it exist. This degree of abstraction is essential to the theory of

' quantity : there must be entities which differ from each other in nothing

except magnitude. The grounds for the theory adopted may perhaps

appear more clearly from a further examination of this case.

Let us start with Bentham's famous proposition :
" Quantity of

pleasure being equal, pushpin is as good as poetry." Here the qualita-

tive difference of the pleasures is the very point of the judgment ; but in

order to be able to say that the quantities of pleasure are equal, we

must be able to abstract the qualitative differences, and leave a certain

magnitude of pleasure. If this abstraction is legitimate, the qualitative

difference must be not truly a difference of quality, but only a difference

of relation to other terms, as, in the present case, a difference in the

causal relation. For it is not the whole pleasurable states that are

compared, but only—as the form of the judgment aptly illustrates

—

their quality of pleasure. If we suppose the magnitude of pleasure to

be not a separate entity, a difiiculty will arise. For the mere element of

pleasure must be identical in the two cases, whereas we require a possible

difference of magnitude. Hence we can neither hold that only the

whole concrete state exists, and any part of it is an abstraction, nor that

* See Chap, xlvii.
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what exists is abstract pleasure, not magnitude of pleasure. Nor can we
say : We abstract, from the whole states, the two elements magnitude

and pleasure. For then we should not get a quantitative comparison of

the pleasures. The two states would agree in being pleasures, and in

being magnitudes. But this would not give us a magnitude of pleasure
;

and it would give a magnitude to the states as a whole, which is not

admissible. Hence we cannot abstract magnitude in general from the

states, since as wholes they have no magnitude. And we have seen that

we must not abstract bare pleasure, if we are to have any possibility of

different magnitudes. Thus what we have to abstract is a magnitude of

pleasure as a whole. This must not be analyzed into magnitude and

pleasure, but must be abstracted as a whole. And the magnitude of

pleasure must exist as a part of the whole pleasurable states, for it is

only where there is no difference save at most one of magnitude that

quantitative comparison is possible. Thus the discussion of this parti-

cular case fully confirms the theory that every magnitude is unanalyzable,

and has only the r'elation analogous to inclusion in a class to that

abstract quality or relation of which it is a magnitude.

Having seen that all magnitudes are indivisible, we have next to

consider the extent to which numbers can be used to express magnitudes,

and the nature and limits of measurement.



CHAPTER XXI.

NUMBERS AS EXPRESSING MAGNITUDES:
MEASUREMENT.

164. It is one of the assumptions of educated common-sense that

two magnitudes of the same kind must be numerically comparable.

People are apt to say that they are thirty per cent, healthier or happier

than they were, without any suspicion that such phrases are destitute of

meaning. The purpose of the present chapter is to explain what is

meant by measurement, what are the classes of magnitudes to which it

applies, and how it is applied to those classes.

Measurement of magnitudes is, in its most general sense, any method

by which a unique and reciprocal correspondence is established between

ail or some of the magnitudes of a kind and all or some of the numbers,

integral, rational, or real, as the case may be. (It might be thought

that complex numbers ought to be included ; but what can only be

measured by complex numbers is in fact always an aggregflte of magni-

tudes of different kinds, not a single magnitude.) In this general sense,

measurement demands some one-one relation between the numbers and

magnitudes in question—a relation which may be direct or indirect,

important or trivial, according to circumstances. Measurement in this

sense can be applied to very many classes of magnitudes ; to two great

classes, distances and divisibilities, it applies, as we shall see, in a more

important and intimate sense.

Concerning measurement in the most general sense, there is very

little to be said. Since the numbers form a series, and since every kind

of magnitude also forms a series, it will be desirable that the order of

the magnitudes measured should correspond to that of the numbers, i.e.

that all relations of between should be the same for magnitudes and their

measures. Wherever there is a zero, it is well that this should be

measured by the number zero. These and other conditions, which a

measure should fulfil if possible, may be laid down ; but they are of

practical rather than theoretical importance.

165. There are two general metaphysical opinions, either of which,

if accepted, shows that all magnitudes are theoretically capable of

measurement in the above sense. The first of these is the theory that
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all events either are, or are correlated with, events in the dynamical

causal series. In regard to the so-called secondary qualities, this view

has been so far acted upon by physical science that it has provided most

of the so-called intensive quantities that appear in space with spatial,

and thence numerical, measures. And with regard to mental quantities

the theory in question is that of psychophysical parallelism. Here the

motion which is correlated with any psychical quantity always theoreti-

cally affords a means of measuring that quantity. The other metaphysical

opinion, which leads to universal measurability, is one suggested by

Kant's " Anticipations of Perception *," namely that, among intensive

magnitudes, an increase is always accompanied by an increase of reality.

Reality, in this connection, seems synonymous with existence ; hence

the doctrine may be stated thus : Existence is a kind of intensive

magnitude, of which, where a greater magnitude exists, there is always

more than where a less magnitude exists. (That this is exactly Kanfs

doctrine seems improbable ; but it is at least a tenable view.) In this

case, since two instances of the same magnitude (i.e. two equal quantities)

must have more existence than one, it follows that, if a single magnitude

of the same kind can be found having the same amount of existence as

the two equal quantities together, then that magnitude may be called

double that of each of the equal quantities. In this way all intensive

magnitudes become theoretically capable of measurement. That this

method has any practical importance it would be absurd to maintain

;

but it may contribute to the appearance of meaning belonging to ttcire

as happy. It gives a sense, for example, in which we may say that a

child derives as much pleasure from one chocolate as from two acid

drops; and on the basis of such judgments the hedonistic Calculus

could theoretically be built.

There is one other general observation of some importance. If it be

maintained that all series of magnitudes are either continuous in Cantor's

sense, or are similar to series which can be chosen out of continuous

series, then it is theoretically possible to correlate any kind of magnitudes

with all or some of the real numbers, so that the zeros correspond, and

the greater magnitudes correspond to the greater numbers. But if any

series of magnitudes, without being continuous, contains continuous

series, then such a series of magnitudes will be strictly and theoretically

incapable of measurement by the real numbers f.

166. Leaving now these somewhat vague generalities, let us examine

the more usual and concrete sense of measurement. What we require is

some sense in which we may say that one magnitude is double of another.

* Beim Vemunft, ed. Hart. (1867), p. 160. The wording of the first edition

illustrates better than that of the second the doctrine to which 1 allude. See e.g.

Erdmann's edition, p. 161.

t See Part V, Chap, xxxiii ff.

R. 12
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In the above instances this sense was derived by correlation with spatio-

temporal magnitudes, or with existence. This presupposed that in these

cases a meaning had been found for the phrase. Hence measurement

demands that, in some cases, there should be an intrinsic meaning to the

proposition "this magnitude is double of that." (In what sense the

meaning is intrinsic will appear as we proceed.) Now so long as

quantities are regarded as inherently divisible, there is a perfectly

obvious meaning to such a proposition : a magnitude A is double of B
when it is the magnitude of two quantities together, each of these

having the magnitude B. (It should be observed that to divide a

magnitude into two equal parts must always be impossible, since there

are no such things as equal magnitudes.) Such an interpretation will

still apply to magnitudes of divisibility ; but since we have admitted

other magnitudes, a different interpretation (if any) must be found for

these. Let us first examine the case of divisibilities, and then proceed

to the other cases where measurement is intrinsically possible.

167. The divisibility of a finite whole is immediately and inherently

correlated with the number of simple parts in the whole. In this case,

although the magnitudes are even now incapable of addition of the sort

required, the quantities can be added in the manner explained in Part II.

The Eiddition of two magnitudes of divisibility yields merely two magni-

tudes, not a new magnitude. But the addition of two quantities of

divisibility, i.e. two wholes, does yield a new single whole, provided the

addition is of the kind which results from logical addition by regarding

classes as the wholes formed by their terms. Thus there is a good

meaning in saying that one magnitude of divisibility is double of

another, when it applies to a whole containing twice as many parts.

But in the case of infinite wholes, the matter is by no means so simple.

Here the number of simple parts (in the only senses of infinite number

hitherto discovered) may be equal without equality in the magnitude of

divisibility. We require here a method which does not go back to

simple parts. In actual space, we have immediate judgments of equality

as regards two infinite wholes. When we have such judgments, we can

regard the sum of n equal wholes as n times each of them ; for addition

of wholes does not demand their finitude. In this way numerical com-

parison of some pairs of wholes becomes possible. By the usual well-

known methods, by continual subdivision and the method of limits, this

is extended to all pairs of wholes which are such that immediate com-

parisons are possible. Without these immediate comparisons, which

are necessary both logically and psychologically*, nothing can be

accomplished : we are always reduced in the last resort to the immediate

judgment that our foot-rule has not greatly changed its size during

measurement, and this judgment is prior to the results of physical

* Cf. Meinong-, op. cit., pp. 63-4.
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science as to the extent to which bodies do actually change their sizes.

But where immediate comparison is psychologically impossible, we may
theoretically substitute a logical variety of measurement, which, however,

gives a property not of the divisible whole, but of some relation oi; class

of relations more or less analogous to those that hold between points in

space.

That divisibility, in the sense required for areas and volumes, is not

a property of a whole, results from the fact (which will be established in

Part VI) that between the points of a space there are always relations

which generate a different space. Thus two sets of points which, with

regard to one set of relations, form equal areas, form unequal areas with

respect to another set, or even form one an area and the other a line or

a volume. If divisibility in the relevant sense were an intrinsic property

of wholes, this would be impossible. But this subject cannot be fully

discussed until we come to Metrical Geometry.

Where our magnitudes are divisibilities, not only do numbers measure

them, but the difference of two measuring numbers, with certain limita-

tions, measures the magnitude of the difference (in the sense of dis-

similarity) between the divisibilities. If one of the magnitudes be

fixed, its difference from the other increases as the difference of the

measuring numbers increases ; for this difference depends upon the

difference in the number of parts. But I do not think it can be shown

generally that, ii A, B, C, D be the numbers measuring four magnitudes,

and A —B = C—D, then the differences of the magnitudes are equal.

It would seem, for instance, that the difference between one inch and

two inches is greater than that between 1001 inches and 1002 inches.

This remark has no importance in the present case, since differences of

divisibility are never required; but in the case of distances it has a

curious connection with non-Euclidean Geometry. But it is theoretically

important to observe that, if divisibility be indeed a magnitude—as the

equality of areas and volumes seems to require—then there is strictly no

ground for saying that the divisibility of a sum of two units is twice as

great as that of one unit. Indeed this proposition cannot be strictly

taken, for no magnitude is a sum of parts, and no magnitude therefore is

double of another. We can only mean that the sum of two units con-

tains twice as many parts, which is an arithmetical, not a quantitative,
' judgment, and is adequate only in the case where the number of parts is

finite, since in other cases the double of a number is in general equal to

it. Thus even the measurement of divisibility by numbers contains

an element of convention ; and this element, we shall find, is still more

prominent in the case of distances.

168. In the above case we still had addition in one of its two

fundamental senses, i.e. the combination of wholes to form a new whole.

But in other cases of magnitude we do not have any such addition.

The sum of two pleasures is not a new pleasure, but is merely two

12—2
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pleasures. The sum of two distances is also not properly one distance.

But in this case we have an extension of the idea of addition. Some
such extension must always be possible where measurement is to be

effected in the more natural and restricted sense which we are now
discussing. I shall first explain this generalized addition in abstract

terms, and then illustrate its application to distances.

It sometimes happens that two quantities, which are not capable of

addition proper, have a relation, which has itself a one-one relation to

a quantity of the same kind as those between which it holds. Supposing

a, b, c to be such quantities, we have, in the case supposed, some pro-

position aBc, where 5 is a relation which uniquely determines and is

uniquely determined by some quantity b of the same kind as that to

which a and c belong. Thus for example two ratios have a relation,

which we may call their difference, which is itself wholly determined by
another ratio, namely the difference, in the arithmetical sense, of the

two given ratios. If a, /S, 7 be terms in a series in which there is

distance, the distances a/S, a^ have a relation which is measured by

(though not identical with) the distance I3y. In all such cases, by an

extension of addition, we may put a + b^c in place of aBc. Wherever

a set of quantities have relations of this kind, if further aBc implies bAc,

so that a i-b = b + a, we shall be able to proceed as if we had ordinary

addition, and shall be able in consequence to introduce numerical

measurement. ,

The conception of distance will be discussed fully in Part IV, in

connection with order : for the present I am concerned only to show

how distances come to be measurable. The word will be used to cover

a far more general conception than that of distance in space. I shall

mean by a kind of distance a set of quantitative asymmetrical relations of

which one and only one holds between any pair of terms of a given

class ; which are such that, if there is a relation of the kind between a

and b, and also between b and c, then there is one of the kind between

a and c, the relation between a and c being the relative product of

those between a and b, b and c ; this product is to be commutative,

i. e. independent of the order of its factors ; and finally, if the distance

ab be greater than the distance ac, then, d being any other member of

the class, db is greater than dc. Although distances are thus relations,

and therefore indivisible and incapable of addition proper, there is a

simple and natural convention by which such distances become numeri-

cally measurable.

The convention is this. Let it be agreed that, when the distances

«o«i) ^if^a ••• «»-!«„ are all equal and in the same sense, then ao«„ is

said to be n times each of the distances a^ai, etc., i. e. is to be measured

by a number n times as great. This has generally been regarded as not

a convention, but an obvious truth ; owing, however, to the fact that

distances are indivisible, no distance is really a sum of other distances,
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and numerical measurement must be in part conventional. With this

convention, the numbers corresponding to distances, where there are

such numbers, become definite, except as to a common factor dependent

upon the choice of a unit. Numbers are also assigned by this method

to the members of the class between which the distances hold ; these

numbers have, in addition to the arbitrary factor, an arbitrary additive

constant, depending upon the choice of origin. This method, which is

capable of still further generalization, will be more fully explained in

Part IV. In order to show that all the distances of our kind, and all

the terms of our set, can have numbers assigned to them, we require two

further axioms, the axiom of Archimedes, and what may be called the

axiom of linearity *.

169. The importance of the numerical measurement of distance, at

least as applied to space and time, depends partly upon a further fact,

by which it is brought into relation with the numerical measurement of

divisibility. In all series there are terms intermediate between any two

whose distance is not the minimum. These terms are determinate when

the two distant terms are specified. The intermediate terms may be

called the stretch from a,, to a„-f. The whole composed of these terms

is a quantity, and has a divisibility measured by the number of terms,

provided their number is finite. If the series is , such that the distances

of consecutive terms are all equal, then, if there are m—1 terms between

flo and «„, the measure of the distance is proportional to n. Thus, if we

include in the stretch one of the end terms, but not the other, the

measures of the stretch and the distance are proportional, • and equal

stretches correspond to equal distances. Thus the number of terms in

the stretch measures both the distance of the end terms and the amount

of divisibility of the whole stretch. When the stretch contains an

infinite number of terms, we estimate equal stretches as explained above.

It then becomes an axiom, which may or may not hold in a given case,

that equal stretches correspond to equal distances. In this case, co-

ordinates measure two entirely distinct magnitudes, which, owing to

their common measure, are perpetually confounded.

170. The above analysis explains a curious problem which must

have troubled most people who have endeavoured to philosophize about

Geometry. Starting from one-dimensional inagnitudes connected with

the straight line, most theories may be divided into two classes, those

appropriate to areas and volumes, and those appropriate to angles

* See Part IV, Chap. xxxi. This axiom asserts that a magnitude can he divided

into n equal partSj and forms part of Du Bois Raymond's definition of linear magni-

tude. See his AUgemeine Fanctionentheorie (Tiibingen, 1882), Chap, i, § 16 ; also

Bettazzi, , Teoria delle Orandezze (Pisa, 1890), p. 44. The axiom of Archimedes

asserts that, given any two magnitudes of a kind, some finite multiple of the lesser

exceeds the greater.

t Called Strecke by Meinong, op. cit, e.g. p. 22.
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between lines or planes. Areas and volumes are radically different

from angles, and are generally neglected in philosophies which hold

to relational views of space or start from projective Geometry. The

reason of this is plain enough. On the straight line, if, as is usually

supposed, there is such a relation as distance, we have two philosophi-

cally distinct but practically conjoined magnitudes, namely the distance,

and the divisibility of the stretch. The former is similar to angles ; the

latter, to areas and volumes. Angles may also be regarded as distances

between terms in a series, namely between lines through a point or

planes through a line. Areas and volumes, on the contrary, are sums,

or magnitudes of divisibility. Owing to the confusion of the two kinds

of magnitude connected with the line, either angles, or else areas and

volumes, are usually incompatible with the philosophy invented to

suit the line. By the above analysis, this incompatibility is at once

explained and overcome*.

171. We thus see how two great classes of magnitudes—divisibilities

and distances—are rendered amenable to measure. These two classes

practically cover what are usually called extensive magnitudes, and it

will be convenient to continue to allow the name to them. I shall

extend this name to cover all distances and divisibilities, whether they

have any relation to space and time or not. But the word eoctensive

must not be supposed to indicate, as it usually does, that the magnitudes

so designated are divisible. We have already seen that no magnitude is

divisible. Quantities are only divisible into other quantities in the one

case of wholes which are quantities of divisibility. Quantities which are

distances, though I shall call them extensive, are not divisible into

smaller distances ; but they allow the important kind of addition ex-

plained above, which I shall call in future relational addition +.

All other magnitudes and quantities may be properly called intensive.

Concerning these, unless by some causal relation, or by means of some

more or less roundabout relation such as those explained at the beginning

of the present chapter, numerical" measurement is impossible. Those

mathematicians who are accustomed to an exclusive emphasis on numbers,

will think that not much can be said with definiteness concerning magni-

tudes incapable of measurement. This, however, is by no means the

case. The immediate judgments of equality, upon which (as we saw)

all measurements depend, are still possible where measurement fails, as

are also the immediate judgments of greater and less. Doubt only

arises where the difference is small; and all that measurement does,

* In Part VI, we.shall find reason to deny distance in most spaces. But there

is still a distinction between stretches, consisting of the terms of some series, and

such quantities as areas and volumes, where the terms do not, in any simple sense,

form a one-dimensional series.

t Not to be confounded with the relative addition of the Algebra of Relatives.

It is connected rather with relative ijiultiplication.
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in this respect, is to make the margin of doubt smaller—an achievement

which is purely psychological, and of no philosophical importance.

Quantities not susceptible of numerical measurement can thus be ar-

ranged in a scale of greater and smaller magnitudes, and this is the

only strictly quantitative achievement of even numerical measurement.

We can know that one magnitude is greater than another, and that

a third is intermediate between them ; also, since the differences of

magnitudes are always magnitudes, there is always (theoretically, at

least) an answer to the question whether the difference of one pair

of magnitudes is greater than, less than, or the same as the difference of

another pair of the same kind. And such propositions, though to the

mathematician they may appear approximate, are just as precise and

definite as the propositions of Arithmetic. Without numerical measure-

ment, therefore, the quantitative relations of magnitudes have all the

definiteness of which they are capable—nothing is added, from the

theoretical standpoint, by the assignment of correlated numbers. The
whole subject of the measurement of quantities is, in fact, one of more

practical than theoretical importance. What is theoretically important

in it is merged in the wider question of the correlation of series, which

will occupy us much hereafter. The chief reason why I have treated

the subject thus at length is derived from its traditional importance, but

for which it might have been far more summarily treated.



CHAPTER XXII.

ZERO.

172. The present chapter is concerned, not with any form of the

numerical zero, nor yet with the infinitesimal, but with the pure zero

of magnitude. This is the zero which Kant has in mind, in his refuta-

tion of Mendelssohn's proof of the immortality of the soul*- Kant

points out that an intensive ijiagnitude, while remaining of the same

kind, can become zero ; and that, though zero is a definite magnitude,

no quantity whose magnitude is zero can exist. This kind of zero, we

shall find, is a fundamental quantitative notion, and is one of the points

in which the theory of quantity presents features peculiar to itself. The
quantitative zero has a certain connection both with the number and

with the null-class in Logic, but it is not (I think) definable in terms of

either. What is less universally realized is its complete independence

of the infinitesimal. The latter notion will not be discussed until the

following chapter.

The meaning of zero, in any kind of quantity, is a question of much
difficulty, upon which the greatest care must be bestowed, if contra-

dictions are to be avoided. Zero seems to be definable by some general

characteristic, without reference to any special peculiarity of the kind of

quantity to which it belongs. To find such a definition, however, is far

from easy. Zero seems to be a radically distinct conception according as

the magnitudes concerned are discrete or continuous. To prove that

this is not the case, let us examine various suggested definitions.

173. (1) Herr Meinong {op. cit., p. 8) regards zero as the con-

tradictory opposite of each magnitude of its kind. The phrase

" contradictory opposite " is one which is not free from ambiguity.

The opposite of a class, in symbolic logic, is the class containing all

individuals not belonging to the first class ; and hence the opposite

of an individual should be all other individuals. But this meaning is

evi'^pntly inappropriate : zero is not everything except one magnitude

of its kind, nor yet everything except the class of magnitudes of its

kind. It can hardly be regarded as true to say that a pain is a zero

* Kritik der Beinen Vernunft, ed. Hartenstein, p. 281 if.
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pleasure. On the other hand, a zero pleasure is said to be no pleasure,

and this is evidently what Herr Meinong means. But although we
shall find this view to be correct, the meaning of the phrase is very

difficult to seize. It does not mean something other than pleasure,

as when our friends assure us that it is no pleasure to tell us our faults.

It seems to mean what is neither pleasure, nor yet anything else. But
this would be merely a cumbrous way of saying nothing, and the

reference to pleasure might be wholly dropped. This gives a zero

which is the same for all kinds of magnitude, and if this be the true

meaning of zero, then zero is not one among- the magnitudes of a kind,

nor yet a term in the series formed by magnitudes of a kind. For

though it is often true that there is nothing smaller than all the

magnitudes of a kind, yet it is always false that nothing itself is

smaller than all of them. This zero, therefore, has no special reference

to any particular kind of magnitude, and is incapable of fulfilling the

functions which Herr Meinong demands of it *. The phrase, however,

as we shall see, is capable of an interpretation which avoids this difficulty.

But let us first examine some other suggested meanings of the word.

174. (2) Zero may be defined as the least magnitude of its kind.

Where a kind of magnitude is discrete, and generally when it has what

Professor Bettazzi calls a limiting magnitude of the kindf, such a

definition is insufficient. For in such a case, the limiting magnitude

seems to be really the least of its kind. And in any case, the definition

gives rather a characteristic than a true definition, which must be sought

in some more purely logical notion, for zero cannot fail to be in some

sense a denial of all other magnitudes of the kind. The phrase that

zero is the smallest of magnitudes is like the phrase Which De Morgan

commends for. its rhetoric: "Achilles was thestrongest of all his enemies."

Thus it would be obviously false to say that is the least of the positive

integers, or that the interval between A and J is the least interval

between any two letters of the alphabet. On the other hand, where a

kind of magnitude is continuous, and has no limiting magnitude, although

we have apparently a gradual and unlimited approach to zero, yet now a

new objection arises. Magnitudes of this kind are essentially such as

have no minimum. Hence we cannot without express contradiction take

zero as their minimum: We may, however, avoid this contradiction by

saying that there is always a magnitude less than any other, but not

zero, unless that other be zero. This emendation avoids any formal

contradiction, and is only inadequate because it gives rather a mark of

zero than its true meaning. Whatever else is a magnitude of the kind

in question might have been diminished ; and we wish to know what-it

is that makes zero obviously incapable of any further diminution. This

the suggested definition does not tell us, and therefore, though it gives a

* See note to Chap, xix, supra.

t Teoria delle Grandez&e, Pisa, 189C), p. 24.
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characteristic which often belongs to no other magnitude of the kind, it

cannot be considered philosophically sufficient. Moreover, where there

are negative magnitudes, it precludes us from regarding these as less

than zero.

175. (3) Where our magnitudes are differences or distances, zero

has, at first sight, an obvious meaning, namely identity. But here again,

the zero so defined seems to have no relation to one kind of distances

rather than another : a zero distance in time would seem to be the same

as a zero distance in space. This can, however, be avoided, by substituting,

for identity simply, identity with some member of the class of terms

between which the distances in question hold. By this device, the zero

of any class of relations which are magnitudes is made perfectly definite

and free from contradiction ; moreover we have both zero quantities and

zero magnitudes, for ifA and B be terms of the class which has distances,

identity with A and identity with B are distinct zero quantities*. This

case, therefore, is thoroughly clear. And yet the definition must be

rejected : for it is plain that zero has some general logical meaning, if

only this could be clearly stated, which is the same for all classes of

quantities ; and that a zero distance is not actually the same concept as

identity.

176. (4) In any class of magnitudes which is continuous, in the

sense of having a term between any two, and which also has no limiting

magnitude, we can introduce zero in the manner in which real numbers are

obtained from rationals. Any collection of magnitudes defines a class of

magnitudes less than all of them. This class of magnitudes can be made as

small as we please, and can actually be made to be the null-class, i.e. to

contain no members at all. (This is effected, for instance, if our collection

consists of all magnitudes of the kind.) The classes so defined form a

series, closely related to the series of original magnitudes, and in this

new series the null-class is definitely the first term. Thus taking the

classes as quantities, the null-class is a zero quantity. There is no class

containing a finite number of members, so that there is not, as in

Arithmetic, a discrete approach to the null-class ; on the contrary, the

approach is (in several senses of the word) continuous. This method of

defining zero, which is identical with that by which the real number zero

is introduced, is important, and will be discussed in Part V. But for the

present we may observe that it again makes zero the same for all kinds

of magnitude, and makes it not one among the magnitudes whose zero

it is.

177. (5) We are compelled, in this question, to face the problem

as to the nature of negation. " No pleasure " is obviously a different

concept from " no pain," even when these terms are taken strictly as

mere denials of pleasure and pain respectively. It would seem that " no

* On this point, however, see § 55 ahove.
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pleasure " has the same relation to •pleasure as the various magnitudes of
pleasure have, though it has also, of course, the special relation of
negation. If this be allowed, we see that, if a kind of magnitudes be
defined by that of which they are magnitudes, then no pleasure is one
among the various magnitudes of pleasure. If, then, we are to hold to

our axiom, that all pairs of magnitudes of one kind have relations of

inequality, we shall be compelled to admit that zero is less than all other

magnitudes of its kind. It seems, indeed, to be rendered evident that

this must be admitted, by the fact that zero is obviously not greater

than all other magnitudes of its kind. This shows that zero has a
connection with less which it does not have with greater. And if we
adopt this theory, we shall no longer accept the clear and simple account
of zero distances given above, but we shall hold that a zero distance is

strictly and merely wo distance, and is only correlated with identity.

Thus it would seem that Herr Meinong's theory, with which we
began, is substantially correct; it requires emendation, on the above
view, only in this, that a zero magnitude is the denial of the defining

concept of a kind of magnitudes, not the denial of any one particular

magnitude, or of all of them. We shall have to hold that any concept
which defines a kind of magnitudes defines also, by its negation, a

particular magnitude of the kind, which is called the zero of that kind,

and is less than all other members of the kind. And we now reap the

benefit of the absolute distinction which we made between the defining

concept of a kind of magnitude, and the various magnitudes of the kind.

The relation which we allowed between a particular magnitude and that

of which it is a magnitude was not identified with the class-relation, but
was held to be sui generis ; there is thus no contradiction, as there

would be in most theories, in supposing this relation to hold between rw

pleasure and pleasure, or between no distance and distance.

178. But finally, it must be observed that no pleasure, the zero

magnitude, is not obtained by the logical denial of pleasure, and is not

the same as the logical notion of not pleasure. On the contrary, no

pleasure is essentially a quantitative concept, having a curious and
mtimate relation to logical denial, just as has a very intimate relation

to bhe null-class. The relation is this, that there is no quantity whose

magnitude is ?ero, so that the class of zero quantities is the null-class*.

The zero of any kind of magnitude is incapable of that relation to

existence or to particulars, of which the other magnitudes are capable.

But this is a synthetic proposition, to be accepted only on account of its

self-evidence. The zero magnitude of any kind, like the other magnitudes,

is properly speaking indefinable, but is capable of specification by means
of its peculiar relation to the logical zero.

* This must be applied in correction of what was formerly said about zero

distances.
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INFINITY, THE INFINITESIMAL, AND CONTINUITY.

179. Aljiost all mathematical ideas present one great difficulty

:

the difficulty of infinity. This is usually regarded by philosophers as

an antinomy, and as showing that the propositions of mathematics are

not metaphysically true. From this received opinion I am compelled to

dissent. Although all apparent antinomies, except such as are quite

easily disposed of, and such as belong to the fundamentals of logic, are,

in my opinion, reducible to the one difficulty of infinite number, yet this

difficulty itself appears to be soluble by a correct philosophy of any, and

to have been generated very largely by confusions due to the ambiguity

in the meaning of finite hitegers. The problem in general will be

discussed in Part V ; the purpose of the present chapter is merely to

show that quantity, which has been regarded as the true hcime of infinity,

the infinitesimal, and continuity, must give place, in this respect, to

order ; while the statement of the difficulties which arise iii regard to

quantity can be made in a form which is at once ordinal and arithmetical,

but involves no reference to the special peculiarities of quantity.

180. The three problems of infinity, the infinitesimal, and con-

tinuity, as they occur in connection with quantity, are closely related.

None of them can be fully discussed at this stage, since all depend

essentially upon order, while the infinitesimal depends also upon number.

The question of infinite quantity, though traditionally considered more

formidable than that of zero, is in reality far less so, and might be

briefly disposed of, but for the great devotion commonly shown by

philosophers to a proposition which I shall calL the axiom of finitude.

Of some kinds of magnitude (for example ratios, or distances in space

and time), it appears to be true that there is a magnitude greater than

any given magnitude. That is, any magnitude being inentioned, another

can be found which is greater than it. The deduction of infinity from

this fact is, when correctly performed, a mere fiction to facilitate com-

pression in the statement of results obtained by the method of limits.
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Any class u of magnitudes of our kind being defined, three cases may
arise : (1) There may be a class of terms greater than any of our class u,

and this new class of terms may have a smallest member
; (2) there may

be such a class, but it may have no smallest member ; (3) there may be
no magnitudes which are greater than any term of our class u. Suppos-
ing our kind of magnitudes to be one in which there is no greatest
magnitude, case (2) will always arise where the class u contains a finite

number of terms. On the other hand, if our series be what is called

condensed in itself, case (2) will never arise when u is an infinite class,

and has no greatest term ; and if our series is not condensed in itself,

but does have a term between any two, another which has this property
can always be obtained from it*- Thus all infinite series which have
no greatest term will have limits, except in case (3). To avoid cir-

cumlocution, case (3) is defined as that in which the limit is infinite.

But this is a mere device, and it is generally admitted by mathema-
ticians to be such. Apart from special circumstances, there is no
reason, merely because a kind of magnitudes has no maximum, to

admit that there is an infinite magnitude of the kind, or that there

are many such. When magnitudes of a kind having no maximum
are capable of numerical measurement, they very often obey the axiom
of Archimedes, in virtue of which the ratio of any two magnitudes of

the kind is finite. Thus, so far, there might appear to be no problem
connected with infinity.

But at this point the philosopher is apt to step in, and to declare

that, by all true philosophic principles, every well-defined series of terms

must have a last term. If he insists upon creating this last term, and
calling it infinity, he easily deduces intolerable contradictions, from which
he infers the inadequacy of mathematics to obtain absolute truth. For
my part, however, I see no reason for the philosopher's axiom. To show,

if possible, that it is not a necessary philosophic principle, let us under-

take its analysis, and see what it really involves.

The problem of infinity, as it has now emerged, is not properly a

quantitative problem, but rather one concerning order. It is only

because our magnitudes form a series having no last term that the

problem arises : the fact that the series is composed of magnitudes is

wholly irrelevant. With this remark I might leave the subject to a

later stage. But it will be worth while now to elicit, if not to examine,

the philosopher's axiom of finitude.

181. It will be well, in the first place, to show how the problem

concerning infinity is the same as that concerning continuity and the

infinitesimal. For this purpose, we shall find it convenient to ignore the

absolute zero, and to mean, when we speak of any kind of magnitudes,

all the magnitudes of the kind except zero. This is a mere change of

* This will be further explained in Part V, Chap, xxxvi.
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diction, without which intolerable repetitions would be necessary. Now
there certainly are some kinds of magnitude where the three following

axioms hold

:

(1) HA and B be any two magnitudes of the kind, and A is

greater than B, there is always a third magnitude C such that A
is greater than C and C greater than B. (This I shall call, for the

present, the axiom of continuity.)

(2) There is always a magnitude less than any given magnitude B.

(3) There is always a magnitude greater than any given magni-

tude A.

From these it follows :

—

(1) That no two magnitudes of the kind are consecutive.

(2) That there is no least magnitude.

(3) That there is no greatest magniti^de.

The above propositions are certainly true of some kinds of magni-

tude ; whether they are true of ail kinds remains to be examined. The

following three propositions, which directly contradict the previous three,

must be always true, if the philosopher's axiom of finitude is to be

accepted

:

{a) There are consecutive magnitudes, i.e. magnitudes such that

no other magnitude of the same kind is greater than the less and less

than the greater of the two given magnitudes.

(6) There is a magnitude smaller than any other of the same kind.

(c) There is a magnitude greater than any other of the same

kind*.

As these three propositions directly contradict the previous three, it

would seem that both sets cannot be true. We have to examine the

grounds for both, and let one set of alternatives fall.

182. Let us begin with the propositions (a), (6), (c), and examine

the nature of their grounds.

(a) A definite magnitude A being given, all the magnitudes greater

than A form a series, whose differences from A are magnitudes of a new

kind. If there be a magnitude B consecutive to A, its difference from A
will be the least magnitude of its kind, provided equal stretches cor-

respond to equal distances in the series. And conversely, if there be

a smallest difference between two magnitudes. A, B, then these two

magnitudes must always be consecutive ; for if not, any intermediate

* Those Hegelians who search for a chance of an antinomy may proceed to

the definition of zero and infinity hy means of the ahove propositions. When (2)

and (6) hoth hold, they may say, the magnitude satisfying (6) is called zero ; when

(3) and (c) hoth hold, the magnitude satisfying (c) is called infinity. We have seen,

however, that zero is to be otherwise defined, and has to be excluded before (2)

becomes true ; while infinity is not a magnitude of the kind in question at all, but

merely a piece of mathematical shorthand. (Not infinity in general, that is, but

infinite magnitude in the cases we are discussing.)
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magnitude would have a smaller difference from A than B has. Thus
if (J) is universally true, (a) must also be true ; and conversely, if (a) is

true, and if the series of magnitudes be such that equal stretches cor-

respond to equal distances, then {b) is true of the distances between the

magnitudes considered. We might rest content with the reduction of

(a) to (&), and proceed to the proof of (6) ; but it seems worth while

to offer a direct proof, such as presumably the finitist philosopher has in

his mind.

Between A and B there is a certain number of magnitudes, unless A
and B are consecutive. The intermediate magnitudes all have order, so

that in passing from A to B all the intermediate magnitudes would

be met with. In such an enumeration, there must be some magnitude

which comes next after any magnitude C ; or, to put the matter other-

wise, since the enumeration has to begin, it must begin somewhere, and

the term with which it begins must be the magnitude next to A. If

this were not the case, there would be no definite series ; for if all the

terms have an order, some of them must be consecutive.

In the above argument, what is important is its dependence upon

number. The whole argument turns upon the principle by which infinite

number is shown to be self-contradictory, namely : A given collection

of many terms must contain some finite number of terms. We say : All

the magnitudes between A and B form a given collection. If there

are no such magnitudes, A and B are consecutive, and the question

is decided. If there are such magnitudes, there must be a finite

number of them, say n. Since they form a series, there is a definite

way of assigning to them the ordinal numbers from 1 to n. The mth
and (;ft-|-l)th are then consecutive.

If the axiom in italics be denied, the whole argument collapses ; and
this, we shall find, is also the case as regards (b) and (c).

(b) The proof here is precisely similar to the proof of (a). If there

are no magnitudes less than A, then A is the least of its kind, and the

question is decided. If there are any, they form a definite collection,

and therefore (by our axiom) have a finite number, say n. Since they

form a series, ordinal numbers may be assigned to them growing higher

as the magnitudes become more distant from A. Thus the nth magni-
tude is the smallest of its kind.

(c) The proof here is obtained as in (b), by considering the collection

of magnitudes greater than A. Thus everything depends upon our

axiom, without which no case can be made out against continuity, or

against the absence of a greatest and least magnitude.

As regards the axiom itself, it will be seen that it has no particular

reference to quantity, and at first sight it might seem to have no
reference to order. But the word finite, which occurs in it, requires

definition; and this definition, in the form suited to the present dis-

cussion, has, we shall find, an essential reference to order.
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183. Of all the philosophers who have inveighed against infinite

number, I doubt whether there is one who has known the difference

between finite and infinite numbers. The difference is simply this.

Finite numbers obey the law of mathematical induction ; infinite

numbers do not. That is to say, given any number n, if n belongs

to every class s to which belongs, and to which belongs also the

number next after any number which is an s, then n is finite ; if not,

not. It is in this alone, and in its consequences, that finite and infinite

numbers differ*.

The principle may be otherwise stated thus : If every proposition

which holds concerning 0, and also holds concerning the immediate

successor of every number of which it holds, holds concerning the number
n, then n is finite ; if not, not. This is the precise sense of what may be

popularly expressed by saying that every finite number can be reached

from by successive steps, or by successive additions of 1. This is the

principle which the philosopher must be held to lay down as obviously

applicable to all numbers, though he will have to admit that the more

precisely his principle is stated, the less obvious it becomes.

184. It may be worth while to show exactly how mathematical

induction enters into the above proofs. Let us take the proof of {a),

and suppose there are n magnitudes between A and B. Then to begin

with, we supposed these magnitudes capable of enumeration, i.e. of an

order in which there are consecutive terms and a first term, and a term

immediately preceding any term except the first. This property pre-

supposes mathematical induction, and was in fact the very property in

dispute. Hence we must not presuppose the possibility of enumeration,

which would be a petitio principii. But to come to the kernel of the

argument : we supposed that, in any series, there must be a definite way

of assigning ordinal numbers to the terms. This property belongs to

a series of one term, and belongs to every series having m + 1 terras,

if it belongs to every series having m terms. Hence, by mathematical

induction, it belongs to all series having a finite number of terms. But

if it be allowed that the number of terms may not be finite, the whole

argument collapses.

As regards {b) and (c), the argument is similar. Every series having

a finite number of terms can be shown by mathematical induction to

have a first and last term ; but no way exists of proving this concerning

other series, or of proving that all series are finite. Mathematical

induction, in short, like the axiom of parallels, is useful and convenient

in its proper place ; but to suppose it always true is to yield to the

* It must, however, be mentioned that one of these consequences gives a logical

diiference between finite and infinite numbers, which may be taken as an inde-

pendent definition. This has been already explained in Part II, Chap, xiii, and will

be further discussed in Part V.
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tyranny of mere prejudice. The philosopher's finitist arguments, there-

fore, rest on a principle of which he is ignorant, which thei'e is no reason

to affirm, and every reason to deny. With this conclusion, the apparent

antinomies may be considered solved.

185. It remains to consider what kinds of magnitude satisfy the

propositions (1), (2), (3). There is no general principle from which

these can be proved or disproved, but there are certainly cases where

they are true, and others where they are false. It is generally held by

philosophers that numbers are essentially disci'ete, while magnitudes are

essentially continuous. This we shall find to be not the case. Real

numbers possess the most complete continuity]] known, while many kinds

of magnitude possess no continuity at all. The word continuity has

many meanings, but in mathematics it has only two—one old, the other

new. For present purposes the old meaning will suffice. I therefore

set up, for the present, the following definition :

Continuity applies to series (and only to series) whenever these are

such that there is a term between any two given terms*. Whatever is

not a series, or a compound of series, or whatever is a series not fulfilling

the above condition, is discontinuous.

Thus the series of rational numbers is continuous, for the arithmetic

mean of two of them is always a third rational number between the two.

The letters of the alphabet are not continuous.

We have seen that any two terms in a series have a distance, or a

stretch which has magnitude. Since there are certainly discrete series

{e.g. the alphabet), there are certainly discrete magnitudes, namely, the

distances or the stretches of terras in discrete series. The distance

between the letters A and C is greater than that between the letters

A and B, but there is no magnitude which is greater than one of these

and less than the other. In this case, there is also a greatest possible

and a least possible distance, so that all three propositions (1), (2), (3)

fail. It must not be supposed, however, that the three propositions

have any necessary connection. In the case of the integers, for example,

there are consecutive distances, and there is a least possible distance,

namely, that between consecutive integers, but there is no greatest

possible distance. Thus (3) is true, while (1) and (2) are false. In

the case of the series of notes, or of colours of the rainbow, the series

has a beginning and end, so that there is a greatest distance ; but there

is no least distance, and there is a term between any two. Thus (1)

and (2) are true, while (3) is false. Or again, if we take the series

composed of zero and the fractions having one for numerator, there is a

* The objection to this definition (as we shall see in Part V) is, that it does not

give the usual properties of the existence of limits to convergent series which are

commonly associated with continuity. Series of the above kind will be called

compact, except in the present discussion.

R. 13
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greatest distance, but no least distance, though the series is discrete.

Thus (2) is true, while (1) and (3) are false. And other combinations

might be obtained from other series.

Thus the three propositions (1), (2), (3), have no necessary connection,

and all of them, or any selection, may be false as applied to any given

kind of magnitude. We cannot hope, therefore, to prove their truth

from the nature of magnitude. If they are ever to be true, this must be

proved independently, or discovered by mere inspection in each particular

case. That they are sometimes true, appears from a consideration of

the distances between terms of the number-continuum or of the rational

numbers. Either of these series is continuous in the above sense, and

has no first or last term (when zero is excluded). Hence its distances

or stretches fulfil all three conditions. The same might be infen'ed

from space and time, but I do not wish to anticipate what is to be said

of these. Quantities of divisibility do not fulfil these conditions when

the wholes which are divisible consist of a finite number of indivisible

parts. But where the number of parts is infinite in a whole class of

differing magnitudes, all three conditions are satisfied, as appears from

the properties of the number-continuum.

We thus see that the problems of infinity and continuity have no

essential connection with quantity, but are due, where magnitudes

present them at all, to characteristics depending upon number and

order. Hence the discussion of these problems can only be undertaken

after the pure theory of order has been set forth*. To do this will

be the aim of the following Part.

186. We may now sum up the results obtained in Part III. In

Chapter xix we determined to define a magnitude as whatever is either

greater or less than something else. We found that magnitude has no

necessary connection with divisibility, and that greater and less are inde-

finable. Every magnitude, we saw, has a certain relation—analogous to,

but not identical with, that of inclusion in a class—to a certain quality

or relation ; and this fact is expressed by saying that the magnitude

in question is a magnitude of that quality or relation. We defined a

quantity as a particular contained under a magnitude, i.e. as the complex

consisting of a magnitude with a certain spatio-temporal position, or with

a pair of terms between which it is a relation. We decided, by means of

a general principle concerning transitive symmetrical relations, that

it is impossible to content ourselves with quantities, and deny the

further abstraction involved in magnitudes; that equality is not a direct

relation between quantities, but consists in being particularizations of

the same magnitude. Thus equal quantities are instances of the .same

* Cf. Couturatj " Sur la Definition du Continu,'' Revue de MMaphysique et de

Morale, 1900.
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magnitude. Similarly greater and less are not direct relations between
quantities, but between magnitudes: quantities are only greater and
less in virtue of being instances of greater and less magnitudes. Any
two magnitudes which are of the same quality or relation are one
greater, the other less ; and greater and less are asymmetrical transitive

relations.

Among the terms which have magnitude are not only many qualities,

but also asymmetrical relations by which certain kinds of series are

constituted. Tliese may be called distances. When there are distances

in a series, any two terms of the series have a distance, which is the same
as, greater than, or less than, the distance of any two other terms in the

series. Another peculiar class of magnitudes discussed in Chapter xx is

constituted by the degrees of divisibility of different A^holes. This, we
found, is the only case in which quantities are divisible, while there is no
instance of divisible magnitudes.

Numerical measurement, Avhich was discussed in Chapter xxi, required,

owing to the decision that most quantities and all magnitudes are in-

divisible, a somewhat unusual treatment. The problem lies, we found,

in establishing a one-one relation between numbers and the magnitudes

of the kind to be measured. On certain metaphysical hypotheses (which

were neither accepted nor rejected), this was found to be always theo-

retically possible as regards existents actual or possible, though often

not practically feasible or important. In regard to two classes of

magnitudes, namely divisibilities and distances, measurement was found
to proceed from a very natural convention, which defines what is

meant by sa\'ing (Avhat can never have the simple sense which it has in

connection with finite wholes and parts) that one such magnitude is

double of, or n times, another. The relation of distance to stretch

was discussed, and it was found that, apart fi'om a special axiom to

that effect, there was no a priori reason for regarding equal distances as

corresponding to equal stretches.

In Chapter xxii we discussed the definition of zero. The problem

of zero was fomid to have no connection with that of the infini-

tesimal, being in fact closely related to the purely logical problem

as to the nature of negation. AVe decided that, just as there are the

distinct logical and arithmetical negations, so there is a third funda-

mental kind, the quantitative negation ; but that this is negation of

that quality or relation of which the magnitudes are, not of magnitude

of that quality or relation. Hence we were able to regai'd zero as one

among the magnitudes contained in a kind of magnitude, and to dis-

tinguish the zeroes of different kinds. AVe showed also that quantitative

negation is connected with logical negation by the fact that there cannot

be any quantities whose magnitude is zero.

In the present Chapter the problems of continuity, the infinite, and
the infinitesimal, were shown to belong, not specially to the theory of

13—2
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quantity, but to those of number and order. It was shown that, though

there are kinds of magnitude in which there is no greatest and no least

magnitude, this fact does not require us to admit infinite or infinitesimal

magnitudes ; and that there is no contradiction in supposing a kind of

magnitudes to form a series in which there is a term between any two,

and in which, consequently, there is no term consecutive to a given term.

The supposed contradiction was shown to result from an undue use of

mathematical induction—a principle, the full discussion of which pre-

supposes the philosophy of order.



PART lY.

ORDER.





CHAPTER XXIV.

THE GENESIS OF SERIES.

187. The notion of order or series is one with which, in connection

with distance, and with the order of magnitude, we have already

had to deal. The discussion of continuity in the last chapter of

Part III showed us that this is properly an ordinal notion, and
prepared us for the fundamental importance of order. It is now high

time to examine this concept on its own account. The importance of

order, from a purely mathematical standpoint, has been immeaslirably

increased by many modern developments. Dedekind, Cantor, and Peano

have shown how to base all Arithmetic and Analysis upon series of a

certain kind

—

i.e. upon those properties of finite numbers in virtue

of which they form what I shall call a progression. Irrationals are

defined (as we shall see) entirely by the help of order ; and a new
class of transfinite ordinals is introduced, by which the most important

and interesting results are obtained. In Geometry, von Staudt's quadri-

lateral construction and Pieri's work on Projective Geometry have shown

how to give points, lines, and planes an order independent of metrical

considerations and of quantity ; while descriptive Geometry proves that

a very large part of Geometry demands only the possibility of serial

arrangement. Moreover the whole philosophy of space and time depends

upon the view we take of order. Thus a discussion of order, which

is lacking in the current philosophies, has become essential to any

understanding of the foundations of mathematics.

188. The notion of order is more complex than any hitherto

analyzed. Two terms cannot have an order, and even three cannot

have a cyclic order. Owing to this complexity, the logical analysis

of order presents considerable difficulties. I shall therefore approach

the problem gradually, considering, in this chapter, the circumstances

under which order arises, and reserving for the second chapter the

discussion as to what order really is. This analysis will raise several

fundamental points in general logic, which will demand considerable

discussion of an almost purely philosophical natiu-e. From this I shall

pass to more mathematical topics, such as the types of series and
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the ordinal definition of numbers, thus gradually preparing the way for

the discussion of infinity and continuity in the following Part.

There are two different ways in which order may arise, though we

shall find in the end that the second way is reducible to the first. In

the first, what may be called the ordinal element consists of three terms

a, b, c, one of which {b say) is between the other two. This happens

whenever there is a relation of a to 6 and of b to c, which is not a

relation of b to a, of c to b, or of c to a. This is the definition, or

better perhaps, the necessary and sufficient condition, of the proposition

" b is between a and c." But there are other cases of order where, at

first sight, the above conditions are not satisfied, and where between

is not obviously applicable. These are cases where we have four terms

a, b, c, d, as the ordinal element, of which we can say that a and c are

separated bv b and d. This relation is more complicated, but the

following seems to characterize it : a and c axe separated from b and d,

when there is an asymmetrical relation which holds between a and b,

b and c, c and d, or between a and d, d and c, c and b, or between

c and d, d and a, a and b ; while if we have the first case, the same

relation must hold either between d and a, or else between both a

and c, and a and d; with similar assumptions for the other two cases*.

(No further special assumption is required as to the relation between

a and c or between b and d ; it is the absence of such an assumption

which prevents our reducing this case to the former in a simple manner.)

There are cases—notably where our series is closed—in which it seems

formally impossible to reduce this second case to the first, though this

appearance, as we shall see, is in part deceptive. We have to show,

in the present chapter, the principal ways in which series arise from

collections of such ordinal elements.

Although two terms alone cannot have an order, we must not

assume that order is possible except where there are relations between

two terms. In all series, we shall find, there are asymmetrical relations

between two terms. But an asymmetrical relation of which there is

only one instance does not constitute order. We require at least two

instances for between, and at least three for separation of pairs. Thus

although order is a relation between three or four terms, it is only

possible where there are other relations which hold between pairs of

terms. These relations may be of various kinds, giving different ways

of generating series. I shall now enumerate the principal ways with

which I am acquainted.

189. (1) The simplest method of generating a series is as follows.

Let there be a collection of terms, finite or infinite, such that every

term (with the possible exception of a single one) has to one and only

* This gives a sufficient but not a necessary condition for the separation

of couples.
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one other term of the collection a certain asymmetrical relation (which
must of course be intransitive), and that every term (with again one
possible exception, which must not be the same as the term formerly

excepted) has also to one and only one other term of the collection

the relation which is the converse of the former one*. Further, let

it be assumed that, if a has the first relation to 6, and b to c, then c

does not have the first relation to a. Then every term of the collection

except the two peculiar terms has one relation to a second term, ?ind

the converse relation to a third, while these terms themselves do not

have to each other either of the relations in question. Consequently,

by the definition of between, our first term is between our second and
third terms. The term to which a given term has one of the two
relations in question is called next after the given term ; the term to

which the given term has the converse relation is called next before

the given term. Two terms between which the relations in question

hold are called consecutive. The exceptional terms (when they exist)

are not between any pair of terms ; they are called the two ends of

the series, or one is called the beginning and the other the end. The
existence of the one does not imply that of the other—for example
the natural numbers have a beginning but no end—and neither need
exist—for example, the positive and negative integers together have

neither
"f.

The above method may perhaps become clear by a formal exhibition.

Let R be one of our relations, and let its converse be denoted by .ffj.

Then if e be any term of our set, there are two terms d,f, such that

e R d, e Rf, i.e. such that d R e, e Rf. Since each term only has the

relation R to one other, we cannot have d Rf; and it was one of

the initial assumptions that we were not to have f R d. Hence e is

between d sxiAf §. If a be a term which has only the relation R, then

obviously a is not between any pair of terms. We may extend the

notion of between by defining that, if c be between b and d, and d
between c and e, then c ov d will be said to be also between b and e.

In this way, unless we either reach an end or come back to the term

with which we started, we can find any number of terms between which

and b the term c will liS. But if the total number of terms be not

less than seven, we cannot show in this way that of any three terms

one must be between the other two, since the collection may consist

* The converse of a relation is the relation which must hold between y and x
when the given relation holds between x and y.

t The above is the only method of g-enerating series given by Bolzano, " Para-

doxien des Unendlichen/' § 7.

X This is the notation adopted by Professor Schroder.

§ The denial of d Rf is only necessary to this special method, but the denial ot

fR d is essential to the definition of between.
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of two distinct series, of which, if the collection is finite, one at least

must be closed, in order to avoid more than two ends.

This remark shows that, if the above method is to give a single

series, to which any term of our collection is to belong, we need a

further condition, which may be expressed by saying that the collection

must be connected. We shall find means hereafter of expressing this

condition without reference to number, but for the present we may
content ourselves by saying that our collection is connected when, given

any two of its terms, there is a certain finite number (not necessarily

unique) of steps from one term to the next, by which we can pass

from one of our two terms to the other. When this condition is

fulfilled, we are assured that, of any three terms of our collection, one

must be between the other two.

Assuming now that our collection is connected, and therefore forms

a single series, four cases may arise : (a) our series may have two ends,

(b) it may have one end, (c) it may have no end and be open, {d) it may
have no end and be closed. Concerning (a), it is to be observed that

our series must be finite. For, taking the two ends, since the collection

is connected, there is some finite number n of steps which will take

us from one end to the other, and hence w + 1 is the number of terms

of the series. Every term except the two ends is between them, and

neither of them is between any other pair of terms. In case (b), on

the other hand, our collection must be infinite, and this would hold

even if it were not connected. For suppose the end which exists to

have the relation R, but not R. Then every other term of the collection

has both relations, and can never have both to the same term, since R
is asymmetrical. Hence the term to which (say) e has the relation R is

not that to which it had the relation R, but is either some new term,

or one of e''s predecessors. Now it cannot be the end-term «, since

a does not have the relation R to any term. Nor can it be any term

which can be reached by successive steps from a without passing

through e, for if it were, this term would have two predecessors,

contrary to the hypothesis that R is a, one-one relation. Hence, if

Jc be any term which can be reached by successive steps from a,

h has a successor which is not a or any of the terms between a

and Jc ; and hence the collection is infinite, whether it be connected

or not. In case (c), the collection must again be infinite. For here,

by hypothesis, the series is open

—

i.e., starting from any term e, no

number of steps in either direction brings us back to e. And there

cannot be a finite limit to the number of possible steps, since, if there

were, the series would have an end. Here again, it is not necessary to

suppose the series connected. In case {d), on the contrary, we must

assume connection. By saying that the series is closed, we mean that

there exists some number n of steps by which, starting from a certain
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term a, we shall be brought back to a. In this case, n is the number
of terms, and it makes no diiFerence with which term we start. In this

case, between is not definite except where three terms are consecutive,

and the series contains more than three terms. Otherwise, we need the

more complicated relation of separation.

190. (2) The above method, as we have seen, will give either open

or closed series, but only such as have consecutive terms. The second

method, which is now to be discussed, will give series in which there

are no consecutive terms, but will not give closed series*. In this

method we have a transitive asymmetrical relation P, and a collection

of terms any two of which are such that either xPy or yPos. When
these conditions are satisfied our terms necessarily form a single series.

Since the relation is asymmetrical, we can distinguish xPy from yPx,

and the two cannot both subsist f. Since P is transitive, xPy and yPz

involve xPz. It follows that P is also asymmetrical and transitive|.

Thus with respect to any term x of our collection, all other terms of

the collection fall into two classes, those for which xPy, and those for

which zPx. Calling these two classes ttx and irx respectively, we see

that, owing to the transitiveness of P, if y belongs to the class ttx,

•fry is contained in rirx ; and if z belongs to the class ttx, trz is contained

in TTX. Taking now two terms x, y, for which xPy, all other terms fall

into three classes : (1) Those belonging to ttx, and therefore to try
;

(2) those belonging to iry, and therefore to ttx ; (3) those belonging to

TTX but not to Try. If z be of the first class, we have zPx, zPy ; if w be

of the second, xPv and yPv ; if o) be of the third, xPw and wPy. The
case yPu and uPx is excluded : for xPy, yPu imply xPu, which is in-

consistent with uPx. Thus we have, in the three cases, (1) a: is between

z and y ; (2) y is between x and i; ; (3) w is between x and y. Hence

any three terms of our collection are such that one is between the other

two, and the whole collection forms a single series. If the class (3)

contains no terms, x and y are said to be consecutive ; but many rela-

tions P can be assigned, for which there are always terms in the class (3).

If for example P be before, and our collection be the moments in a

* The following method is the only one given by Vivanti in the Formulaire de

Mathematiques, (189-5), yi, § 2, No. 7 ; also by Gilman, " On the properties of a one-

dimensional manifold/' Mind, N.S. Vol. i. We shall find that it is general in

a sense in which none of our other methods are so.

t I use the term asymmetrical as the contrary, rather than the contradictory,

of symmetrical, li osPy, and the relation is symmetrical, we have always yPoc ; if

asymmetrical, we never have yPx. Some relations

—

e.g. logical implication—are

neither symmetrical nor asymmetrical. Instead of assuming P to be asymmetrical,

we may make the equivalent assumption that it is what Professor Peirce calls an

aliorelative, i.e. a relation which no term has to itself (This assumption is not

equivalent to asymmetry in general, but only when combined with transitiveness.)

I P may be read precedes, and P may be read follows, provided no temporal or

spatial ideas are allowed to intrude themselves.
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certain interval, or in all time, there is a moment between any two of

our collection. Similarly in the case of the magnitudes which, in the

last chapter of Part III, we called continuous. There is nothing in

the present method, as there was in the first, to show that there must

be consecutive terms, unless the total number of terms in our collection

be finite. On the other hand, the present method will not allow closed

series ; for owing to the transitiveness of the relation P, if the series

were closed, and x were any one of its terms, we should have xPx, which

is impossible because P is asymmetrical. Thus in a closed series, the

generating relation can never be transitive*. As in the former method,

the series may have two ends, or one, or none. In the first case only,

it may be finite ; but even in this case it may be infinite, and in the

other two cases it must be so.

191. (3) A series may be generated by means of distances, as was

already partially explained in Part III, and as we shall see more fully

hereafter. In this case, starting with a certain term x, we are to have

relations, which are magnitudes, between x and a number of other terms

y, z According as these relations are greater or less, we can order

the corresponding terms. If there are no similar relations between the

remaining terms y, z, ..., we require nothing further. But if these

have relations which are magnitudes of the same kind, certain axioms

are necessary to insure that the order may be independent of the

particular term from which we start. Denoting by xz the distance of

X and z, if xz is less than xw, we must have yz less than yw. A con-

sequence, which did not follow when x was the only term that had

a distance, is that the distances must be asymmetrical relations, and

those which have one sense must be considered less than zero. For
" xz is less than xw " must involve " wz is less than ww,"" i.e. wz is less

than 0. In this way the present case is practically reduced to the

second ; for every pair of terms x, y will be such that xy is less than

or else xy is greater than ; and we may put in the first case yPx,

in the second xPy. But we require one further axiom in order that

the arrangement may be thus effected unambiguously. If xz = y'w, and

zw'= xy, w and w' must be the same point. With this further axiom,

the reduction to case (2) becomes complete.

192. (4) Cases of triangular relations ai'e capable of giving rise to

order. Let there be a relation R which holds between y and {x, z),

between z and {y, u), between u and {z, w), and so on. Between is itself

such a relation, and this might therefore seem the most direc.t and

natural way of generating order. We should say, in such a case, that y
is between x and z, when the relation R holds between y and the couple

X, z. We should need assumptions concerning R which should show

that, if y is between x and z, and z between y and w, then y and z are

* For more precise statements, see Chap, xxviii.



190-194] The Genesis of Series 205

each between oc and iv. That is, if we have yR {x, z), zR («/, w), we must
have yR {x, w) and zR {x, w). This is a kind of three-term transitiveness.

Also if y be between x and w, and z between y and w, then z must be

between x and w, and y between x and z : that is, if yR (x, w) and
zR (y, w), then si? {x, ro) and «/i? (/r, z). Also ?/i? (a?, 2) must be equi-

valent to yR{z, x)*. With these assumptions, an unambiguous order

will be generated among any number of terms such that any triad has

the relation R. Whether such a state of things can ever be incapable of

further analysis, is a question which I leave for the next chapter.

193. (5) We have found hitherto no way of generating closed

continuous series. There are, however, instances of such series, e.g.

angles, the elliptic straight line, the complex numbers with a given

modulus. It is therefore necessary to have some theory which allows of

their possibility. In the case where our terms are asymmetrical relations,

as straight lines are, or are correlated uniquely and reciprocally with

such relations, the following theory will effect this object. In other

cases, the sixth method (below) seems adequate to the end in view.

Let X, y, z... he a set of asymmetrical relations, and let R be an

asymmetrical relation which holds between any two x, y or y, x except

when y is the converse relation to x. Also let R be such that, if it holds

between x and y, it holds between y and the converse of x ; and if x be

any term of the collection, let all the terms to which x has either of the

relations R, R be terms of the collection. All these conditions are

satisfied by angles, and whenever they are satisfied, the resulting series is

closed. For xRy implies yRx, and hence xRy, and thence yRx; so

that by means of relations R it is possible to travel from x back to x.

Also there is nothing in the definition to show that our series cannot be

continuous. Since it is closed, we cannot apply universally the notion of

between; but the notion of separation can be always applied. The
reason why it is necessary to suppose that our terms either are, or are

correlated with, asymmetrical relations, is, that such series often have

antipodes, opposite terms as they may be called ; and that the notion of

opposite seems to be essentially bound up with that of the converse of an

asymmetrical relation.

194. (6) In the same way in which, in (4), we showed how to

construct a series by relations of between, we can construct a series

directly by four-term relations of separation. For this purpose, as

before, certain axioms are necessary. The following five axioms have

been shown by Vailatif to be sufficient, and by Padoa to possess ordered

independence, i.e. to be such that none can be deduced from its pre-

decessors!. Denoting "a and b separate c from tZ" by ab\\cd, we must

have

:

* See Peano, I Principii di Geometria, Turin, 1889, Axioms viii, ix, x, xi.

+ Rivista di Matematica, v, pp. 76, 183. % Ibid. p. 185.
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(a) a6 II
c(Z is equivalent to cd'^ab;

(fS) ah
II
cd is equivalent to ah

||
dc ;

(7) ab\\cd excludes ac\^bd;

(S) For any four terms of our collection, we must have a6||ccZ, or

ac|| bd, or ad^^bc;

(e) If ah
II
cd, and ac

||
be, then ac

||
&.

By means of these five assumptions, our terms a, b, c, d, e... acquire

an unambiguous order, in which we start from a relation between two

pairs of terms, which is undefined except to the extent to which the

above assumptions define it. The further consideration of this case, as

generally of the relation of separation, I postpone to a later stage.

The above six methods of generating series are the principal ones

with which I am acquainted, and all other methods, so far as I know,

are reducible to one of these six. The last alone gives a method of

generating closed continuous series whose terms neither are, nor are

correlated with, asymmetrical relations *. This last method should there-

fore be applied in projective and elliptic Geometry, where the correlation

of the points on a line with the lines through a point appears to be

logically subsequent to the order of the points on a line. But before we

can decide whether these six methods (especially the fourth and sixth)

are irreducible and independent, we must discuss (what has not hitherto

been analyzed) the meaning of order, and the logical constituents (if any)

of which this meaning is compounded. This will be done in the following

chapter.

* See Chap, xxviii.



CHAPTER XXV.

THE MEANING OF ORDER.

195. We have now seen under what circumstances there is an order

among a set of terms, and by this means we have acquired a certain

inductive famiharity with the nature of order. But we have not yet

faced the question : What is order ? This is a difficult question, and
one upon which, so far as I know, nothing at all has been written. All

the authors with whom I am acquainted are content to exhibit the

genesis of order ; and since most of them give only one of the six

methods enumerated in Chapter xxiv, it is easy for them to confound the

genesis of order with its nature. This confusion is rendered evident to

us by the multiplicity of the above methods ; for it is evident that we
mean by order something perfectly definite, which, being generated

equally in all our six cases, is clearly distinct from each and all of the

ways in which it may be generated, unless one of these ways should turn

out to be fundamental, and the others to be reducible to it. To elicit

this common element in all series, and to broach the logical discussions

connected with it, is the purpose of the present chapter. This discussion

is of purely philosophical interest, and might be wholly omitted in a

mathematical treatment of the subject.

In order to approach the subject gradually, let us separate the

discussion of between from that of separation of couples. When we have

decided upon the nature of each of these separately, it will be time to

combine them, and examine what it is that both have in common.
I shall begin with between, as being the simpler of the two.

196. Between may be characterized (as in Chapter xxiv) as a relation

of one term «/ to two others x and z, which holds whenever x has to 3/, and

y has to z, some relation which «/ does not have to w, nor z to «/, nor zto x*.

* The condition that z does not have to x the relation in question is comparatively

inessential, being only required in order that, if y be between x and x:, we may not
have X between y and z, or z between x and y. If we are willing to allow that in

such caseSj for example, as the angles of a triangle, each is between the other two,

we may drop the condition in question altogether. The other four conditions, on
the contrary, seem more essential.
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These conditions are undoubtedly sufficient for betweenness, but it may
be questioned whether they are necessary. Several possible opinions

must be distinguished in this respect. (1) We may hold that the above

conditions give the very meaning of between, that they constitute an

actual analysis of it, and not merely a set of conditions insuring its

presence. (2) We may hold that between is not a relation of the terms

X, y, z at all, but a relation of the relation oi y to x to that of y to z,

namely the relation of difference of sense. (3) We may hold that

between is an indefinable notion, like greater and less ; that the above

conditions allow us to infer that y is between x and z, but that there

may be other circumstances under which this occurs, and even that it

may occur without involving any relation except diversity among the

pairs (x, y), (y, z), (x, z). In order to decide between these theories, it

will be well to develop each in turn.

197. (1) In this theory, we define "3/ is between a? and z" to mean:
" There is a relation R such that xRy, yRz but not yRx, zRy "

; and it

remains a question whether we are to add " not zRx."" We will suppose

to begin with that this addition is not made. The following propositions

will be generally admitted to be self-evident: (a) If z/ be between x and z,

and z between y and w, then y is between x and w ; (/3) if y be between

X and z, and w between x and y, then y is between w and z. For brevity,

let us express "?/ is between x and 0" by the symbol xyz. Then our two

propositions are : (a) xyz and yzw imply xyw ; (/3) xyz and xwy imply

•wyz. We must add that the relation of between is symmetrical so far as

the extremes are concerned : i.e. xyz implies zyx. This condition follows

directly from our definition. With regard to the axioms (a) and (yS), it

is to be observed that between, on our present view, is always relative to

some relation R, and that the axioms are only assumed to hold when it

is the same relation R that is in question in both the premisses. Let us

see whether these axioms are consequences of our definition. For this

purpose, let us write R for not -R.

xyz means xRy, yRz, yRx, zRy.

yzw means yRz, zRw, zRy, wRz.

Thus yzw only adds to xyz the two conditions zRw, wRz. If R is

transitive, these conditions insure xyw ; if not, not. Now we have seen

that some series are generated by one-one relations R, which are not

transitive. In these cases, however, denoting by R"^ the relation between

X and z implied ,by xRy, yRz, and so on for higher powers, we can

substitute a transitive relation R' for R, where R' means " some positive

power of i?." In this way, if xyz holds for a relation which is some

definite power of R, then xyz holds for R', provided only that no positive

power of R is equivalent to R. For, in this latter event, we should

have yR'x whenever xR'y, and R' could not be substituted for R in the

explanation of xyz. Now this condition, that the converse of R is not
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to be a positive power of R, is equivalent to the condition that our

series is not to be closed. For if 5 = /?", then RR = i?"+^ ; but since R
is a one-one relation, RR implies the relation of identity. Thus w +

1

steps bring us back from x to x, and our series is a closed series of

w + 1 terms. Now we have agreed already that between is not properly

applicable to closed series. Hence this condition, that R is not to

be a power of R, imposes only such restrictions upon our axiom (a) as

we should expect it to be subject to.

With regard to (/3), we have

xyz= xRy . yRz . yRx . zRy.

xwy = xRio . wRy . wRx . yRw.
The case contemplated by this axiom is only possible if R be not

a one-one relation, since we have xRy and xRw. The deduction wyz

is here an immediate consequence of the definition, without the need of

any further conditions.

It remains to examine whether we can dispense with the condition

zRx in the definition of between. If we suppose i? to be a one-one

relation, and zRx to be satisfied, we shall have

xyz = xRy . yRz . zRy . yRx,

and we have further by hypothesis zRx, and since R is one-one, and

xRy, we have xRz. Hence, in virtue of the definition, we have yzx ;

and similarly we shall obtain zxy. If we now adhere to our axiom (a),

we shall have xzx, which is impossible ; for it is certainly part of the

meaning of between that the three terms in the relation should be

different, and it is impossible that a term should be between x and x.

Thus we must either insert our condition zRx, or we must set up the

new condition in the definition, that x and z are to be different. (It

should be observed that our definition implies that x is different from y
and y from 2; for if not, xRy would involve yRx, and yRz would

involve zRy.) It would seem preferable to insert the condition that x
and z are to be different : for this is in any case necessary, and is not

implied by zRx. This condition must then be added to our axiom (a)

;

xyz and yzw are to imply xyw, unless x and w are identical. In axiom

(/8), this addition is not necessary, since it is implied in the premisses.

Thus the condition zRx is not necessary, if we are willing to admit that

xyz is compatible with yzx—an admission which such cases as the

angles of a triangle render possible. Or we may insert, in place of

zRx, the condition which we found necessary before to the universal

validity of our axiom (a), namely that no power of R is to be equivalent

to the converse of R : for if we have both xyz and yzx, we shall have (so

far at least as x, y, z are concerned) R' = R, i.e. if xRy and yRz, then

E. U
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zRx. This last course seems to be the best. Hence in all cases where

our first instance of between is defined by a one-one relation R, we shall

substitute the relation R', which means "some positive power of i?."

The relation R' is then transitive, and the condition that no positive

power of R is to be equivalent to R is equivalent to the condition that

R' is to be asymmetrical. Hence, finally, the whole matter is simplified

into the following

:

To say that ?/ is between a; and z is equivalent to saying that there

is some transitive asymmetrical relation which relates both x and y, and

z/ and z.

This short and simple statement, as the above lengthy argument

shows, contains neither more nor less than our original definition, to-

gether with the emendations which we gradually found to be necessary.

The question remains, however : Is this the meaning of between ?

198. A negative instance can be at once established if we allow the

phrase : i? is a relation between a: and «/. The phrase, as the reader will

have observed, has been with difficulty excluded from the definitions of

between, which its introduction would have rendered at least verbally

circular. The phrase may have none but a linguistic importance, or

again it may point to a real insufficiency in the above definition. Let

us examine the relation of a relation R to its terms x and 9/. In the

first place, there certainly is such a relation. To be a term which has

the relation R to some other term is certainly to have a relation to R,

a relation which we may express as " belonging to the domain of R."

Thus if xRy, x will belong to the domain of R, and y to that of R.

If we express this relation between x and R, or between y and R, by jE,

we shall have xER, yER. If further we express the relation of ^ to ^
by /, we shall have RIR and RIR. Thus we have xER, yEIR. Now
EI is by no means the converse of E, and thus the above definition of

between, if for this reason only, does not apply ; also neither E nor EI
is transitive. Thus our definition of between is wholly inapplicable to

such a case. Now it may well be doubted whether between, in this case,

has at all the same meaning as in other cases. Certainly we do not in

this way obtain series : x and y are not, in the same sense as R, between

R and other terms. Moreover, if we admit relations of a term to itself,

we shall have to admit that such relations are between a term and

itself, which we agreed to be impossible. Hence we may be tempted

to regard the use of between in this case as due to the linguistic accident

that the relation is usually mentioned between the subject and the

object, as in "^ is the father of jB.'' On the other hand, it may be

urged that a relation does have a very peculiar relation to the pair of

terms which it relates, and that between should denote a relation of one

term to two others. To the objection concerning relations of a term

to itself, it may be answered that such relations, in any system, con-
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stitute a grave logical difficulty ; that they would, if possible, be denied
philosophic validity; and that even where the relation asserted is

identity, there must be two identical terms, which are therefore not
quite identical. As this raises a fundamental difficulty, which we cannot
discuss here, it will be prudent to allow the answer to pass*. And it

may be further urged that use of the same word in two connections
points always to some analogy, the extent of which should be carefully

indicated by those who deny that the meaning is the same in both
cases ; and that the analogy here is certainly profounder than the mere
order of words in a sentence, M'hich is, in any case, far more variable

in this respect than the phrase that a relation is between its terms.

To these remarks, however, it may be retorted that the objector has
himself indicated the precise extent of the analogy : the relation of a
relation to its terms is a relation of one term to two others, just as

beticeen is, and this is what makes the two cases similar. This last

retort is, I think, valid, and we may allow that the relation of a relation

to its terms, though involving a most important logical problem, is

not the same as the relation of between by which order is to be con-

stituted.

Nevertheless, the above definition of betzeeen, though we shall be
ultimately forced to accept it, seems, at first sight, scarcely adequate
from a philosophical point of view. The reference to some asymmetrical
relation is vague, and seems to require to be replaced by some phrase
in which no such undefined relation appears, but only the terms and
the betweenness. This brings us to the second of the above opinions

concerning between.

199. (2) Between, it may be said, is not a relation of three terms
at all, but a relation of two relations, namely difference of sense. Now
if we take this view, the first point to be observed is, that we require

the two opposite relations, not merely in general, but as particularized

by belonging to one and the same term. This distinction is already

familiar from the case of magnitudes and quantities. Before and qfte?

in the abstract do not constitute betzeeen : it is only ^vhen one and the

same term is both before and after that between arises : this term is

then between what it is before and what it is after. Hence there is

a difficulty in the reduction of between to difference of sense. The par-

ticularized relation is a logically puzzling entity, which in Part I (§ 55)
we found it necessary to deny ; and it is not quite easy to distinguish

a relation of two relations, particularized as belonging to the same terra,

from a relation of the term in question to two others. At the same
time, great advantages are secured by this reduction. We get rid of

the necessity for a triangular relation, to which many philosophers may
object, and we assign a common element to all cases of between, namely
difference of sense, i.e. the difference between an asymmetrical relation

and its converse.

* Cf. § 95.

14—2
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200. The question whether there can be an ultimate triangular

relation is one whose actual solution is both difficult and unimportant,

but whose precise statement is of very great importance. Philosophers

seem usually to assume—though not, so far as I know, explicitly—that

relations never have more than two terms ; and even such relations they

reduce, by force or guile, to predications. Mathematicians, on the other

hand, almost invariably speak of relations of many terms. We cannot,

however, settle the question by a simple appeal to mathematical instances,

for it remains a question whether these are, or are not, susceptible of

analysis. Suppose, for example, that the projective plane has been

defined as a relation of three points : the philosopher may always say

that it should have been defined as a relation of a point and a line,

or of two intersecting lines—a change which makes little or no mathe-

matical difference. Let us see what is the precise meaning of the question.

There are among terms two radically different kinds, whose difference

constitutes the truth underlying the doctrine of substance and attribute.

There are terms which can never occur except as terms ; such are points,

instants, colours, sounds, bits of matter, and generally terms of the kind

of which existents consist. There are, on the other hand, terms which

can occur otherwise than as terms ; such are being, adjectives generally,

and relations. Such terms we agreed to call concepts*- It is the presence

of concepts not occurring as terms which distinguishes propositions from

mere concepts ; in every proposition there is at least one more concept

than there are terms. The traditional view—which may be called the

subject-predicate theory—holds that in every proposition there is one

term, the subject, and one concept which is not a term, the predicate.

This view, for many reasons, must be abandoned f. The smallest

departure from the traditional opinion lies in holding that, where

propositions are not reducible to the subject-predicate form, there are

always two terms only, and one concept which is not a term. (The

two terms may, of course, be complex, and may each contain concepts

which are not terms.) This gives the opinion that relations are always

between only two terms ; for a relation may be defined as any concept

which occurs in a proposition containing more than one term. But

there seems no a priori reason for limiting relations to two terms,

and there are instances which lead to an opposite view. In the first

place, when the concept of a number is asserted of a collection, if the

collection has n terms, there are n terms, and only one concept (namely

n) which is not a term. In the second place, such relations as those

of an existent to the place and time of its existence are only reducible

by a very cumbrous method to relations of two terms |. If, however,

the reduction be held essential, it seems to be always formally possible,

* See Part I, Chap. iv.

t See The Philosophy of Leibniz, by the present author, Cambridge, 1900;

Chapter ii, § 10.

+ See Part VII, Chap. liv.
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by compounding part of the proposition into one complex term, and
then asserting a relation between this part and the remainder, which

can be similarly reduced to one term. There may be cases where this

is not possible, but I do not know of them. The question whether such

a formal reduction is to be always undertaken is not, however, so far

as I have been able to discover, one of any great practical or theoretical

importance.

201. There is thus no valid a priori reason in favour of analyzing

between into a relation of two relations, if a triangular relation seems

otherwise preferable. The other reason in favour of the analysis of

between is more considerable. So long as between is a triangular relation

of the terms, it must be taken either as indefinable, or as involving a

reference to some transitive asymmetrical relation. But if we make
between consist essentially in the opposition of two relations belonging

to one term, there seems to be no longer any undue indeterminateness.

Against this view we may urge, how-ever, that no reason now appears

why the relations in question should have to be transitive, and that

—

what is more important—the very meaning of between involves the

terms, for it is they, and not their relations, that have order. And
if it were only the relations that were relevant, it would not be necessary,

as in fact it is, to particularize them by the mention of the terms

between which they hold. Thus on the whole, the opinion that between

is not a triangular relation must be abandoned.

202. (3) We come now to the view that between is an ultimate

and indefinable relation. In favour of this view it might be urged that,

in all our ways of generating open series, we could see that cases of

between did arise, and that we could apply a test to suggested definitions.

This seems to show that the suggested definitions were merely conditions

which imply relations of between, and were not true definitions of this

relation. The question : Do such and such conditions insure that ij

shall be between x and z ? is always one which we can answer, without

having to appeal (at least consciously) to any previous definition. And
the unanalyzable nature of between may be supported by the fact that

the relation is symmetrical with respect to^ the two extremes, which was

not the case with the relations of pairs from which between was inferred.

There is, however, a very grave difficulty in the way of such a view, and

that is, that sets of terms have many different orders, so that in one we

may have y between x and z, while in another we have x between

y and z*. This seems to show that between essentially involves reference

to the relations from which it is inferred. If not, we shall at least have

to admit that these relations are relevant to the genesis of series; for

series require imperatively that there should be at most one relevant

* This case is illustrated by the rational numbers, which may be taken in order

of magnitude, or in one of the orders {e.g. the logical order) in which they are

denumerable. The logical order is the order 1, 2, 1/2^ 3, 1/3, 2/3, 4,
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relation of between among three terms. Hence we must, apparently,

allow that between is not the sole source of series, but must always be

supplemented by the mention of some transitive asymmetrical relation

with respect to which the betweenness arises. The most that can be

said is, that this transitive asymmetrical relation of two terms may
itself be logically subsequent to, and derived from, some relation of

three terms, such as those considered in Chapter xxiv, in the fourth way

of generating series. When such relations fulfil the axioms which were

then mentioned, they lead of themselves to relations between pairs of

terms. For we may say that b precedes c when acd implies bed, and

that b follows c when abd implies cbd, where a and d are fixed terms.

Though such relations are merely derivative, it is in virtue of them

that between occurs in such cases. Hence we seem finally compelled to

leave the reference to an asymmetrical relation in our definition. We
shall therefore say

:

A term y is between two terms x and z with reference to a transitive

asymmetrical relation R when xRy and yRz. In no other case can y
be said properly to be between x and z ; and this definition gives not

merely a criterion, but the very meaning of betweenness.

203. AVe have next to consider the meaning of separation of

couples. This is a more complicated relation than between, and was

but little considered until elliptic Geometry brought it into prominence.

It has been shown by Vailati* that this relation, like between, always

involves a transitive asymmetrical relation of two terms ; but this rela-

tion of a pair of terms is itself relative to three other fixed terms of the

set, as, in the case of between, it was relative to two fixed terms. It is

further sufficiently evident that wherever there is a transitive asymme-

trical relation, which relates every pair of terms in a collection of not

less than four terms, there there are pairs of couples having the relation

of separation. Thus we shall find it possible to express separation, as

well as between, by means of transitive asymmetrical relations and their

terms. But let us first examine directly the meaning of separation.

We may denote the fact that a and c are separated by b and d by

the symbol abed. If, then, a, b, c, d, e be any five terms of the set we

require the following properties to hold of the relation of separation (of

which, it will be observed, only the last involves five

terms)

:

1. abed — bade. „J \i
2. abed = adcb.

3. abed excludes acbd.

4. We must have abed or acdb or adbc.

5. abed and acde together imply abdef.

* Rivista di Matematica, v, pp. 75—78. See also Fieri, I Principii delta Geometria

di Posizione, Turin, 1898, § 7.

t These five properties are taken from Vailati, loc. cit. and ib. p. 183.
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These properties may be illustrated by the consideration of five

points on a circle, as in the accompanying figure. Whatever relation

of two pairs of terms possesses these properties we shall call a relation

of separation between the pairs. It will be seen that the relation is

symmetrical, but not in general transitive.

204. Wherever we have a transitive asymmetrical relation R be-

tween any two terms of a set of not less than four terms, the relation of
separation necessarily arises. For in any series, if four terms have the

order abed, then a and c are separated by h and d ; and evei-y transitive

asymmetrical relation, as we have seen, provided there are at least two
consecutive instances of it, gives rise to a series. Thus in this case,

separation is a mere extension of between: if R be asymmetrical and
transitive, and aRb, bRc, cRd, then a and c are separated by b and d.

The existence of such a relation is therefore a sufficient condition of

separation.

It is also a necessary condition. For, suppose a relation of separation

to exist, and let a, b, c, d, e be five terms of the set to which the relation

applies. Then, considering a, b, c as fixed, and d and e as variable,

twelve cases may arise. In virtue of the five fundamental properties, we
may introduce the symbol abcde to denote that, striking out any one

of these five letters, the remaining four have the relation of separation

which is indicated by the resulting symbol. Thus by the fifth property,

abed and acde imply abcde*. Thus the twelve cases arise from permuting

d and e, while keeping a, b, c fixed. (It should be observed that it

makes no difference whether a letter appears at the end or the beginning:

i.e. abcde is the same case as eabcd. We may therefore decide not to put

either d or e before a.) Of these twelve cases, six will have d before e,

and six will have e before d. In the first six cases, we say that, with

respect to the sense abc, d precedes e ; in the other six cases, we say that

e precedes d. In order to deal with limiting cases, we shall say further

that a precedes every other term, and that b precedes cf . We shall then

find that the relation of preceding is asymmetrical and transitive, and

that every pair of terms of our set is such that one precedes and the

other follows. In this way our relation of separation is reduced, formally

at least, to the combination of " a precedes b,^ " b precedes c,'" and " c

precedes d"
The above reduction is for many reasons highly interesting. In the

first place, it shows the distinction between open and closed series to be

somewhat superficial. For although our series may initially be of the

sort which is called closed, it becomes, by the introduction of the above

transitive relation, an open series, having a for its beginning, but having

* The argument is somewhat tedious, and I therefore omit it. It will be found

in Vailati, loc. cit.

t Fieri, op. cit. p. 32.
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possibly no last term, and not in any sense returning to a. Again it is

of the highest importance in Geometry, since it shows how order may
arise on the elliptic straight line, by purely projective considerations,

in a manner which is far more satisfactory than that obtained from

von Staudfs construction*. And finally, it is of great importance as

unifying the two sources of order, between and separation ; since it

shows that transitive asymmetrical relations are always present where

either occurs, and that either implies the other. For, by the relation of

preceding, we can say that one term is between two others, although we
started solely from separation of pairs.

205. At the same time, the above reduction (and also, it would

seem, the corresponding reduction in the case of between) cannot be

allowed to be more than formal. That is, the three terms a, b, c by

relation to which our transitive asymmetrical relation was defined, are

essential to the definition,.and cannot be omitted. The reduction shows

no reason for supposing that there is any transitive asymmetrical relation

independent of all other terms than those related, though it is arbitrary

what other terms we choose. And the fact that the term a, which is

not essentially peculiar, appears as the beginning of the series, illustrates

this fact. Where there are transitive asymmetrical relations independent

of all outside reference, our series cannot have an arbitrary beginning,

though it may have none at all. Thus the four-term relation of sepa-

ration remains logically prior to the resulting two-term relation, and

cannot be analyzed into the latter.

206. But when we have said that the reduction is formal, we have

not said that it is irrelevant to the genesis of order. On the contrary,

it is just because such a reduction is possible that the four-term relation

leads to order. The resulting asymmetrical transitive relation is in

reality a relation of five terms ; but when three of these are kept fixed,

it becomes asymmetrical and transitive as regards the other two. Thus
although between applies to such series, and although the essence of

order consists, here as elsewhere, in the fact that one term has, to two

others, converse relations which are asymmetrical and transitive, yet

such an order can only arise in a collection containing at least five terms,

because five terms are needed for the characteristic relation. And it

should be observed that all series, when thus explained, are open series,

in the sense that there is some relation between pairs of terms, no power

of which is equal to its converse, or to identity.

207. Thus finally, to sum up this long and complicated discussion

:

The six methods of generating series enumerated in Chapter xxiv are all

genuinely distinct ; but the second is the only one which is fundamental,

* The advantages of this method are evident from Pieri's work quoted above,

where many things which seemed incapable of projective proof are rigidly deduced
from projective premisses. See Part VI, Chap. xlv.



204-207] The meaning of Order 217

and the other five agree in this, that they are all reducible to the second.

Moreover, it is solely in virtue of their reducibility to the second that

they give rise to order. The minimum ordinal proposition, which can

always be made wherever there is an order at all, is of the form :
"

«/ is

between .r and z "
; and this proposition means ;

" There is some
asymmetrical transitive relation which holds between jc and y and
between y and .5." This very simple conclusion might have been guessed

from the beginning; but it was only by discussing all the apparently

exceptional cases that the conclusion could be solidly established.



CHAPTER XXVI.

ASYMMETRICAL RELATIONS.

208. We have now seen that all order depends upon transitive

asymmetrical relations. As such relations are of a kind which traditional

logic is unwilling to admit, and as the refusal to admit them is one of

the main sources of the contradictions which the Critical Philosophy has

found in mathematics, it will be desirable, before proceeding further, to

make an excursion into pure logic, and to set forth the grounds which

make the admission of such relations necessary. At a later stage (in

Part VI, Chap, li), I shall endeavour to answer the general objections

of philosophers to relations ; for the present, I am concerned only with

asymmetrical relations.

Relations may be divided into four classes, according as they do

or do not possess either of two attributes, transitivehess* and symmetry.

Relations such that a^Ry always implies yRx are called symmetrical;

relations such that xRy, yRz together always imply xRz are called

transitive. Relations which do not possess the first property I shall

call not symmetrical; relations which do possess the opposite property,

i.e. for which xRy always excludes yRx, I shall call asymmetrical.

Relations which do not possess the second property I shall call not

transitive ; those which possess the property that xRy, yRz always

exclude xRz I shall call intransitive. All these cases may be illus-

trated from human relationships. The relation brother or sister is

symmetrical, and is transitive if we allow that a man may be his

own brother, and a woman her own sister. The relation brother is not

symmetrical, but is transitive. Half-brother or half-sister is symmetrical

but not transitive. Spouse is symmetrical but intransitive ; descendant

is asymmetrical but transitive. Half-brother is not symmetrical and not

transitive ; if third marriages were forbidden, it would be intransitive.

Son-in-laio is asymmetrical and not transitive ; if second marriages were

forbidden, it would be intransitive. Brother-in-law is not symmetrical

* This term appears to have been first used in the present sense by De Morgan

;

see Camb. Phil. Trans, ix, p. 104 ; x, p. 346. The term is now in general use.
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and not transitive. Fma\\y,fithe7- is both asymmetrical and intransitive.

Of not-transitive but not intransitive relations there is, so far as I know,

onlv one important instance, namelv diversity ; of not-svmmetrical but not

asymmetrical relations there seems to be similarlv onlv one important

instance, namely implication. In other cases, of the kind that usually

occur, relations are either transitive or intransitive, and either sym-

metrical or asvmmetrical.

209. Relations which are both svmnietrical and transitive are formally

of the nature of equalitv. Any term of the field of such a relation has the

relation in question to itself, though it mav not have the relation to any

other term. For denoting the relation by the sign of equality, if a be

of the field of the relation, there is some term h such that a = b. If

a and b be identical, then a = a. But if not, then, since the relation

is symmetrical, 6 = a ; since it is transitive, and we have a = b, b = a,

it follows that a = a. The propertv of a relation which insures that

it holds between a term and itself is called by Peano reflexivenes.s, and

he has shown, contrary to what was pre\iouslv believed, that this

propertv cannot be infen-ed from svmmetrv and transitiveness. For

neither of these properties asserts that there is a 6 such that a = b, but

onlv what follows in case there is such a b ; and if there is no such b,

then the proof of a = a fails*. This property of reflexiveness, however,

introduces some difficulty. There is only one relation of which it is true

without limitation, and that is identity. In all other cases, it holds

onlv of the terms of a certain class. Quantitative equality, for example,

is only reflexive as applied to quantities ; of other terms, it is absurd

to assert that they have quantitative equality with themselves. Logical

equalitv, again, is only reflexive for classes, or propositions, or relations.

Simultaneity is only reflexive for events, and so on. Thus, with any

given symmetrical transitive relation, other than identity, we can only

assert reflexiveness within a certain class : and of this class, apart from

the principle of abstraction (already mentioned in Part III, Chap, xix,

and shortly to be discussed at length), there need be no definition

except as the extension of the transitive symmetrical relation in question.

And when the class is so defined, reflexiveness within that class, as we

have seen, follows from transitiveness and symmetry.

210. Bv introducing what I have called the principle of abstraction f,

a somewhat better account of reflexiveness becomes possible. Peano has

defined^ a process which he calls definition by abstraction, of which, as

he shows, frequent use is made in Mathematics. This process is as

* See e.g. Revue de Mathematique-i, T. vii, p. 22 ; XotatioM de Logique Mathe-

matique, Turin, 1894, p. 4.5, F. 1901, p. 193.

t An axiom virtually identical with this principle, but not stated with the

necessary precision, and not demonstrated, will be found in De Morgan, Camb. Phil.

Trans. \o\. x, p. 345.

X Notations de Logique Mathemafique, p. 4-5.
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follows : when there is any relation which is transitive, symmetrical and

(within its field) reflexive, then, if this relation holds between u and »,

we define a new entity ^ (?/), which is to be identical with ^ (w). Thus

our relation is analyzed into sameness of relation to the new term

(^ {u) or (^ {v). Now the legitimacy of this process, as set forth by

Peano, requires an axiom, namely the axiom that, if there is any

instance of the relation in question, then there is such an entity as

</) {u) or ^ {v). This axiom is my principle of abstraction, which,

precisely stated, is as follows :
" Every transitive symmetrical relation,

of which there is at least one instance, is analyzable into joint possession

of a new relation to a new term, the new relation being such that no

term can have this relation to more than one term, but that its converse

does not have this property." This principle amounts, in common
language, to the assertion that transitive symmetrical relations arise

from a common property, with the addition that this property stands,

to the terms which have it, in a relation in which nothing else stands

to those terms. It gives the precise statement of the principle, often

applied by philosophers, that symmetrical transitive relations always

spring from identity of content. Identity of content is, however, an

extremely vague phrase, to which the above proposition gives, in the

present case, a precise signification, but one which in no way answers

the purpose of the phrase, which is, apparently, the reduction of relations

to adjectives of the related terms.

It is now possible to give a clearer account of the reflexive property.

Let R be our symmetrical relation, and let S be the asymmetrical

relation which two terms having the relation R must have to some

third term. Then the proposition xRy is equivalent to this :
" There

is some term a such that xSa and ySa.'''' Hence it follows that, if x

belongs to what we have called the domain of S, i.e. if there is any

term a such that xSa, then xRx ; for xRx is merely xSa and xSa. It

does not of course follow that there is any other term y such that xRy,

and thus Peano's objections to the usual proof of reflexiveness are valid.

But by means of the analysis of symmetrical transitive relations, we

obtain the proof of the reflexive property, together with the exact

limitation to which it is subject.

211. We can now see the reason for excluding from our accounts

of the methods of generating series a seventh method, which some

readers may have expected to find. This is the method in which

position is merely relative—a method which, in Chap, xix, § 154,

we rejected as regards quantity. As the whole philosophy of space

and time is bound up with the question as to the legitimacy of this

method, which is in fact the question as to' absolute and relative

position, it may be well to give an account of it here, and to show

how the principle of abstraction leads to the absolute theory of position.

If we consider such a series as that of events, and if we refuse to
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allow absolute time, we shall have to admit three fundamental relations

among events, namely, simultaneity, priority, and posteriority. Such a

theory may be formally stated as follows : Let there be a class of terms,

such 'that any two, x and y, have either an asymmetrical transitive

relation P, or the converse relation P, or a symmetrical transitive

relation R. Also let xRy, yPz imply xPz, and let xPy, yRz imply xPz.

Then all the terms can be arranged in a series, in which, however, there

may be many terms which have the same place in the series. This

place, according to the relational theory of position, is nothing but

the transitive symmetrical relation i? to a number of other terms. But

it follows from the principle of abstraction that there is some relation S,

such that, if xRy, there is some one entity t for which xSt, ySt. We
shall then find that the different entities t, corresponding to different

groups of our original terms, also form a series, but one in which

any two different terms have an asymmetrical relation (formally, the

product SRS). These terms t will then be the absolute positions of

our *'s and y''s, and our supposed seventh method of generating series

is reduced to the fundamental second method. Thus there will be no

series having only relative position, but in all series it is the positions

themselves that constitute the series*

212. We are now in a position to meet the philosophic dislike of

relations. The whole account of order given above, and the present

argument concerning abstraction, will be necessarily objected to by

those philosophers—and they are, I fear, the major part—who hold

that no relations can possess absolute and metaphysical validity. It

is not my intention here to enter upon the general question, but merely

to exhibit the objections to any analysis of asymmetrical relations.

It is a common opinion— often held unconsciously, and employed

in argument, even by those who do not explicitly advocate it—that

all propositions, ultimately, consist of a subject and a predicate. When
this opinion is confronted by a relational proposition, it has two ways

of dealing with it, of which the one may be called monadistic,

the other monistic. Given, say, the proposition aRh, where R is some

relation, the monadistic view will analyse this into two propositions,

which we may call an and hr^, which give to a and h respectively

adjectives supposed to be together equivalent to R. The monistic

view, on the contrary, regards the relation as a property of the whole

composed of a and h, and as thus equivalent to a proposition which

we may denote by {aby. Of these views, the first is represented by

Leibniz and (on the whole) by Lotze, the second by Spinoza and

Mr Bradley. Let us examine these views successively, as applied to

* A formal treatment of relative position is given by Schroder, Sur une extension

d» I'idee d'ordre, Congres, Vol. iii, p. 235.
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asymmetrical relations ; and for the sake of definiteness, let us take

the relations of greater and less.

213. The monadistic view is stated with admirable lucidity by

Leibniz in the following passage*

:

"The ratio or proportion between two lines L and M may be

conceived three several ways ; as a ratio of the greater L to the

lesser jW ; as a ratio of the lesser M to the greater L ; and lastly, as

something abstracted from both, that is, as the ratio between L and M,
without considering which is the antecedent, or which the consequent

;

which the subject, and which the object.. ..In the first way of considering

them, L the greater, in the second M the lesser, is the subject of that

accident which philosophers call relation. But which of them will be

the subject, in the third way of considering them ? It cannot be said

that both of them, L and M together, are the subject of such an

accident ; for if so, we should have an accident in two subjects, with

one leg in one, and the other in the other ; which is contrary to the

notion of accidents. Therefore we must say that this relation, in this

third way of considering it, is indeed out of the subjects ; but being

neither a substance nor an accident, it must be a mere ideal thing,

the consideration of which is nevertheless useful."

214. The third of the above ways of considering the relation of

greater and less is, roughly speaking, that which the monists advocate,

holding, as they do, that the whole composed of L and M is one subject,

so that their way of considering ratio does not compel us, as Leibniz

supposed, to place it among bipeds. For the present our concern is only

with the first two ways. In the first way of considering the matter, we
have "Z is (greater than i/),'" the words in brackets being considered

as an adjective of L. But when we examine this adjective it is at once

evident that it is complex : it consists, at least, of the parts greater

and M, and both these parts are essential. To say that L is greater

does not at all convey our meaning, and it is highly probable that M is

also greater. The supposed adjective of L involves some reference to M\
but what can be meant by a reference the theory leaves unintelligible.

An adjective involving a reference to M is plainly an adjective which is

relative to M, and this is merely a cumbrous way of describing a relation.

Or, to put the matter otherwise, if L has an adjective corresponding

to the fact that it is greater than M, this adjective is logically sub-

sequent to, and is merely derived from, the direct relation of L to M.
Apart from M, nothing appears in the analysis of L to differentiate it

from M ; and yet, on the theory of relations in question, L should differ

intrinsically from M. Thus we should be forced, in all cases of asym-
metrical relations, to admit a specific difference between the related

terms, although no analysis of either singly will reveal any relevant

* Phil. Werke, Gephardt's ed.. Vol. vii^ p. 401.



212-214] AsymmetriGal Relatione 223/

property which it possesses and the other lacks. For the monadistic

theory of relations, this constitutes a contradiction ; and it is a contra-

diction which condemns the theory from which it springs*.

Let us examine further the application of the monadistic theory to

quantitative relations. The proposition " A is greater than B "
is. lo be

analyzable into two propositions, one giving an adjective to A, the

other giving one to B. The advocate of the opinion in question will

probably hold that A and B are quantities, not magnitudes, and will

say that the adjectives required are the magnitudes of A and B. But
then he will have to admit a relation between the magnitudes, which

will be as asymmetrical as the relation which the magnitudes were to

explain. Hence the magnitudes will need new adjectives, and so on

ad injiiutum ; and the infinite process will have to be completed before

any meaning can be assigned to our original proposition. This kind

of infinite process is undoubtedly objectionable, since its sole object

is to explain the meaning of a certain proposition, and yet none of its

steps bring it any nearer to that meaningj". Thus we cannot take

the magnitudes of A and B as the required adjectives. But further,

if we take any adjectives whatever except such as have each a reference

to the other term, we shall not be able, even formally, to give any

account of the relation, without assuming just such a relation between

the adjectives. For the mere fact that the adjectives are different will

yield only a svmmetrical relation. Thus if our two terms have different

colours we find that A has to B the relation of differing in colour,

a relation which no amount of careful handling will render asymmetrical.

Or if we were to recur to magnitudes, we could merely say that A and

B differ in magnitude, which gives us no indication as to which is

the greater. Thus the adjectives of A and B must be, as in Leibniz's

analysis, adjectives having a reference each to the other term. The
adjective of A must be "greater than jB," and that of B must be "less

than Ay Thus A and B differ, since they have different adjectives

—

B is not greater than B, and A is not less than A—but the adjectives

are extrinsic, in the sense that J's adjective has reference to B, and

Rsto A. Hence the attempted analysis of the relation fails, and- we

* See a paper on "The Relations of Number and Quantity," Mind, N.S. No. 23.

This paper was written while I still adhered to the monadistic theory of relations

:

the contradiction in question, therefore, was regarded as inevitable. The following

passage from Kant raises the same point :
" Die rechte Hand ist der liiiken ahnlich

und gleich, und wenn man bios auf eine derselben aUein sieht, auf die Proportion

der Lage der Theile unter einander und auf die Grosse des Ganzen, so muss eine

vollstandige Beschreibung der einen in alien Stucken auch von der andern gelten."

{Von dem ersten Grunde des Vnterschiedes der Gegenden im Raume, ed. Hart. Vol. ii,

p. 389.)

t AMiere an infinite process of this kind is required we are necessarily dealmg

with a proposition which is an infinite unity, in the sense of Part H, Chap. xvii.
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are forced to admit what the theory was designed to avoid, a so-called

"external" relation, i.e. one implying no complexity in either of the

related terms.

The same result may be proved of asymmetrical relations generally,

since it depends solely upon the fact that both identity and diversity

are symmetrical. Let a and b have an asymmetrical relation R, so

that aRh and bRa. Let the supposed adjectives (which, as we have

seen, must each have a reference to the other term) be denoted by y3

and a respectively. Thus our terms become a/3 and ba. a involves

a reference to a, and /3 to 6 ; and a and /8 differ, since the relation

is asymmetrical. But a and 6 have no intrinsic differences corresponding

to the relation R, and prior to it ; or, if they have, the points of

difference must themselves have a relation analogous to R, so that

nothing is gained. Either a or /8 expresses a difference between a

and h, but one which, since either a or /S involves reference to a term

other than that whose adjective it is, so far from being prior to R,

is in fact the relation R itself. And since a and /3 both presuppose R,

the difference between a and /3 cannot be used to supply an intrinsic

difference between a and b. Thus we have again a difference without

a prior point of difference. This shows that some asymmetrical rela-

tions must be ultimate, and that at least one such ultimate asymmetrical

relation must be a component in any asymmetrical relation that may be

suggested.

It is easy to criticize the monadistic theory from a general stand-

point, by developing the contradictions which spring from the relations

of the terms to the adjectives into which our first relation has been

analyzed. These considerations, which have no special connection with

asymmetry, belong to general philosophy, and have been urged by

advocates of the monistic theory. Thus Mr Bradley says of the mona-

distic theory*: "^^^e, in brief, are led by a principle of fission which

conducts us to no end. Every quality in relation has, in consequence,

a diversity within its own nature, and this diversity cannot immediately

be asserted of the quality. Hence the quality must exchange its unity

for an internal relation. But, thus set free, the diverse aspects, because

each something in relation, must each be something also beyond. This

diversity is fatal to the internal unity of each ; and it demands a new

relation, and so on without limit." It remains to be seen whether the

monistic theory, in avoiding this difficulty, does not become subject to

others quite as serious.

215. The monistic theory holds that every relational proposition

aRb is to be resolved into a proposition concerning the whole which

a and b compose—a proposition which we may denote by {ab)r. This

view, like the other, may be examined with special reference to asym-

* Appearance and Reality, 1st edition, p. 31.
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metrical relations, or from the standpoint of general philosophy. We
.are told, by those who advocate this opinion, that the whole contains

diversity within itself, that it synthesizes differences, and that it performs
other similar feats. For my part, I am unable to attach any precise

significance to these phrases. But let us do our best.

The proposition " a is greater than 5," we are told, does not really

say anything about either a or h, but about the two together. Denoting
the whole which they compose by {ab\ it says, we will suppose, " {ab)

contains diversity of magnitude." Now to this statement—neglecting

for the present all general arguments—there is a special objection in

the case of asymmetry, {ab) is symmetrical with regard to a and b,

and thus the property of the whole will be exactly the same in the case

where a is greater than 6 as in the case where h is greater than a.

Leibniz, who did not accept the monistic theory, and had therefore

no reason to render it plausible, clearly perceived this fact, as appears

from the above quotation. For, in his third way of regarding ratio,

we do not consider which is the antecedent, which the consequent

;

and it is indeed sufficiently evident that, in the whole {ab) as such,

there is neither antecedent nor consequent. In order to distinguish

a whole {ab) from a whole {ba), as we must do if we are to explain

asymmetry, we shall be forced back from the whole to the parts and
their relation. For {ab) and {ha) consist of precisely the same parts,

and differ in no respect whatever save the sense of the relation between

a.and b. "a is greater than 6" and "6 is greater than a" are proposi-

tions containing precisely the same constituents, and giving rise therefore

to precisely the same whole ; their difference lies solely in the fact that

greater is, in the first case, a relation of a to b, in the second, a relation

of b to a. Thus the distinction of sense, i.e. the distinction between an
asymmetrical relation and its converse, is one which the monistic theory

of relations is wholly unable to explain.

Arguments of a more general nature might be multiplied almost

indefinitely, but the following argument seems peculiarly relevant. The
relation of whole and part is itself an asymmetrical relation, and the

whole—as monists are peculiarly fond of telling us— is distinct from all

its parts, both severally and collectively. Hence when we say "« is

part of &," we reaUy mean, if the monistic theory be correct, to assert

something of the whole composed of a and b, which is not to be

confounded with b. If the proposition concerning this new whole be not

one of whole and part there will be no true judgments of whole and
part, and it will therefore be false to say that a relation between the

parts is really an adjective of the whole. If the new proposition is one

of whole and part, it will require a new one for its meaning, and so on.

If, as a desperate measure, the monist asserts that the whole composed
of a and b is not distinct from b, he is compelled to admit that a whole

is the sum (in the sense of Symbolic Logic) of its parts, which, besides

E. 15
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being an abandonment of his whole position, renders it inevitable that

the whole should be symmetrical as regards its parts—a view which we.

have already seen to be fatal. And hence we find monists driven to

the view that the only tnie whole, the Absolute, has no parts at all,

and that no propositions in regard to it or anything else are quite

true—a view which, in the mere statement, unavoidably contradicts

itself. And surely an opinion which holds all propositions to be in the

end self-contradictory is sufficiently condemned by the fact that, if it

be accepted, it also must be self-contradictory.

216. We have now seen that asymmetrical relations are unin-

telligible on both the usual theories of relation*. Hence, since such

relations are involved in Number, Quantity, Order, Space, Time, and

Motion, we can hardly hope for a satisfactory philosophy of Mathematics

so long as we adhere to the view that no relation can be " purely

external." As soon, however, as we adopt a different theory, the logical

puzzles, which have hitherto obstructed philosophers, are seen to be

artificial. Among the terms commonly regarded as relational, those

that are symmetrical and transitive—such as equality and simultaneity

—

are capable of reduction to what has been vaguely called identity of

content, but this in turn must be analyzed into sameness of relation

to some other term. For the so-called properties of a term are, in fact,

only other terms to which it stands in some relation ; and a common
property of two terms is a term to which both stand in the same

relation.

The present long digression into the realm of logic is necessitated

by the fundamental importance of order, and by the total impossibility

of explaining order without abandoning the most cherished and wide-

spread of philosophic dogmas. Everything depends, where order is

concerned, upon asymmetry and difference of sense, but these two concepts

are unintelligible to the traditional logic. In the next chapter we shall

have to examine the connection of difference of sense with what appears

in Mathematics as difference of sign. In this examination, though some

pure logic will still be requisite, we shall approach again to mathematical

topics ; and these will occupy us wholly throughout the succeeding chapters

of this Part.

* The grounds of these theories will he examined from a more general point of

view in Part VI, Chap. u.



CHAPTER XXVII.

DIFFERENCE OF SENSE AND DIFFERENCE OF SIGN.

217. We have now seen that order depends upon asymmetrical

relations, and that these always have two senses, as before and after,

greater and less, east and west, etc. The diiFerence of sense is closely

connected (though not identical) with the mathematical difference of

sign. It is a notion of fundamental importance in Mathematics, and
is, so far as I can see, not explicable in terms of any other notions.

The first philosopher who realized its importance would seem to be Kant.

In the VersiwJi den Begriff der negativen Grosse hi die Weltweislieit

e'mzufuhren (1763), we find him aware of the difference between logical

opposition and the opposition of positive and negative. In the discussion'

Von dem ersten Grunde des UnterscMedes der Gegeiiden irn Raiime (1768),

we find a full realization of the importance of asymmetry in spatial

relations, and a proof, based on this fact, that space cannot be ^^•holly

relational*. But it seems doubtful whether he realized the connection of

this asymmetry with difference of sign. In 1763 he certainly was not

aware of the connection, since he regarded pain as a negative amount of

pleasure, and supposed that a great pleasure and a small pain can be

added to give a less pleasuref—a view which seems both logically and
psychologically false. In the Prolegomena (§ 13), as is well known,
he made the asymmetry of spatial relations a ground for regarding space

as a mere form of intuition, perceiving, as appears from the discussion

of 1768, that space could not consist, as Leibniz supposed, of mere

relations among objects, and being unable, owing to his adherence to

the logical objection to relations discussed in the preceding chapter,

to free from contradiction the notion of absolute space with asym-

metrical relations between its points. Although I cannot regard this

later and more distinctively Kantian theory as an advance upon that

of 1768, yet credit is undoubtedly due to Kant for having first called

attention to the logical importance of asymmetrical relations.

* See especially ed. Hart, Vol. II, pp. 386, 391.

+ Ed. Hart, Vol. II, p. 83.

15—2
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218. By difference of sense I mean, in the present discussion at least,

the difference between an asymmetrical relation and its converse. It is a

fundamental logical fact that, given any relation R, and any two terms

a, h, there are two propositions to be formed of these elements, the one

relating a to 6 (which I call aRb), the other (bRa) relating b to a. These

two propositions are always different, though sometimes (as in the case

of diversity) either implies the other. In other cases, such as logical im-

plication, the one does not imply either the other or its negation; while

in a third set of cases, the one implies the negation of the other. It is

only in cases of the third kind that I shall speak of difference of sense.

In these cases, aRb excludes bRa. But here another fundamental logical

fact becomes relevant. In all cases where aRb does not imply bRa there

is another relation, related to R, which must hold between b and a. That

is, there is a relation R such that aRb implies bRa ; and further, bRa

implies aRb. The relation of i? to ^ is difference of sense. This

relation is one-one, symmetrical, and intransitive. Its existence is the

source of series, of the distinction of signs, and indeed of the greater

part of mathematics.

219. A question of considerable importance to logic, and especially

to the theory of inference, may be raised with regard to difference of sense.

Are aRb and bRa really different propositions, or do they only differ

linguistically ? It may be held that there is only one relation .ff, and

that all necessary distinctions can be obtained from that between aRb
and bRa. It may be said that, owing to the exigencies of speech and

writing, we are compelled to mention either aorb first, and that this gives

a seeming difference between " a is greater than b " and " b is less than

a"; but that, in reality, these two propositions are identical. But if

we take this view we shall find it hard to explain the indubitable

distinction between greater and less. These two words have certainly

each a meaning, even when no terms are mentioned as related by them.

And they certainly have different meanings, and are certainly relations.

Hence if we are to hold that " a is greater than b " and " b is less than a."

are the same proposition, we shall have to maintain that both greater

and less enter into each of these propositions, which seems obviously

false ; or else we shall have to hold that what really occurs is neither

of the two, but that third abstract relation mentioned by Leibniz in the

passage quoted above. In this case the difference between greater and

less woidd be one essentially involving a reference to the terms a and b.

But this view cannot be maintained without circularity ; for neither the

greater nor the less is inherently the antecedent, and we can only say

that, when the greater is the antecedent, the relation is greater ; when

the less, the relation is less. Hence, it would seem, we must admit that

R and R are distinct relations. We cannot escape this conclusion by

the analysis into adjectives attempted in the last chapter. We there
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analyzed aRh into a/3 and 5a. But, corresponding to every b, there will

be two adjectives, /3 and ^, and corresponding to every a there will also

be two, a and a. Thus if R be greater, a. will be " greater than A "

and a. " less than ^," or vice versa. But the difference between o and a

presupposes that between greater and less, between R and R, and therefore

cannot explain it. Hence R and R must be distinct, and "aRh implies

hRa " must be a genuine inference.

I come now to the connection between difference of sense and
difference of sign. We shall find that the latter is derivative from the
former, being a difference which only exists between terms which either

are, or are correlated with, asymmetrical relations. But in certain cases

we shall find some complications of detail which will demand discussion.

The difference of signs belongs, traditionally, only to numbers and
magnitudes, and is intimately associated with addition. It may be
allowed that the notation cannot be usefully employed where there

is no addition, and even that, where distinction of sign is possible,

addition in some sense is in general also possible. But we shall find

that the difference of sign has no very intimate connection with addition

and subtraction. To make this clear, we must, in the first place,

clearly realize that numbers and magnitudes which have no sign are

radically different from such as are positive. Confusion on this point is

quite fatal to any just theory of signs.

220. Taking first finite numbers, the positive and negative numbers
arise as follows*. Denoting by R the relation between two integers in

virtue of which the second is next after the first, the proposition mRn
is equivalent to what is usually expressed hy m+\=n. But the present

theory will apply to progressions generally and does not depend upon
the logical theory of cardinals developed in Part II. In the proposition

mRn, the integers m and n are considered, as when they result from the

logical definition, to be wholly destitute of sign. If now mRn and nRp,
we put mR'p; and so on for higher powers. Every power of R is an

asymmetrical relation, and its converse is easily shown to be the same

power of R as it is itself of R. Thus niR'^q is equivalent to qR'^m.

These are the two propositions which are commonly written m + a = q

and q — a = m. Thus the relations R"; R"- are the true positive and

negative integers; and these, though associated with a, are both wholly

distinct from it. Thus in this case the connection with difference of

sense is obvious and straightforward.

221. As regards magnitudes, several cases must be distinguished.

We have (1) magnitudes which are not either relations or, stretches,

(2) stretches, (3) magnitudes which are relations.

* I give the theory briefly here, as it will be dealt with more fully and generally

in the chapter on Progressions, § 233.
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(1) Magnitudes of this class are themselves neither positive nor

negative. But two such magnitudes, as explained in Part III, determine

either a distance or a stretch, and these are always positive or negative.

These are moreover always capable of addition. But since our original

magnitudes are neither relations nor stretches, the new magnitudes thus

obtained are of a different kind from the original set. Thus the differ-

ence of two pleasures, or the collection of pleasures intermediate between

two pleasures, is not a pleasure, but in the one case a relation, in the

other a class.

(2) Magnitudes of divisibility in general have no sign, but when
they are magnitudes of stretches thev acquire sign by correlation.

A stretch is distinguished from other collections by the fact that it

consists of all the terms of a series intermediate between two given

terms. By combining the stretch with one sense of the asymmetrical

relation which must exist between its end-terms, the stretch itself

acquires sense, and becomes asymmetrical. That is, we can distinguish

(1) the collection of terms between a and b without regard to order, (2)

the terms from a to b, (3) the terms from b to a. Here (2) and (3) are

complex, being compounded of (1) and one sense of the constitutive

relation. Of these two, one must be called positive, the other negative.

^^^lere our series consists of magnitudes, usage and the connection with

addition have decided that, if a is less than b, (2) is positive and (3) is

negative. But where, as in Geometrv, our series is not composed of

magnitudes, it becomes wholly arbitrary which is to be positive and

which negative. In either case, we have the same relation to addition,

which is as follows. Any pair of collections can be added to form a new

collection, but not any pair of stretches can be added to form a new

stretch. For this to be possible the end of one stretch must be con-

secutive to the beginning of the other. In this way, the stretches ab, he

can be added to form the stretch ac. If ab, be have the same sense, ae is

greater than either; if they have different senses, ac is less than one

of them. In this second case the addition of ab and be is regarded

as the subtraction of ab and cb, be and cb being negative and positive

respectively. If our stretches are numerically measurable, addition or

subtraction of their measm-es will give the measure of the result of

adding or subtracting the stretches, where these are such as to allow

addition or subtraction. But the whole opposition of positive and

negative, as is evident, depends upon the fundamental fact that our

series is generated by an asymmetrical relation.

(3) ^Magnitudes which are relations may be either symmetrical or

asymmetrical relations. In the former case, if a be a term of the field

of one of them, the other terms of the various fields, if certain conditions

are fulfilled*, may be arranged in series according as their relations to a

are greater or smaller. This arrangement may be different when we choose

» tf. § 24.3.
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some term other than a; for the present, therefore, we shall suppose a to

be chosen once for all. "\^Tien the terms have been ari'anged in a series,

it may happen that some or all places in the series are occupied by more

than one term; but in any case the assemblage of terms between a and

some other term m is definite, and leads to a stretch with two senses.

We may then combine the magnitude of the relation oi ato m with one

or other of these two senses, and so obtain an asymmetrical relation of

a to m, which, hke the original relation, will have magnitude. Thus the

case of symmetrical relations mav be reduced to that of asymmetrical

relations. These latter lead to signs, and to addition and subtraction,

in exactly the same wav as stretches with sense ; the only difference being

that the addition and subtraction are now of the kind which, in Part III,

we called relational. Thus in all cases of magnitudes having sign, the

difference between the two senses of an asj'mmetrical relation is the

source of the difference of sign.

The case which we discussed in connection with stretches is of

fundamental importance in Geometry. We have here a magnitude with-

out sign, an asymmetrical relation without magnitude, and some intimate

connection between the two. The combination of both then gives a

magnitude which has sign. All geometrical magnitudes having sign

arise in this wav. But there is a cm'ious complication in the case of

volumes. \'olumes are, in the first instance, signless quantities ; but in

analytical Geometry thev always appear as positive or negative. Here

the asymmetrical relations (for there are two) appear as terms, between

which there is a symmetrical relation, but one which yet has an opposite

of a kind very similar to the convei-se of an asymmetrical relation.

This relation, as an exceptional case, must be here briefly discussed.

222. The descriptive straight line is a serial relation in virtue of

which the points of the line form a series*. Either sense of the descriptive

straight hne may be called a ray, the sense being indicated by an

aiTow. Anv two non-coplanar rays have one or other of two relations,

which mav be called right and left-handedness respectively f- This

relation is symmetrical but not transitive, and is the essence of the usual

distinction of right and left. Thus the relation of the upward vertical

to a line from north to east is right-handed, and to a line from south to

* See Part \l.

t The two cases are illustrated in the figure. The difference is the same as that

between the two sorts of coordinate axes.
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east is left-handed. But though the relation is symmetrical, it is

changed into its opposite by changing either of the terms of the relation

into its converse. That is, denoting right-handedness by R, left-handed-

ness by L (which is not R), if A and B be two rays which are mutually

right-handed, we shall have

ARE, ALB, ALB, ARB, BRA, BLA, BLA, BRA.

That is, every pair of non-coplanar straight lines gives rise to eight such

relations, of which four are right-handed, and four left-handed. The
difference between L and R, though not, as it stands, a difference of

sense, is, nevertheless, the difference of positive and negative, and is the

reason why the volumes of tetrahedra, as given by determinants, always

have signs. But there is no difficulty in following the plain man's

reduction of right and left to asymmetrical relations. The plain man
takes one of the rays (say A) as fixed—when he is sober, he takes A to

be the upward vertical—and then regards right and left a»s properties of

the single ray B, or, what comes to the same thing, as relations of any

two points which determine B. In this way, right and left become

asymmetrical relations, and even have a limited degree of transitiveness, of

the kind explained in the fifth way of generating series (in Chapter xxiv).

It is to be observed that what is fixed must be a ray, not a mere straight

line. For example, two planes which are not mutually perpendicular

are not one right and the other left with regard to their line of inter-

section, but only with regard to either of the rays belonging to this

line.* But when this is borne in mind, and when we consider, not

semi-planes, but complete planes, through the ray in question, right and

left become asymmetrical and each other's converses. Thus the signs

associated with right and left, like all other signs, depend upon the

asymmetry of relations. This conclusion, therefore, may now be allowed

to be general.

223. Difference of sense is, of course, more general than difference of

sign, since it exists in cases with which mathematics (at least at present)

is unable to deal. And difference of sign seems scarcely applicable to

relations which are not transitive, or are not intimately connected with

some transitive relation. It would be absurd, for example, to regard the

relation of an event to the time of its occurrence, or of a quantity to its

magnitude, as conferring a difference of sign. These relations are what

Professor Schroder calls erschiipjif, i.e. if they hold between a and b,

they can never hold between b and some third term. Mathematically,

their square is null. These relations, then, do not give rise to difference

of sign.

* This requires that the passage frdm the one plane to the other should be made

vid one of the acute angles made by their intersection.

t Algebra der Logik, Vol. Ill, p. 328. Professor Peirce calls such relations rum-

repeating (reference in Schroder, ib.).



222, 223] Difference of Sense and Dfference of Sign 233

All magnitudes with sign, so the above account has led us to believe,

are either relations or compound concepts into which relations enter.

But what are we to say of the usual instances of opposites : good and

evil, pleasure and pain, beauty and ugliness, desire and aversion ? The
last pair are very complex, and if I were to attempt an analysis of them,

I should emit some universally condemned opinions. With regard to

the others, they seem to me to have an opposition of a very diiFerent

kind from that of two mutually converse asymmetrical relations, and

analogous rather to the opposition of red and blue, or of two different

magnitudes of the same kind. From these oppositions, which are con-

stituted by what may be called synthetic incompatibility *, the oppositions

above mentioned differ only in the fact that there are only two incom-

patible terms, instead of a whole series. The incompatibility consists

in the fact that two terms which are thus incompatible cannot coexist in

the same spatio-temporal place, or cannot be predicates of the same

existent, or, more generally, cannot both enter into true propositions of

a certain form, which differ only in the fact that one contains one of the

incompatibles while the other contains the other. This kind of incom-

patibility (which usually belongs, with respect to some class of proposi-

tions, to the terms of a given series) is a most important notion in

general logic, but is by no means to be identified with the difference

between mutually converse relations. This latter is, in fact, a special

case of such incompatibility; but it is the special case only that gives

rise to the difference of sign. AU difference of sign—so we may conclude

our argument—is primarily derived from transitive asymmetrical rela-

tions, from which it may be extended by correlation to terms variously

related to such relations f; but such extensions are always subsequent to

the original opposition derived from difference of sense.

* See The Philosophy of Leibniz, by the present author (Cambridge 1900),

pp. 19, 20.

+ Thus in mathematical Economics, pleasure and pain may be taken as positive

and negative without logical error, by the theory (whose psychological correctness

we need not examine) that a man must be paid to endure pain, and must pay to

obtain pleasure. The opposition of pleasure and pain is thus correlated with that of

money paid and money received, which is an opposition of positive and negative in

the sense of elementary Arithmetic.



CHAPTER XXVIII.

ON THE DIFFERENCE BETWEEN OPEN AND
CLOSED SERIES.

224. We have now come to the end of the purely logical discussions

concerned with order, and can turn our attention with a free mind to

the more mathematical aspects of the subject. As the solution of the

most ancient and respectable contradictions in the notion of infinity

depends mainly upon a correct philosophy of order, it has been necessary

to go into philosophical questions at some length—not so much because

they are relevant, as because most philosophers think them so. But we

shall reap our reward throughout the remainder of this work.

The question to be discussed in this chapter is this: Can we ulti;

mately distinguish open from closed series, and if so, in what does

the distinction consist? We have seen that, mathematically, all series

are open, in the sense that all are generated by an asymmetrical transi-

tive relation. But philosophically, we must distinguish the different

ways in which this relation may arise, and especially we must not

confound the case where this relation involves no reference to other

terms with that where such terms are essential. And practically, it is

plain that there is some difference between open and closed series

—

between, for instance, a straight line and a circle, or a pedigree and a

mutual admiration society. But it is not quite easy to express the

difference precisely.

225. ^Vhere the number of terms in the series is finite, and

the series is generated in the first of the ways explained in

Chapter xxiv, the method of obtaining a transitive relation out of the

intransitive relation with which we start is radically different according

as the series is open or closed. If J2 be the generating relation, and n be

the number of terms in our series, two cases may arise. Denoting the

relation of any term to the next but one by i?^, and so on for higher

powers, the relation R"^ can have only one of two values, zero and

identity. (It is assumed that i? is a one-one relation.) For starting

with the first term, if there be one, ^'*~^ brings us to the last term ; and

thus i?" gives no new term, and there is no instance of the relation

^". On the other hand, it may happen that, starting with any term.
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R^ brings us back to that term again. These two are the only possible

alternatives. In the first case, we call the series open ; in the second, we
call it closed. In the first case, the series has a definite beginning and
end ; in the second case, like the angles of a polygon, it has no peculiar

terms. In the first case, our transitive asymmetrical relation is the
disjunctive relation "a power of R not greater than the (w-l)th."
By substituting this relation, which we may call R, for R, our series

becomes of the second of the six types. But in the second case no such
simple reduction to the second type is possible. For now, the relation

of any two terms a and m of our series may be just as well taken to be

a power of ^ as a power of R, and the question which of any three terms
is between the other two becomes wholly arbitrary. We might now intro-

duce, first the relation of separation of four terms, and then the resulting

five-term relation explained in Chapter xxv. We should then regard

three of the terms in the five-term relation as fixed, and find that the

resulting relation of the other two is transitive and asymmetrical. But
here the first term of our series is wholly arbitrary, which was not the

case before ; and the generating relation is, in reality, one of five terms,

not one of two. There is, however, in the case contemplated, a simpler

method. This may be illustrated as follows : In an open series, any two
terms a and m define two senses in which the series may be described,

the one in which a comes before m, and the other in which m comes
before a. We can then say of any two other terms c and g that the
sense of the order from c to g- is the same as that of the order from
a to m, or difl^erent, as the case may be. In this way, considering

a and m fixed, and c and g variable, we get a transitive asymmetrical

relation between c and g, obtained from a transitive symmetrical relation

of the pair c, g to the pair a, m (or m, a, as the case may be). But this

transitive symmetrical relation can, by the principle of abstraction, be

analyzed into possession of a common propei'ty, which is, in this case,

the fact that a, m and c, g have the generating relation with the same
sense. Thus the four-term relation is, in this case, not essential. But in a

closed series, a and m do not define a sense of the series, even when we
are told that a is to precede m : we can start from a and get to m in

either direction. But if now we take a third term d, and decide that we
are to start from a and reach m taking d on the way, then a sense of the

series is defined. The stretch adm includes one portion of the series, but

not the other. Thus we may go from England to New Zealand either

by the east or by the west ; but if we are to take India on the way, we
must go by the east. If now we consider any other term, say it, this

will have some definite position in the series which starts with a and

reaches m by way of d. In this series, ^• will come either between a and

d, or between d and m, or after m. Thus the three-term relation of

a, d, m seems in this case sufficient to generate a perfectly definite series.

Vailati's five-term relation will then consist in this, that with regard to
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the order adm, Ji comes before (or after) any other term I of the collection.

But it is not necessary to call in this relation in the present case, since the

three-term relation suffices. This three-term relation may be formally

defined as follows. There is between any two terms of our collection a

relation which is a power of R less than the nth. Let the relation between

a and dhe R^, that between a and m R^. Then if x is less than y, we

assign one sense to adm ; if a? is greater than «/, we assign the other.

There will be also between a and d the relation J?"~"^, and between a and

m the relation R^~y. If x is less than y, then n — x is greater than n—y;

hence the asymmetry of the two cases corresponds to that of R and R.

The terms of the series are simply ordered by correlation with their

numbers x and «/, those with smaller numbers preceding those with

larger ones. Thus there is here no need of the five-term relation, every-

thing being effected by the three-term relation, which is itself reduced to

an asymmetrical transitive relation of two numbers. But the closed

series is still distinguished from the open one by the fact that its first

term is arbitrary.

226. A very similar discussion will apply to the case where our

series is generated by relations of three terms. To keep the analogy

with the one-one relation of the above case, we will make the following

assumptions. Let there be a relation B of one term to two others, and

let the one, term be called the mean, the two others the extremes. Let

the mean be uniquely determined when the extremes are given, and let

one extreme be uniquely determined by the mean and the other extreme.

Further let each term that occurs as mean occur also as extreme, and

each term that occurs as extreme (with at most two exceptions) occur

also as mean. Finally, if there be a relation in which c is mean, and b

and d are extremes, let there be always (except when b or d is one of the

two possible exceptional terms) a relation in which b is the mean and c

one of the extremes, and another in which d is the mean and c one of the

extremes. Then b and c will occur together in only two relations. This

fact constitutes a relation between b and c, and only one other term

besides b will have this new relation to c. By means of this relation, if

there are two exceptional terms, or if, our collection being infinite, there

is only one, we can construct an open series. If oui two-term relation be

asymmetrical, this is sufficiently evident ; but the same result can be

proved if our two-term relation is symmetrical. For there will be at

either end, say a, an asymmetrical relation of a to the only term which is

the mean between a and some other term. This relation multiplied by

the nth power of our two-term relation, where n -h 1 is any integer less

than the number of terms in our collection, will give a relation which

holds between a and a number (not exceeding n + 1) of terms of our

collection, of which terras one and only one is such that no number less

than n gives a relation of a to this term. Thus we obtain a correlation
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of our terms with the natural numbers, which generates an open
series with a for one of its ends. If, on the other hand, our collec-

tion has no exceptional terms, but is finite, then we shall obtain

a closed series. Let our two-term relation be P, and first suppose it

symmetrical. (It will be symmetrical if our original three-term relation

was symmetrical with regard to the extremes.) Then every term^c of

our collection will have the relation P to two others, which will have
to each other the relation P^ Of all the relations of the form P™
which hold between two given terms, there will be one in which m is

least : this may be called the principal relation of our two terms. Let
the number of terms of the collection be n. Then every tenn of our

collection will have to every other a principal relation P^, where x is

some integer not greater than ;i/2. Given any two terms c and g of the

collection, provided we do not have cP'"'''g' (a case which will not arise

if n be odd), let us have cP^g, where x is less than m/2. This assumption

defines a sense of the series, which may be shown as follows. If cPvk,

where «/ is also less than w/2, three cases may arise, assuming «/ is greater

than or. We may have gPy~''li, or, \i x+y is less than m/2, we may
n

have gP^'^yli, or, if a? -H «/ is greater than ?(/2, we may have g-P^ ^Ic.

(We choose always the principal relation.) These three cases are illus-

trated in the accompanying figure. We shall say, in these three cases.

that, with regard to the sense eg, {\)h comes after c and g, (2) and (3)

Jc comes before c and g. If y is less than x, and kP'^^vg, we shall say

that k is between c and g in the sense eg. If ;; is odd, this covers all

possible cases. But if n is even, we have to consider the term c', which

is such that cP^'-'^e'. This term is, in a certain sense, antipodal to c ; we

may define it as the first term in the series when the above method of

definition is adopted. If n is odd, the first term will be that term of

class (3) for which cP'"'~'"'A;. Thus the series acquires a definite order,

but one in which, as in all closed series, the first term is arbitrary.

227. The only remaining case is that where we start from four-term

relations, and the generating relation has, strictly speaking, five terms.

This is the case of projective Geometry. Here the series is necessarily

closed ; that is, in choosing our three fixed terms for the five-term

relation, there is never any restriction upon our choice ; and any one of

these three may be defined to be the first.
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228. Thus, to sum up : Every series being generated by a transitive

asymmetrical relation between any two terms of the series, a series is

open when it has either no beginning, or a beginning which is not

arbitrary ; it is closed when it has an arbitrary beginning. Now if R
be the constitutive relation, the beginning of the series is a term having

the relation R but not the relation R. Whenever R is genuinely a

two-term relation, the beginning, if it exists, must be perfectly definite.

It is only when R involves some other term (which may be considered

fixed) besides the two with regard to which it is transitive and asym-

metrical (which are to be regarded as variable), that the beginning can

be arbitrary. Hence in all cases of closed series, though there may be

an asymmetrical one-one relation if the series is discrete, the transitive

asymmetrical relation must be one involving one or more fixed terms

in addition to the two variable terms with regard to which it generates

the series. Thus although, mathematically, every closed series can be

rendered open, and every open series closed, yet there is, in regard

to the nature of the generating relation, a genuine distinction between

them—a distinction, however, which is of philosophical rather than

mathematical importance.



CHAPTER XXIX.

PROGRESSIONS AND ORDINAL NUiMBERS.

229. It is now time to consider the simplest type of infinite series,

namely that to which the natural numbers themselves belong. I shall

postpone to the next Part all the supposed difficulties arising out of

the infinity of such series, and concern myself here only to give the

elementary theory of them in a form not presupposing numbers*.

The series now to be considered are those which can be correlated,

term for term, with the natural numbei-s, without requiring any change

in the order of the terms. But since the natural numbers are a

particular case of such series, and since the whole of Arithmetic and
Analysis can be developed out of any one such series, without any

appeal to number, it is better to give a definition of progi-essions which

involves no appeal to number.

A progression is a discrete series having consecutive terms, and a

beginning but no end, and being also connected. The meaning of

connection w£is explained in Chapter xxiv by means of number, but this

explanation cannot be given now. Speaking popularly, when a series

is not connected it falls into two or more parts, each being a series

for itself. Thus numbers and instants together form a series which

is not connected, and so do two parallel straight lines. Whenever
a series is originally given by means of a transitive asymmetrical rela-

tion, we can express connection by the condition that any two terms

of om- series are to have the generating relation. But progressions

are series of the kind that may be generated in the first of our six

ways, namely, by an asymmetrical one-one relation. In order to pass

from this to a transitive relation, we before employed numbei-s, defining

the transitive relation as any power of the one-one relation. This

definition will not serve now, since numbers are to be excluded. It

is one of the triumphs of modern mathematics to have adapted an

ancient principle to the needs of this case.

* The present chapter closely follows Peano's Arithmetic. See Formulaire de

MathHnatiques, Vol. 11^ § 2. I have given a mathematical treatment of the subject

in RdM, Vols. VII and VIII. The subject is due, in the main, to Dedekind and

Georff Cantor.
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The definition which we want is to be obtained from mathematical

induction. This principle, which used to be regarded as a mere subter-

fuge for eliciting results of which no other proof was forthcoming, has

gradually grown in importance as the foundations of mathematics have

been more closely investigated. It is now seen to be the principle upon

which depend, so far as ordinals are concerned, the commutative law

and one form of the distributive law*. This principle, which gives

the widest possible extension to the finite, is the distinguishing mark

of progressions. It may be stated as follows :

Given any class of terms s, to which belongs the first term of any

progression, and to which belongs the term of the progression next after

any term of the progression belonging to s, then every term of the

progression belongs to *.

We may state the same principle in another form. Let ^ {x) be

a propositional function, which is a determinate proposition as soon

as X is given. Then 4>{x) is a function of x, and will in general be

true or false according to the value of x. If a; be a member of a

progression, let seq x denote the term next after x. Let (.r) be true

when X is the first term of a certain progression, and let ^ (seq x)

be true whenever <^ {x) is true, where x is any term of the progression.

It then follows, by the principle of mathematical induction, that <^ {x)

is always true if x be any term of the progression in question.

The complete definition of a progression is as follows. Let R be

any asymmetrical one-one relation, and u a class such that every term

of u has the relation of R to some term also belonging to the class u.

Let there be at least one term of the class u which does not have

the relation R to any term of u. Let s be any class to which belongs

at least one of the terms of u which do not have the relation R to any

term of u, and to which belongs also every term of u which has the

relation R to some term belonging to both u and s ; and let u be such

as to be wholly contained in any class * satisfying the above conditions.

Then u, considered as ordered by the relation R, is a progression f.

230. Of such progressions, everything relevant to finite Arithmetic

can be proved. In the first place, we show that there can only be

one term of u which does not have the relation R to any term of u.

We then define the term to which x has the relation R as the successor

of X {x being a u), which may be written seq x. The definitions and

properties of addition, subtraction, multiplication, division, positive and

* Namely (a + p)y = a/3 -I- ay. The other form, a{^ + y) = a^ + ay, holds also

for infinite ordinal nmnbers, and is thus independent of mathematical induction.

t It should be observed that a discrete open series generated by a transitive

relation can always be reduced, as we saw in the preceding chapter, to one generated

by an asymmetrical one-one relation, provided only that the series is finite or a

progression.
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negative terms, and rational fractions are easily given ; and it is easily

shown that between any two rational fractions there is always a third.

From this point it is easy to advance to irrationals and the real

numbers *-

Apart from the principle of mathematical induction, what is chiefly

interesting about this process is, that it shows that only the serial or

ordinal properties of finite numbers are used by ordinary mathematics,

what may be called the logical properties being wholly irrelevant. By
the logical properties of numbers, I mean their definition by means of

purely logical ideas. This process, which ha^ been explained in Part II,

may be here briefly recapitulated. We show, to begin with, that a one-

one correlation can be effected between any two null classes, or between

any two classes u, v which are such that, if ir is a u, and x' differs from

x, then ,t' cannot be a ii, with a like condition for v. The possibility

of such one-one correlation we call similarity of the two classes u, v.

Similarity, being symmetrical and transitive, must be analyzable (by the

principle of abstraction) into possession of a common property. This

we define as the number of either of the classes. When the two classes

u, V have the above-defined property, we say their number is one ; and

so on for higher numbers ; the general definition of finite numbers
demanding mathematical induction, or the non-similarity of whole and

part, but being always given in purely logical terms.

It is numbers so defined that are used in daily life, and that are

essential to any assertion of numbers. It is the fact that numbers have

these logical properties that makes them important. But it is not

these properties that ordinary mathematics employs, and numbers might
be bereft of them without any injury to the truth of Arithmetic and
Analysis. A¥hat is relevant to mathematics is solely the fact that

finite numbers form a progression. This is the reason why mathe-

maticians

—

e.g. Helmholtz, Dedekind, and Kronecker—have maintained

that ordinal numbers are prior to cardinals ; for it is solely the ordinal

properties of number that are relevant. But the conclusion that or-

dinals are prior to cardinals seems to have resulted from a confusion.

Ordinals and cardinals alike form a progression, and have exactly the

same ordinal properties. Of either, all Arithmetic can be proved

without any appeal to the other, the propositions being symbolically

identical, but different in meaning. In order to prove that ordinals

are prior to cardinals, it would be necessary to show that the cardinals

can only be defined in terms of the ordinals. But this is false, for the

logical definition of the cardinals is wholly independent of the ordinals f.
There seems, in fact, to be nothing to choose, as regards logical priority,

between ordinals and cardinals, except that the existence of the ordinals

f See my article on the Logic of Relations^ RdM, VII.

t Professoi- Peano, who has a rare immunity from error, has recognized this fact.

See Formulaire, 1898, 210, note (p. 39).

R. 16
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is inferred from the series of cardinals. The ordinals, as we shall see

in the next paragraph, can be defined without any appeal to the

cardinals ; but when defined, they are seen to imply the cardinals.

Similarly, the cardinals can be defined without any appeal to the

ordinals ; but they essentially form a progression, and all progressions,

as I shall now show, necessarily imply the ordinals.

231. The correct analysis of ordinals has been prevented hitherto by

the prevailing prejudice against relations. People speak of a series as

consisting of certain terms taken in a certain order, and in this idea

there is commonly a psychological element. All sets of terms have,

apart from psychological considerations, all orders of which they are

capable ; that is, there are serial relations, whose fields are a given set of

terms, which arrange those terms in any possible order. In some cases,

one or more serial relations are specially prominent, either on account of

their simplicity, or of their importance. Thus the order of magnitude

among numbers, or of before and after among instants, seems emphati-

cally the natural order, and any other seems to be artificially introduced

by our arbitrary choice. But this is a sheer error. Omnipotence itself

cannot give terms an order which they do not possess already: all that

is psychological is the consideration of such and such an order. Thus

when it is said that we can arrange a set of terms in any order we please,

what is really meant is, that we can consider any of the serial relations

whose field is the given set, and that these serial relations will give

between them any combinations of before and after that are compatible

with transitiveness and connection. From this it results that an order

is not, properly speaking, a property of a given set of terms, but of a serial

relation whose field is the given set. Given the relation, its field is given

with it ; but given the field, the relation is by no means given. The

notion of a set of terms in a given order is the notion of a set of terms

considered as the field of a given serial relation ; but the consideration

of the terms is superfluous, and that of the relation alone is quite

sufficient.

We may, then, regard an ordinal number as a common property of

sets of serial relations which generate ordinally similar series. Such

relations have what I shall call likeness, i.e. if P, Q be two such relations,

their fields can be so correlated term for term that two terms of which

the first has to the second the relation P will always be correlated with

two terms of which the first has to the second the relation Q, and

vice versa. As in the case of cardinal numbers*, so here, we may, in

virtue of the principle of abstraction, define the ordinal number of

a given finite serial relation as the class of like relations. It is easy to

show that the generating relations of progressions are all alike ; the

class of such relations will be the ordinal number of the finite integers

in order of magnitude. When a class is finite, all series that can be

* Cf. § 111.
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formed of its terms are ordinally similar, and are ordinally different from
series having a different cardinal number of terms. Hence there is a

one-one correlation of finite ordinals and cardinals, for which, as we
shall see in Part V, there is no analogy in respect of infinite numbers. We
may therefore define the ordinal number n as the class of serial relations

whose domains have n terms, where w is a finite cardinal. It is necessary,

unless 1 is to be excluded, to take domains instead of fields here, for no
relation which implies diversity can have one term in its field, though it

may have none. This has a practical inconvenience, owing to the fact

that n+ I must be obtained by adding one term to the field ; but the

point involved is one for conventions as to notation, and is quite

destitute of philosophical importance.

232. The above definition of ordinal numbers is direct and simple,

but does not yield the notion of " nth," which would usually be regarded

as the ordinal number. This notion is far more complex : a term is not

intrinsically the nth, and does not become so by the mere specification

of n — 1 other terms. A term is the nth in respect of a certain serial

relation, when, in respect of that relation, the term in question has n — 1

predecessors. This is the definition of " nth," showing that this notion

is relative, not merely to predecessors, but also to a specified serial

relation. By induction, the various finite ordinals can be defined

without mentioning the cardinals. A finite serial relation is one which

is not like (in the above sense) any relation implying it but not equivalent

to it ; and a finite ordinal is one consisting of finite serial relations. If

n be a finite ordinal, n + 1 is an ordinal such that, if the last term* of

a series of the type n + 1 be cut off, the remainder, in the same order, is

of the type n. In more technical language, a serial relation of the type

n + 1 is one which, when confined to its domain instead of its field,

becomes of the type n. This gives by induction a definition of every

particular finite ordinal, in which cardinals are never mentioned. Thus
we cannot say that ordinals presuppose cardinals, though they are more

complex, since they presuppose both serial and one-one relations, whereas

cardinals only presuppose one-one relations.

Of the ordinal number of the finite ordinals in order of magnitude,

several equivalent definitions may be given. One of the simplest is,

that this number belongs to any serial relation, which is such that any

class contained in its field and not null has a first term, while every

term of the series has an immediate successor, and every term except the

first has an immediate predecessor. Here, again, cardinal numbers are

in no way presupposed.

Throughout the above discussions our serial relations are taken to be

transitive, not one-one. The one-one relations are easily derived from

* The last term of a series (if it exists) is the term belonging to the converse

domain but not to the domain of the generating relation, i.e. the term which is after

but not before other terms.

16—2
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the transitive ones, while the converse derivation is somewhat compHcated.

Moreover the one-one relations are only adequate to define finite series,

and thus their use cannot be extended to the study of infinite series

unless they are taken as derivative from the transitive ones.

233. A few words concerning positive and negative ordinals seem to

be here in place. If the first n terms of a progression be taken away

{n being any finite number), the remainder still form a progression.

With regard to the new progression, negative ordinals may be assigned

to the terms that have been abstracted; but for this purpose it is

convenient to regard the beginning of the smaller progression as the

0th term. In order to have a series giving any positive or negative

ordinal, we need what may be called a double progression. This is a

series such that, choosing any term x out of it, two progressions start

from X, the one generated by a serial relation R, the other by R. To
X we shall then assign the ordinal 0, and to the other terms we shaU

assign positive or negative ordinals according as they belong to the one

or the other of the two progressions starting from x. The positive and

negative ordinals themselves form such a double progression. They

express essentially a relation to the arbitrarily chosen origin of the two

progressions, and +n and —n express mutually converse relations.

Thus they have all the properties which we recognize in Chapter xxvn

as characterizing terms which have signs.



CHAPTER XXX.

DEDEKIND'S THEORY OF NUMBER.

234. The theoiy of progressions and of ordinal numbers, with which

we have been occupied in the last chapter, is due in the main to two

men—Dedekind and Cantor. Cantor's contributions, being specially

concerned with infinity, need not be considered at present ; and

Dedekind's theory of irrationals is also to be postponed. It is his theory

of integers of which I wish now to give an account-—the theory, that is

to say, which is contained in his " Was sind und was sollen die ZahlenP'"*

In reviewing this work, I shall not adhere strictly to Dedekind's

phraseology. He appears to have been, at the time of writing, un-

acquainted with symbolic logic ; and although he invented as much of

this subject as was relevant to his purpose, he naturally adopted phrases

which were not usual, and were not always so convenient as their con-

ventional equivalents.

The fundamental ideas of the pamphlet in question are these f:

(1) the representation {AhUldung) of a system (21) ; (2) the notion of a

chain (37) ; (3) the chain of an element (4)4) ; (4) the generahzed form

of mathematical induction (59) ; (5) the definition of a singly infinite

system (71). From these five notions Dedekind deduces numbers and

ordinary Arithmetic. Let us first explain the notions, and then examine

the deduction.

235. (1) A representation of a class u is any law by which, to every

term of u, say x, corresponds some one and only one term </)(a7). No
assumption is made, to begin with, as to whether 4>{x) belongs to the

class u, or as to whether ^x) may be the same as j>{y\ when x and y
are different terms of u. The definition thus amounts to this :

A representation of a class m is a many-one relation, whose domain

contains u, by which terms, which may or may not also belong to u, are

* 2nd ed. Brunswick, 1893 (1st ed. 1887). The principal contents of this

book, expressed by the Algebra of RelationSj will be found in my article in RdM,
VII, 2, 3.

+ The numbers in brackets refer, not to pages, but to the small sections into

which the work is divided.
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correlated one with each of the terms of u*. The representation is

similar when, if x differs from y, both being m's, then ^(x) differs from

^iy); that is, when the relation in question is one-one. He shows that

similarity between classes is reflexive, symmetrical and transitive, and

remarks (34) that classes can be classified by similarity to a given class

—

a suggestion of an idea which is fundamental in Cantor''s work.

236. (2) If there exists a relation, whether one-one or many-one,

which correlates with a class u only terms belonging to that class, then

this relation is said to constitute a representation of u in itself (36),

and with respect to this relation u is called a chain (37). That is to

say, any class u is, with respect to any many-one relation, a chain, if u is

contained in the domain of the relation, and the correlate of a m is

always itself a u. The collection of correlates of a cIeiss is called the

image (Bild) of the class. Thus a chain is a class whose image is

part or the whole of itself. For the benefit of the non-mathematical

reader, it may be not superfluous to remark that a chain with regard to

a one-one relation, provided it has any term not belonging to the image

of the chain, cannot be finite, for such a chain must contain the same

number of terms as a proper part of itself f.

237. (3) If a be any term or collection of terms, there may be,

with respect to a given many-one relation, many chains in which a is

contained. The common part of all these chains, which is denoted by a„

is what Dedekind calls the chain of a (44). For example, if a be the

number n, or any set of numbers of which n is the least, the chain of a

with regard to the relation "less by l" will be all numbers not less

than n.

238. (4) Dedekind now proceeds (59) to a theorem which is

a generalized form of mathematical induction. This theorem is as

follows : Let a be any term or set of terms contained in a class .?, and let

the image of the common part of s and the chain of a be also contained

in s ; then it follows that the chain of a is contained in s. This some-

what complicated theorem may become clearer by being put in other

language. Let us call the relation by which the chain is generated (or

rather the converse of this relation) succession, so that the correlate or

image of a term will be its successor. Let a be a term which has a

successor, or a collection of such terms. A chain in general (with regard

to succession) wiU be any set of terms such that the successor of any

one of them also belongs to the set. The chain of a will be the common

* A many-one relation is one in which, as in the relation of a quantity to its

magnitude, the right-hand term, to which the relation is, is uniquely determined

when the left-hand term is given. Whether the converse holds is left undecided.

Thus a one-one relation is a particular case of a many-one relation.

t A proper part (Echter Theil) is a phrase analogous to " proper fraction "
;

it

means a pai^t not the whole.
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part of all the chains containing a. Then the data of the theorem

inform us that a is contained in s, and, if any term of the chain of a be

an *, so is its successor; and the conclusion is, that evei-y term in the

chain of a is an s. This theorem, as is evident, is very similar to

mathematical induction, from which it differs, first by the fact that a
need not be a single term, secondly by the fact that the constitutive

relation need not be one-one, but may be many-one. It is a most
remarkable fact that Dedekind's previous assumptions suffice to demon-
strate this theorem.

239. (5) I come next to the definition of a singly infinite system

or class (Tl). This is defined as a class which can be represented in

itself by means of a one-one relation, and which is further such as to be

the chain, with regard to this one-one relation, of a single term of the

class not contained in the image of the class. Calling the class N, and
the one-one relation R, there are, as Dedekind remarks, four points in

this definition. (1) The image of X is contained in N \ that is, every

term to which an X has the relation R is an A'^. (2) A'^ is the chain of

one of its terms. (3) This one term is such that no N has the relation

R to it, i.e. it is not the image of anv other term of X. (4) The
relation R is one-one, in other words, the representation is similar. The
abstract system, defined simply as possessing these properties, is defined

by Dedekind as the ordinal numbers (73). It is evident that his singly

infinite system is the same as what we called a progi-ession, and he

proceeds to deduce the various properties of progressions, in particular

mathematical induction (80), which follows fi-om the above generalized

form. One number m is said to be less than another n, when the chain

of n is contained in the image of the chain of m (89) ; and it is shown

(88, 90) that of two different numbers, one must be the less. From this

point everything proceeds simplv.

240. The only fm-ther point that seems important for our present

purpose is the definition of cardinals. It is shown (132) that all singly

infinite systems are similar to each other and to the ordinals, and that

conversely (133) any system which is similar to a singly infinite svstem

is singly infinite. When a system is finite, it is similar to some system

Z„, where Z„ means all the numbei-s from 1 to n both inclusive ; and
vice versa (160). There is onlv one number n which has this property

in regard to anv given finite system, and when considered in relation

to this property it is called a cardinal number, and is said to be the

number of elements of which the said svstem consists (161). Here
at last we reach the cardinal numbers. Their dependence on ordinals,

if I may venture to interpret Dedekind, is as follows : owing to the

order of the ordinals, every oi-dinal n defines a class of ordinals Z„,

consisting of all that do not succeed it. They may be defined as all

that are not contained in the image of the chain of n. This class of

ordinals may be similar to another class, which is then said to have the
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cardinal number n. But it is only because of the order of the ordinals

that each of them defines a class, and thus this order is presupposed in

obtaining cardinals.

241. Of the merits of the above deduction it is not necessary for

me to speak, for they are universally acknowledged. But some points

call for discussion. In the first case, Dedekind proves mathematical

induction, while Peano regards it as an axiom. This gives Dedekind

an apparent superiority, which must be examined. In the second place,

there is no reason, merely because the numbers which Dedekind obtains

have an order, to hold that they are ordinal numbers ; in the third

place, his definition of cardinals is unnecessarily complicated, and the

dependence of cardinals upon order is only apparent. I shall take these

points in turn.

As regards the proof of mathematical induction, it is to be observed

that it makes the practically equivalent assumption that numbers form

the chain of one of them. Either can be deduced from the other, and

the choice as to which is to be an axiom, which a theorem, is mainly

a matter of taste. On the whole, though the consideration of chains

is most ingenious, it is somewhat difficult, and has the disadvantage

that theorems concerning the finite class of numbers not greater than n

as a rule have to be deduced from corresponding theorems concerning

the infinite class of numbers greater than n. For these reasons, and

not because of any logical superiority, it seems simpler to begin with

mathematical induction. And it should be observed that, in Peano's

method, it is only when theorems are to be proved concerning any

number that mathematical induction is required. The elementary

Arithmetic of our childhood, which discusses only particular numbers,

is wholly independent of mathematical induction ; though to prove that

this is so for every particular number would itself require mathematical

induction. In Dedekind's method, on the other hand, propositions

concerning particular numbers, like general propositions, demand the

consideration of chains. Thus there is, in Peano's method, a distinct

advantage of simplicity, and a clearer separation between the particular

and the general propositions of Arithmetic. But from a purely logical

point of view, the two methods seem equally sound ; and it is to be

remembered that, with the logical theory of cardinals, both Peano's and

Dedekind's axioms become demonstrable*.

242. On the second point, there is some deficiency of clearness in

what Dedekind says. His words are (73) :
" If in the contemplation

of a singly infinite system N, ordered by a representation </>, we disregard

entirely the peculiar nature of the elements, retaining only the possibility

of distinguishing them, and considering only the relations in which they

are placed bv the ordering representation (^, then these elements are

called natural numbers or ordinal numbers or simply numbers." ^<ow

* Cf. Chap. XIII.
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it is impossible that this account should be quite correct. For it implies

that the terms of all progressions other than the ordinals are complex,

and that the ordinals are elements in all such terms, obtainable bv
abstraction. But this is plainly not the case. A progression can be
formed of points or instants, or of transfinite ordinals, or of cardinals,

in which, as we shall shortly see, the ordinals are not elements. i\Iore-

over it is impossible that the ordinals should be, as Dedekind suggests,

nothing but the terms of such relations as constitute a progression.

If they ai-e to be anything at all, they must be intrinsically something

;

they must differ from other entities as points from instants, or colours

from sounds. What Dedekind intended to indicate was probably a
definition by means of the principle of abstraction, such as we attempted
to give in the preceding chapter. But a definition so made always

indicates some class of entities having (or being) a genuine nature of

their own, and not logically dependent upon the manner in which they
have been defined. The entities defined should be visible, at least to

the mind's eye ; what the principle asserts is that, under certain con-

ditions, there are such entities, if only we knew where to look for them.
But whether, when we have found them, they will be ordinals or

cardinals, or even something quite different, is not to be decided

off-hand. And in any case, Dedekind does not show us what it is

that all progressions have in common, nor give any reason for supposing

it to be the ordinal numbers, except that all progressions obey the same
laws as ordinals do, which would prove equally that any assigned

progression is what all progressions have in common.
243. This brings us to the third point, namely the definition of

cardinals by means of ordinals. Dedekind remarks in his pi-eface (p. ix)

that many will not recognize theu- old friends the natural numbers in

the shadowy shapes which he introduces to them. In this, it seems

to me, the supposed persons are in the right—in other words, I am one

among them. What Dedekind presents to us is not the numbers,

but any progression : what he says is true of all progressions alike,

and his demonstrations nowhere—not even where he comes to cardinals

—

involve anv property distinguishing numbers from other progressions.

No evidence is brought forward to show that numbers are prior to

other progressions. We are told, indeed, that they are what all pro-

gressions have in common ; but no reason is given for thinking that

progressions have anything in common beyond the properties assigned

in the definition, which do not themselves constitute a new progression.

The fact is that aU depends upon one-one relations, which Dedekind

has been using throughout without perceiving that they alone suffice

for the definition of cardinals. The relation of similarity between

classes, which he employs consciously, combined with the principle of

abstraction, which he implicitly assumes, suffice for the definition of

cardinals ; for the definition of ordinals these do not suffice ; we
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require, as we saw in the preceding chapter, the relation of hkeness

between well-ordered serial relations. The definition of particular

finite ordinals is effected explicitly in terms of the corresponding

cardinals : if n be a finite cardinal number, the ordinal number n is

the class of serial relations which have n terms in their domain

(or in their field, if we prefer this definition). In order to define

the notion of " n\hj" we need, besides the ordinal number n, the

notion of powers of a relation, i.e. of the relative product of a rela-

tion multiplied into itself a finite number of times. Thus if R be any

one-one serial relation, generating a finite series or a progression, the first

term of the field of R (which field we will call r) is the term belonging

to the domain, but not to the converse domain, i.e., having the relation

R but not the relation R. If r has n or more terms, where w is a finite

number, the n\h term of r is the term to which the first term has the

relation i?"'"^ or, again, it is the term having the relation i?"~' but not

the relation J?" Through the notion of powers of a relation, the

introduction of cardinals is here unavoidable ; and as powers are defined

by mathematical induction, the notion of nth, according to the above

definition, cannot be extended beyond finite numbers. We can however

extend the notion by the following definition : If P be a transitive

aliorelative generating a well-ordered series p, the wth term of p is the

term x such that, if P' be the relation P limited to x and its pre-

decessors, then P' has the ordinal number n. Here the dependence

upon cardinals results from the fact that the ordinal n can, in general,

only be defined by means of the cardinal n.

It is important to observe that no set of terms has inherently one

order rather than another, and that no term is the nth. of a set except

in relation to a particular generating relation whose field is the set or

part of the set. For example, since in any progression, any finite

number of consecutive terms including the first may be taken away,

and the remainder will still form a progression, the ordinal number

of a term in a progression may be diminished to any smaller number

we choose. Thus the ordinal number of a term is relative to the series

to which it belongs. This may be reduced to a relation to the first

term of the series ; and lest a vicious circle should be suspected, it may

be explained that the. first term can always be defined non-numerically.

It is, in Dedekind's singly infinite system, the only term not contained

in the image of the system ; and generally, in any series, it is the only

term which has the constitutive relation with one sense, but not with

the other*. Thus the relation expressed by nth is not only a relation

to n, but also to the first term of the series ; and first itself depends

* Though when the series has two ends, we have to make an arbitrary selection

as to which we will call first, which last. The obviously non-numerical nature of

last illustrates that of its correlative, first.
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upon the terms included in the series, and upon the relation by which

they are ordered, so that what was first may cease to be so, and what

was not first may become so. Thus the first term of a series must be

assigned, as is done in Dedekind's view of. a progression as the chain

of its first term. Hence wth expresses a four-cornered relation, between

the term which is nth, an assigned term (the first), a generating serial

relation, and the cardinal number n. Thus it is plain that ordinals,

either as classes of like serial relations, or as notions like "nth," are

more complex than cardinals ; that the logical theory of cardinals is

wholly independent of the general theory of progressions, requiring

independent development in order to show that the cardinals form a

progression ; and that Dedekind's ordinals are not essentially either

ordinals or cardinals, but the members of any progression whatever.

I have dwelt on this point, as it is important, and my opinion is at

variance with that of most of the best authorities. If Dedekind's view

were correct, it would have been a logical error to begin, as this work

does, with the theory of cardinal numbers rather than with order.

For my part, I do not hold it an absolute error to begin with order,

since the properties of progressions, and even most of the properties of

series in general, seem to be largely independent of number. But
the properties of number must be capable of proof without appeal to

the general properties of progressions, since cardinal numbers can be

independently defined, and must be seen to form a progression before

theorems concerning progressions can be applied to them. Hence the

question, whether to begin with order or with numbers, resolves itself

into one of convenience and simplicity ; and from this point of view,

the cardinal numbers seem naturally to precede the very difficult con-

siderations as to series which have occupied us in the present Part.



CHAPTER XXXI.

DISTANCE.

244. The notion of distance is one which is often supposed essential

to series*, but which seldom receives precise definition. An emphasis on

distance characterizes, generally speaking, those who believe in relative

position. Thus Leibniz, in the course of his controversy with Clarke,

remarks

:

"As for the objection, that space and time are quantities, or rather

things endowed with quantity, and that situation and order are not

so: I answer, that order also has its quantity; there is that in it which

goes before, and that which follows; there is distance or interval.

Relative things have their quantity, as well as absolute ones. For

instance, ratios or proportions in mathematics have their quantity, and

are measured by logarithms; and yet they are relations. And therefore,

though time and space consist in relations, yet they have their

quantity t."

In this passage, the remark : "There is that which goes before, and

that which follows ; there is distance or interval," if considered as an

inference, is a non sequitur; the mere fact of order does not prove that

there is distance or interval. It proves, as we have seen, that there

are stretches, that these are capable of a special form of addition

closely analogous to what I have called relational addition, that they

have sign, and that (theoretically at least) stretches which fulfil the

axioms of Archimedes and of linearity are always capable of numerical

measurement. But the idea, as Meinong rightly points out, is entirely

distinct from that of stretch. Whether any particular series does or

does not contain distances, will be, in most compact series {i.e. such as

have a term between any two), a question not to be decided by argument.

In discrete series there must be distance ; in others, there may be

—

unless, indeed, they are series .obtained from progressions as the

rationals or the real numbers are obtained from the integers, in which

* E.g. by Meinong^ op. cit. § 17.

t Phil. Werke, Gerhardt's ed. Vol. vn, p. 404.
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case there must be distance. But we shall find that stretches are mathe-
matically sufficient, and that distances are complicated and unimportant.

245. The definition of distance, to begin with, is no easy matter.

What has been done hitherto towards this end is chiefly due to non-

Euclidean Geometry*; something also has been done towards settling the

definition by Meinongf. But in both these cases, there is more concern for

numerical measurement of distance than for its actual definition. Never-

theless, distance is by no means indefinable. Let us endeavour to genera-

lize the notion as much as possible. In the first place, distance need not

be asymmetrical; but the other properties of distance alwavs allow us to

render it so, and we may therefore take it to be so. Secondly, a distance

need not be a quantity or a magnitude ; although it is usually taken to

be such, we shall find the taking it so to be irrelevant to its other

properties, and in particular to its numerical measurement. Thirdly,

when distance is taken asymmetrically, there must be only one term to

which a given term has a given distance, and the converse relation to the

given distance must be a distance of the same kind. (It will be observed

that we must first define a kind of distance, and proceed thence to the

general definition of distance.) Thus every distance is a one-one

relation; and in respect to such relations it is convenient to respect the

converse of a relation as its -1th power. Further the relative product,

of two distances of a kind must be a distance of the same kind. When
the two distances are mutually converse, their product will be identity,

which is thus one among distances (their zero, in fact), and must be the

only one which is not asymmetrical. Again the product of two distances

of a kind must be commutative|. If the distances of a kind be magni-
tudes, they must form a kind of magnitude

—

i.e. any two must be equal

or unequal. If they are not magnitudes, they must still form a series

generated in the second of our six ways, i.e. every pair of different

distances must have a certain asymmetrical relation, the same for all

pairs except as regards sense. And finally, if Q be this relation, and

^1 QRi (Rii -^2, being distances of the kind), then if H^ be any other

distance of the kind, we must have i?i R^ Qi?2 ^3. All these properties,

so far as I can discover, are independent ; and we ought to add a

property of the field, namely this : any two terms, each of which belongs

to the field of some distance of the kind (not necessarilv the same for

both), have a relation which is a distance of the kind. Having now
defined a kind of distance, a distance is any relation belonging to some
kind of distance; and thus the work of definition seems completed.

The notion of distance, it will be seen, is enormously complex. The
properties of distances are analogous to those of stretches with sign, but

* See e.g. Whiteliead, Universal Algebra, Cambridge, 1898, Book vi, Chap. i.

t Op. cit. Section iv.

I This is an independent property ; consider for instance the difference between
"maternal grandfather" and "paternal grandmother."
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are far less capable of mutual deduction. The properties of stretches

coiTesponding to many of the above properties of distances are capable

of proof. The difference is largely due to the fact that stretches can be

added in the elementary logical (not arithmetical) way, whereas distances

require what I have called relational addition, which is much the same as

relative multiplication.

246. The nimierical measurement of distances has already been par-

tially explained in Part III. It requires, as we saw, for its full application,

two further postulates, which, however, do not belong to the definition of

distances, but to certain kinds of distances only. TTiese are, the postu-

late of Archimedes : given any two distances of a kind, there exists

a finite integer n such that the wth power of the first distance is greater

than the second distance; and Du Bois Reymond's postulate of linearity:

Any distance has an wth root, where n is any integer (or any prime,

whence the result follows for any integer). When these two postulates

are satisfied, we can find a meaning for R', where .ff is a distance of the

kind other than identity, and x is any real number*. Moreover, any

distance of the kind is of the form J?^, for some value of x. And x is,

of course, the numerical measure of the distance.

In the case of series generated in the first of our six ways, the various

powers of the generating relation R give the distances of terms. These

various powers, as the reader can see for himself, verify all the above

characteristics of distances. In the ca^e of series generated from pro-

gressions as rationals or real numbers from integers, there are always

distances; thus in the case of the rationals themselves, which are one-

one relations, their differences, which are again rationals, measm-e or

indicate relations between them, and these relations are of the nature of

distances. And we shall see, in Part V, that these distances have some

importance in connection with limits. For numerical measurement in

some form is essential to certain theorems about limits, and the nume-

rical mesisurement of distances is apt to be more practically feasible than

that of stretches.

247. On the general question, however, whether series unconnected

with number—for instance spatial and temporal series—are such as to

contain distances, it is difficult to speak positively. Some things may
be said against this view. In the first place, there must be stretches, and

these must be magnitudes. It then becomes a sheer assumption—which

must be set up as an axiom—that equal stretches correspond to equal

distances. This may, of course, be denied, and we might even seek an

* The powers of distances are here understood in the sense resulting from relative

multiplication ; thus if a and b have the same distance as b and c, this distance is the

square root of the distance of a and c. The postulate of linearity, whose expression

in ordinary language is: "every linear quantity can he divided into n equal parts,

where n is any integer," will he found in Du Bois Reymond's Allgemeine Functionen-

theorie (Tubingen, 1882), p. 46.
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interpretation of non-Euclidean Geometry in the denial. We might

regard the usual coordinates as expressing sti-etches, and the logarithms

of their anharmonic ratios as expressing distances; hvperbolic Geometry,

at least, might thus find a somewhat curious interpretation. Herr

Meinong, who regards all series as containing distances, maintains an

analogous principle with regard to distance and stretch in general. The
distance, he thinks, increases only as the logarithm of the stretch. It

may be observed that, where the distance itself is a rational number
(which is possible, since rationals are one-one relations), the opposite

theory can be made formally convenient by the following fact. The
square of a distance, as we saw generally, is said to be twice as great as

the distance whose square it is. We might, where the distance is a

rational, say instead that the stretch is twice as great, but that the

distance is truly the square of the former distance. For where the

distance is already numerical, the usual interpretation of numerical

measurement conflicts with the notation R''. Thus we shall be com-

pelled to regard the stretch as proportional to the logarithm of the

distance. But since, outside the theory of progressions, it is usually

doubtful whether there are distances, and since, in almost all other

series, stretches seem adequate for all the results that are obtainable, the

retention of distance adds a complication for which, as a rule, no

necessity appears. It is therefore generally better, at least in a philo-

sophy of mathematics, to eschew distances except in the theory of

progressions, and to measure them, in that theory, merely by the

indices of the powers of the generating relation. There is no logical

reason, so far as I know, to suppose that there are distances elsewhere,

except in a finite space of two dimensions and in a projective space ; and

if there are, they are not mathematically important. We shall see in

Part VI how the theory of space and time may be developed without pre-

supposing distance; the distances which appear in projective Geometry are

derivative relations, not required in defining the properties of our space ;

and in Part \ we shall see how few are the functions of distance with

regard to series in general. And as against distance it may be remarked

that, if every series must contain distances, an endless regress becomes

unavoidable, since every kind of distance is itself a series. This is not,

I think, a logical objection, since the regress is of the logically permis-

sible kind ; but it shows that great complications are introduced by

regarding distances as essential to every series. On the whole, then, it

seems doubtful whether distances in general exist ; and if they do, their

existence seems unimportant and a source of very great complications.

248. We have now completed our review of order, in so far as is

possible without introducing the difficulties of continuity and infinity.

We have seen that all order involves asymmetrical transitive relations, and

that every series as such is open. But closed series, we found, could be

distinguished by the mode of their generation, and by the fact that.
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though they always have a first term, this term may always be selected

arbitrarily. We saw that asymmetrical relations must be sometimes

unanalyzable, and that when analyzable, other asymmetrical relations

must appear in the analysis. The difference of sign, we found, depends

always upon the difference between an asymmetrical relation and its

converse. In discussing the particular type of series which we called

progressions, we saw how all Arithmetic applies to every such series, and

how finite ordinals may be defined by means of them. But though we

found this theory to be to a certain extent independent of the cardinals,

we saw no reason to agree with Dedekind in regarding cardinals as

logically subsequent to ordinals. Finally, we agreed that distance is

a notion which is not essential to series, and of little importance outside

Arithmetic. With this equipment, we shall be able, I hope, to dispose

of all the difficulties which philosophers have usually found in infinity

and continuity. If this can be accomplished, one of the greatest of

philosophical problems will have been solved. To this problem Part V
is to be devoted.



PART V.

INFINITY AND CONTINUITY.
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CHAPTER XXXII.

THE CORRELATION OF SERIES.

249. We come now to what has been generally considered the

fundamental problem of mathematical philosophy—I mean, the problem
of infinity and continuity. This problem has undergone, through the

labours of .Weierstrass and Cantor, a complete transformation. Since

the time of Newton and Leibniz, the nature of infinity and continuity

had been sought in discussions of the so-called Infinitesimal Calculus.

But it has been shown that this Calculus is not, as a matter of fact,

in any way concerned with the infinitesimal, and that a large and most
important branch of mathematics is logically prior to it. The problem
of continuity, moreover, has been to a great extent separated from that

of infinity. It was formerly supposed—and herein lay the real strength

of Kant's mathematical philosophy—that continuity had an essential

reference to space and time, and that the Calculus (as the word fiuxion

suggests) in some way presupposed motion or at least change. In this

view, the philosophy of space and time was prior to that of continuity,

the Transcendental Aesthetic preceded the Transcendental Dialectic, and
the antinomies (at least the mathematical ones) were essentially spatio-

temporal. All this has been changed by modern mathematics. What
is called the arithmetization of mathematics has shown that all the

problems presented, in this respect, by space and time, are already

present in pure arithmetic. The theory of infinity has two forms,

cardinal and ordinal, of which the former springs from the logical

theory of number ; the theory of continuity is purely ordinal. In the

theory of continuity and the ordinal theory of infinity, the problems

that arise are not specially concerned with numbers, but with all series

of certain types which occur in arithmetic and geometry alike. Wliat

makes the problems in question peculiarly easy to deal with in the case

of numbers is, that the series of rationals, which is what I shall call a

compact series, arises from a progression, namely that of the integers, and

that this fact enables us to give a proper name to every term of the

series of rationals—a point in which this series differs from others of the

same type. But theorems of the kind which will occupy us in most of

17—2
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the following chapters, though obtained in arithmetic, have a far wider

application, since they are purely ordinal, and involve none of the

logical properties of numbers. That is to say, the idea which the

Germans caU Anzahl, the idea of the number of terms in some class,

is irrelevant, save only in the theory of transfinite cardinals—an

important but very distinct part of Cantor's contributions to the theory

of infinity. We shall find it possible to give a general definition of

continuity, in which no appeal is made to the mass of unanalyzed

prejudice which Kantians call "intuition"; and in Part VI we shall

find that no other continuity is involved in space and time. And we

shall find that, by a strict adherence to the doctrine of limits, it is

possible to dispense entirely with the infinitesimal, even in the definition

of continuity and the foundations of the Calculus.

250. It is a singular fact that, in proportion as the infinitesimal

has been extruded from mathematics, the infinite has been allowed

a freer development. From Cantor's work it appears that there are

two respects in which infinite numbers differ from those that are finite.

The first, which applies to both cardinals and ordinals, is, that they do

not obey mathematical induction—or rather, they do not form part of

a series of numbers beginning with 1 or 0, proceeding in order of

magnitude, containing all numbers intermediate in magnitude between

any two of its terms, and obeying mathematical induction. The

second, which applies only to cardinals, is, that a whole of an infinite

number of terms always contains a part consisting of the same

number of terms. The first respect constitutes the true definition

of an infinite series, or rather of what we may call an infinite

term in a series : it gives the essence of the ordinal infinite. The

second gives the definition of an infinite collection, and will doubtless

be pronounced by the philosopher to be plainly self-contradictory. But

if he will condescend to attempt to exhibit the contradiction, he will

find that it can only be proved by admitting mathematical induction,

so that he has merely established a connection with the ordinal infinite.

Thus he will be compelled to maintain that the denial of mathematical

induction is self-contradictory ; and as he has probably reflected little,

if at all, on this subject, he will do well to examine the matter before

pronouncing judgment. And when it is admitted that mathematical

induction may be denied without contradiction, the supposed antinomies

of infinity and continuity one and all disappear. This I shall endeavour

to prove in detail in the following chapters.

251. Throughout this Part we shall often have occasion for a

notion which has hitherto been scarcely mentioned, namely the correla-

tion of series. In the preceding Part we examined the nature of

isolated series, but we scarcely considered the relations between different

series. These relations, however, are of an importance which philo-

sophers have wholly overlooked, and mathematicians have but lately
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realized. It has long been known how much could be done in Geometry
by means of homography, which is an example of correlation ; and it

has been shown by Cantor how important it is to know whether a series

is denumerable, and how similar two series capable of correlation are.

But it is not usually pointed out that a dependent variable and its

independent variable are, in most mathematical cases, merely correlated

series, nor has the general idea of correlation been adequately dealt

with. In the present work only the philosophical aspetts of the subject

are relevant.

Two series s, s' are said to be correlated when there is a one-one

relation R coupling every term of s with a term of s', and vice versa, and

when, if cc, y be terms of s, and x precedes y, then their correlates x, y in

*' are such that x' precedes y' . Two classes or collections are correlated

whenever there is a one-one relation between the terms of the one and

the terms of the other, none being left over. Thus two series may be

correlated as classes without being correlated as series ; for correlation

as classes involves only the same cardinal number, whereas correlation

as series involves also the same ordinal type—a distinction whose

importance will be explained hereafter. In order to distinguish these

cases, it will be well to speak of the correlation of classes as correlation

simply, and of the correlation of series as ordinal correlation. Thus

whenever correlation is mentioned without an adjective, it is to be

understood as being not necessarily ordinal. Correlated classes will be

called similar \ correlated series will be called ordinally similar; and

their generating relations will be said to have the relation of

likeness.

Correlation is a method by which, when one series is given, others

may be generated. If there be any series whose generating relation

is P, and any one-one relation which holds between any term x of the

series and some term which we may call xr, then the class of terms

xs, will form a series of the same type as the class of terms x. For

suppose y to be any other term of our original series, and assume xPy.

Then we have x^Rx, xPy, and yRyR. Hence xuRPRyu- JSfow it may

be shown* that, if P be transitive and asymmetrical, so is RPR; hence

the correlates of terms of the P-series form a series whose generating

relation is RPR. Between these two series there is ordinal correlation,

and the series have complete ordinal similarity. In this way a new

series, similar to the original one, is generated by any one-one relation

whose field includes the original series. It can also be shown that,

conversely, if P, P' be the generating relations of two similar series,

there is a one-one relation R, whose domain is the field of P, which

is such that P'=^P^.

* See my article in RdM, Vol. viii, No. 2.
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252. We can now understand a distinction of great importance,

namely that between self-sufficient or independent series, and series by

correlation. In the case just explained there is perfect mathematical

symmetry between the original series and the series by correlation ; for, if

we denote by Q the relation RPR, we shall find P = RQR. Thus we may
take either the Q-series or the P-series as the original, and regard the

other as derivative. But if it should happen that R, instead of being

one-one, is many-one, the terms of the field of Q, which we will call q,

will have an order in which there is repetition, the same term occurring

in different positions corresponding to its different correlates in the field

of P, which we will call p. This is the ordinary case of mathematical

functions which are not linear. It is owing to preoccupation with such

series that most mathematicians fail to realize the impossibility, in an

independent series, of any recurrence of the same term. In every

sentence of print, for example, the letters acquire an order by correlation

with the points of space, and the same letter will be repeated in different

positions. Here the series of letters is essentially derivative, for we

cannot order the points of space by relation to the letters : this would

give us several points in the same position, instead of one letter in several

positions. In fact, if P be a serial relation, and i? be a many-one relation

whose domain is the field of P, and Q = RPR, then Q has all the character-

istics of a serial relation except that of implying diversity ; but RQR is

not equivalent to P, and thus there is a lack of symmetry. It is for

this reason that inverse functions in mathematics, such as sin~'a?, are

genuinely distinct from direct functions, and require some device or

convention before they become unambiguous. Series obtained from

a many-one correlation as q was obtained above will be called series

by correlation. They are not genuine series, and it is highly important

to eliminate them from discussions of fundamental points.

253. The notion of likeness corresponds, among relations, to similarity

among classes. It is defined as follows : Two relations P, Q are like

when there is a one-one relation S such that the domain of S is the field

of P, and Q = SPS. This notion is not confined to serial relations, but

may be extended to all relations. We may define the relation-number

of a relation P as the class of all relations that are like P; and we can

proceed to a very general subject which may be called relation-arithmetic.

Concerning relation-numbers we can prove those of the formal laws of

addition and multiplication that hold for transfinite ordinals, and thus

obtain an extension of a part of ordinal arithmetic to relations in

general. By means of likeness we can define a finite relation as one

which is not like any proper part of itself—a proper part of a relation

being a relation which implies it but is not equivalent to it. In this

way we can completely emancipate ourselves from cardinal arithmetic.

Moreover the properties of likeness are in themselves interesting and
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important. One curious property is that, if S be one-one and have the

field of P for its domain, the above equation Q = SPS is equivalent to

SQ = PS or to QS=SP*.
254. Since the correlation of series constitutes most of the mathe-

matical examples of functions, and since function is a notion which is

not often clearly explained, it will be well at this point to say something

concerning the nature of this notion. In its most general form, function-

ality does not differ from relation. For the present purpose it will be

well to recall two technical terms, which were defined in Part I. If x
has a certain relation to y, I shall call x the referent, and y the relatum,

with regard to the relation in question. If now x be defined as belonging

to some class contained in the domain of the relation, then the relation

defines y as a function of x. That is to say, an independent variable

is constituted by a collection of terms, each of which can be referent

in regard to a certain relation. Then each of these terms has one or

more relata, and any one of these is a certain function of its referent,

the function being defined by the relation. Thus father defines a

function, provided the independent variable be a class contained in that

of male animals who have or will have propagated their kind ; and

if J be the father of B, B is said to be a function of A. What is

essential is an independent variable, i.e. any term of some class, and

a relation whose extension includes the variable. Then the referent

is the independent variable, and its function is any one of the cor-

responding relata.

But this most general idea of a function is of little use in mathematics.

There are two principal ways of particularizing the function : first, we

may confine the relations to be considered to such as are one-one or

many-one, i.e. such as give to every referent a unique relattiTfl ; secondly,

we may confine the independent variable to series. The second par-

ticularization is very important, and is specially relevant to our present

topics. But as it almost wholly excludes functions from Symbolic

Logic, where series have little importance, we may as well postpone it for

a moment while we consider the first particularization alone.

The idea of function is so important, and has been so often con-

sidered with exclusive reference to numbers, that it is well to fill our

minds with instances of non-numerical functions. Thus a very important

class of functions are propositions containing a variablef . Let there be

some proposition in which the phrase " any a" occurs, where a is some

class. Then in place of "any a" we may put x, where x is an undefined

member of the class a—in other words, any a. The proposition then

becomes a function of x, which is unique when x is given. This pro-

position will, in general, be true for some values of x and false for others.

* On this subject see my article in RdM, Vol. viii, especially Nos. 2, 6.

t These are what in Part I we called prepositional functions.
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The values for which the function is true form what might be called,

by analogy with Analytic Geometry, a logical curve. This general

view may, in fact, be made to include that of Analytic Geometry. The
equation of a plane curve, for example, is a propositional function which

is a function of two variables x and y, and the curve is the assemblage of

points which give to the variables values that make the proposition true.

A proposition containing the word any is the assertion that a certain

propositional function is true for all values of the variable for which it is

significant. Thus " any man is mortal " asserts that " a? is a man implies

X is a. mortal" is true for all values of x for which it is significant, which

may be called the admissible values. Propositional functions, such as

" a? is a number," have the peculiarity that they look like propositions,

and seem capable of implying other propositional functions, while yet

they are neither true nor false. The fact is, they are propositions for all

admissible values of the variable, but not while the variable remains a

variable, whose value is not assigned ; and although they may, for every

admissible value of the variable, imply the corresponding value of some

other propositional function, yet while the variable remains as a variable

they can imply nothing. The question concerning the nature of a

propositional function as opposed to a proposition, and generally of a

function as opposed to its values, is a difficult one, \\hich can only be

solved by an analysis of the nature of the variable. It is important,

however, to observe that propositional functions, as was shown in

Chapter vii, are more fundamental than other functions, or even than

relations. For most purposes, it is convenient to identify the function

and the relation, i.e., if y =f{x) is equivalent to xRy, where ^ is a

relation, it is convenient to speak of R as the function, and this will be

done in what follows ; the reader, however, should remember that the

idea of functionality is more fundamental than that of relation. But

the investigation of these points has been already undertaken in Part I,

and enough has been said to illustrate how a proposition may be a

function of a variable.

Other instances of non-numerical functions are afforded by diction-

aries. The French for a word is a function of the English, and vice ,

versa, and both are functions of the term which both designate. The
press-mark of a book in a library catalogue is a function of the book,

and a number in a cipher is a function of the word for which it stands.

In all these cases there is a relation by which the relatum becomes unique

(or, in the case of languages, generally unique) when the referent

is given; but the terms of the independent variable do not form a

series, except in the purely external order resulting from the alphabet.

255. Let us now introduce the second specification, that our

independent variable is to be a series. The dependent variable is then

a series by correlation, and may be also an independent series. For

example, the positions occupied by a material point at a series of instants



254, 255] T'he Correlation of Series 265

form a series by con-elation with the instants, of which they are a
function ; but in virtue of the continuity of motion, they also form,

as a rule, a geometrical series independent of all reference to time.

Thus motion affords an admirable example of the correlation of series.

At the same time it illustrates a most important mark by which, when it

is present, we can tell that a series is not independent. When the
time is known, the position of a material particle is uniquely determined;
but when the position is given, there may be several moments, or even an
infinite number of them, corresponding to the given position. (There
wiU be an infinite number of such moments if, as is commonly said, the

particle has been at rest in the position in question. Rest is a loose and
ambiguous expression, but I defer its consideration to Part VII.) Thus
the relation of the time to the position is not strictly one-one, but may
be many-one. This was a case considered in our general account of

correlation, as giving rise to dependent series. We inferred, it will

be remembered, that two correlated independent series are mathemati-
cally on the same level, because if P, Q be their generating relations, and

R the correlating relation, we infer P = RQR from Q = RPR. But
this inference fails as soon as R is not strictly one-one, since then we no

longer have RR contained in 1', where 1' means identity. For example,
my father's son need not be myself, though my son's father must be.

This illustrates the fact that, if i? be a many-one relation, RR and RR
must be carefully distinguished : the latter is contained in identity, but
not the former. Hence whenever J2 is a many-one relation, it may be
used to form a series by correlation, but the series so formed cannot be
independent. This is an important point, which is absolutely fatal to

the relational theory of time*. For the present let us return to the

case of motion. When a particle describes a closed curve, or one

which has double points, or when the particle is sometimes at rest

during a finite time, then the series of points which it occupies

is essentially a series by correlation, not an independent .series. But,

as I remarked above, a curve is not only obtainable by motion,

but is also a purely geometrical figure, which can be defined without

reference to any supposed material point. When, however, a curve is

so defined, it must not contain points of rest: the path of a material

point which sometimes moves, but is sometimes at rest for a finite time,

is different when considered kinematically and when considered geometri-

cally; for geometrically the point in which there is rest is one, whereas

kinematically it corresponds to many terms in the series.

The above discussion of motion illustrates, in a non-numerical

instance, a case which normally occurs among the functions of pure

mathematics. These functions (when they are functions of a real

* See my article "Is position in Time and Space absolute or relative.'"' Mind,
July 1901.
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variable) usually fulfil the following conditions : Both the independent

and the dependent variable are classes of numbers, and the defining

relation of the function is many -one*. This case covers rational

functions, circular and elliptic functions of a real variable, and the

great majority of the direct functions of pure mathematics. In all such

cases, the independent variable is a series of numbers, which may be

restricted in any way we please—to positive numbers, rationals, integers,

primes, or any other class. The dependent variable consists also of

numbers, but the order of these numbers is determined by their relation

to the corresponding term of the independent variable, not by that of

the numbers forming the dependent variable themselves. In a large

class of functions the two orders happen to coincide ; in others, again,

where there are maxima and minima at finite intervals, the two orders

coincide throughout a finite stretch, then they become exactly opposite

throughout another finite stretch, and so on. If x be the independent

variable, y the dependent variable, and the constitutive relation be

many-one, the same number y will, in general, be a function of, i.e.

correspond to, several numbers x. Hence the ^/-series is essentially by

correlation, and cannot be taken as an independent series. If, then, we

wish to consider the inverse function, which is defined by the converse

relation, we need certain devices if we are still to have correlation of

series. One of these, which seems the most important, consists in

dividing the values of x corresponding to the same value of y into

classes, so that (what may happen) we can distinguish (say) n different

x's,, each of which has a distinct one-one relation to y, and is therefore

simply reversible. This is the usual course, for example, in distinguish-

ing positive and negative square roots. It is possible wherever the

generating relation of our original function is formally capable of

exhibition as a disjunction of one-one relations. It is plain that the

disjunctive relation formed of n one-one relations, each of which contains

in its domain a certain class u, will, throughout the class m, be an

7i-one relation. Thus it may happen that the independent variable

can be divided into n classes, within each of which the defining relation

is one-one, i.e. within each of which there is only one x having the

defining relation to a given y. In such cases, which are usual in pure

mathematics, our many-one relation can be made into a disjunction of

one-one relations, each of which separately is reversible. In the case of

complex functions, this is, mutatis mutandis, the method of Riemann

surfaces. But it must be clearly remembered that, where our function

is not naturally one-one, the y which appears as dependent variable is

ordinally distinct from the y which appears as independent variable in

the inverse function.

The above remarks, which will receive illustration as we proceed,

* I omit for the present complex variables, which, by introducing dimensions,

lead to complications of an entirely distinct kind.
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have shown, I hope, how intimately the con'elation of series is associated

with the usual mathematical employment of functions. Many other

cases of the importance of correlation will meet us as we proceed. It

may be observed that every denumerable class is related by a one-valued

function to the finite integers, and vice versa. As ordered by correlation

with the integers, such a class becomes a series having the type of order

which Cantor calls w. The fundamental importance of correlation to

Cantor's theory of transfinite numbers will appear when we come to the

definition of the transfinite ordinals.

256. In connection with functions, it seems desirable to say some-

thing concerning the necessity of a formula for definition. A function

was originally, after it had ceased to be merely a power, essentially

something that could be expressed by a formula. It was usual to start

with some expression containing a variable x, and to say nothing to

begin with as to what x was to be, beyond a usually tacit assumption

that X was some kind of number. Any further limitations upon x were

derived, if at all, from the formula itself; and it was mainly the desire

to remove such limitations which led to the various generalizations of

number. This algebraical generalization* has now been superseded by
a more ordinal treatment, in which all classes of numbers are defined by
means of the integers, and formulae are not relevant to the process.

Nevertheless, for the use of functions, where both the independent and
the dependent variables are infinite classes, the formula has a certain

importance. Let us see what is its definition.

A formula, in its most general sense, is a proposition, or more
properly a propositional function, containing one or more variables,

a variable being any term of some defined class, or even any term

without restriction. The kind of formula which is relevant in connection

with functions of a single variable is a formula containing two variables.

If both variables are defined, say one as belonging to the class u,

the other as belonging to the class v, the formula is true or false. It is

true if every u has to every v the relation expressed by the formula ;

otherwise it is false. But if one of the variables, say x, be defined as

belonging to the class u, while the other, y, is only defined by the

formula, then the formula may be regarded as defining y as a function

of X. Let us call the formula P^. If in the class u there are terms x
such that there is no term y which makes P^y a true proposition, then

the formula, as regards those terms, is impossible. We must therefore

assume that u is a class every term of which will, for a suitable value

of y, make the proposition P^y true. If, then, for every term x of u,

there are some entities y, which make P^y true, and others which do not

do so, then P^ correlates to every x a certain class of terms y. In

this way y is defined as a function of x.

* Of which an excellent account will be found in Couturat, De I'lnfini Mathema^

tique, Paris, 1896, Part I, Book II.
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But the usual meaning oi formula in mathematics involves another

element, vi'hich may also be expressed by the word law. It is difficult to

say precisely what this element is, but it seems to consist in a certain

degree of intensional simplicity of the proposition P^y- In the case of

two languages, for example, it would be said that there is no formula

connecting them, except in such cases as Grimm''s law. Apart from the

dictionary, the relation which correlates words in different languages is

sameness of meaning ; but this gives no method by which, given a word

in one language, we can infer the corresponding word in the other.

What is absent is the possibility of calculation. A formula, on the

other hand (say y = '3,x), gives the means, when we know x, of dis-

covering y. In the case of languages, only enumeration of all pairs

will define the dependent variable. In the case of an algebraical

formula, the independent variable and the relation enable us to know

all about the dependent variable. If functions are to extend to infinite

classes, this state of things is essential, for enumeration has become

impossible. It- is therefore essential to the correlation of infinite classes,

and to the study of functions of infinite classes, that the formula P^y

should be one in which, given x, the class of terms y satisfying the

formula should be one which we can discover. I am unable to give

a logical account of this condition, and I suspect it of being purely

psychological. Its practical importance is great, but its theoretical

importance seems highly doubtful.

There is, however, a logical condition connected with the above,

though perhaps not quite identical with it. Given any two terms,

there is some relation which holds between those two terms and

no others. It follows that, given any two classes of terras u, v,

there is a disjunctive relation which any one term of u has to at

least one term of », and which no term not belonging to u has

to any term. By this method, when two classes are both finite,

we can can-y out a correlation (which may be one-one, many-one, or

one-many) which correlates terms of these classes and no others. In

this way any set of terms is theoretically a function of any other; and

it is only thus, for example, that diplomatic ciphers are made up. But

if the number of terms in the class constituting the independent variable

be infinite, we cannot in this way practically define a function, unless

the disjunctive relation consists of relations developed one from the

other by a law, in which case the formula is merely transferred to the

relation. This amounts to saying that the defining relation of a function

must not be infinitely complex, or, if it be so, must be itself a function

defined by some relation of finite complexity. This condition, though

it is itself logical, has again, I think, only psychological necessity, in

virtue of which we can only master the infinite by means of a law oi

order. The discussion of this point, however, would involve a discussion

of the relation of infinity to order—a question which will be resumed
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later, but which we are not yet in a position to treat inteUigently. In

any case, we may say that a formula containing two variables and
defining a function must, if it is to be practically useful, give a relation

between the two variables by which, when one of them is given, all the

corresponding values of the other can be found ; and this seems to

constitute the mathematical essence of all formulae.

257. There remains an entirely distinct logical notion of much
importance in connection with limits, namely the notion of a com-
plete series. If R be the defining relation of a series, the series

is complete when there is a term x belonging to the series, such

that every other term which has to x either the relation R or the

relation R belongs to the series. It is connected (as was explained in

Part IV) when no other terms belong to the series. Thus a complete

series consists of those terms, and only those terms, which have the

generating relation or its converse to some one term, together with that

one term. Since the generating relation is transitive, a series which
fulfils this condition for one of its terms fulfils it for all of them.

A series which is connected but not complete will be called incomplete

or partial. Instances of complete series are the cardinal integers, the

positive and negative integers and zero, the rational numbers, the

moments of time, or the points on a straight line. Any selection from
such a series is incomplete with respect to the generating relations of the

above complete series. Thus the positive numbers are an incomplete

series, and so are the rationals between and 1. When a series is

complete, no term can come before or after any term of the series

without belonging to the series ; when the series is incomplete, this is

no longer the case. A series may be complete with respect to one

generating i-elation, but not with respect to another. Thus the finite

integers are a complete series when the series is defined by powers of

the relation of consecutiveness, as in the discussion of progressions in

Part IV ; but when they are ordered by correlation with whole and part,

they form only part of the series of finite and transfinite integers, as we
shall see hereafter. A complete series may be regarded as the extension

of a term with respect to a given relation, together with this term itself;

and owing to this fact it has, as we shall find, some important diiFerences

from ordinally similar incomplete series. But it can be shown, by the

Logic of Relations, that any incomplete series can be rendered complete

by a change in the generating relation, and vice versa. The distinction

between complete and incomplete series is, therefore, essentially relative

to a given generating relation.



CHAPTER XXXIII.

REAL NUMBERS.

258. The philosopher may be surprised, after all that has already

been said concerning numbers, to find that he is only now to learn about

real numbers ; and his surprise will be turned to horror when he learns

that real is opposed to rational. But he will be relieved to learn that

real numbers are really not numbers at all, but something quite different.

The series of real numbers, as ordinarily defined, consists of the

whole assemblage of rational and irrational numbers, the irrationals

being defined as the limits of such series of rationals as have neither

a rational nor an infinite limit. This definition, however, introduces

grave difficulties, which will be considered in the next chapter. For my
part I see no reason whatever to suppose that there are any irrational

numbers in the above sense ; and if there are any, it seems certain that

they cannot be greater or less than rational numbers. When mathema-

ticians have effected a generalization of number they are apt to be unduly

modest about it—they think that the difference between the generalized

and the original notions is less than it really is. We have already seen that

the finite cardinals are not to be identified with the positive integers, nor

yet with the ratios of the natural numbers to 1, both of which express

relations, which the natural numbers do not. In like manner there is a

real number associated with every rational number, but distinct from it.

A real number, so I shall contend, is nothing but a certain class of

rational numbers. Thus the class of rationals less than |^ is a real

number, associated with, but obviously not identical with, the rational

number \ . This theory is not, so far as I know, explicitly advocated by

any other author, though Peano suggests it, and Cantor comes very near

to it*- My grounds in favour of this opinion are, first, that such classes

of rationals have all the mathematical properties commonly assigned

to real numbers, secondly, that the opposite theory presents logical

difficulties which appear to me insuperable. The second point will be

discussed in the next chapter; for the present I shall merely expound

* Cf. Cantor, Math. Annalen, Vol. xlvi, § 10; Peano, Rivista di Matematica,

Vol. VI, pp. 126-140, esp. p. 133.
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my own view, and endeavour to show that real numbers, so understood,

have all the requisite characteristics. It will be observed that the

following theory is independent of the doctrine of limits, which will only

be introduced in the next chapter.

259. The rational numbers in order of magnitude form a series in

which there is a term between any two. Such series, which in Part III

we provisionally called continuous, must now receive another name, since

we shall have to reserve the word continuous for the sense which Cantor

has given to it. I propose to call such series compact*. The rational

numbers, then, form a /compact series. It is to be observed that, in a

compact series, there are an infinite number of terms between any two,

there are no consecutive terms, and the stretch between any two terms

(whether these be included or not) is again a compact series. If now we
consider any one rational numberf, say r, we can define, by relation to r,

four infinite classes of rationals : (1) those less than r, (2) those not

greater than r, (3) those greater than r, (4) those not less than r.

(2) and (4) differ from (1) and (3) respectively solely by the fact that

the former contain r, while the latter do not. But this fact leads to

curious differences of properties. (2) has a last term, while (1) has

none; (1) is identical with the class of rational numbers less than a

variable term of (1), while (2) does not have this characteristic. Similar

remarks apply to (3) and (4), but these two classes have less importance

in the present case than in (1) and (2). Classes of rationals having

the properties of (1) are called segments. A segment of rationals may
be defined as a class of rationals which is not null, nor yet coextensive

with the rationals themselves {i.e. which contains some but not all

rationals), and which is identical with the class of rationals less than a

(variable) term of itself, i.e. with the class of rationals x such that there

is a rational y of the said class such that x is less than «/ j. Now we shall

find that segments are obtained by the above method, not only from

single rationals, but also from finite or infinite classes of rationals, with

the proviso, for infinite classes, that there must be some rational greater

than any member of the class. This is very simply done as follows.

Let u be any finite or infinite class of rationals. Then four classes

may be defined by relation to ?<§, namely (1) those less than every u,

(2) those less than a variable u, (3) those greater than every ii, (4) those

greater than a variable u, i.e. those such that for each a term of u can be

found which is smaller than it. If u be a finite class, it must have a maximum
and a minimum term ; in this case the former alone is relevant to (2)

and (3), the latter alone to (1) and (4). Thus this case is reduced to

the former, in which we had only a single rational. I shall therefore

* Such series are called by Cantor uberall dicht.

t I shall for simplicity confine myself entirely to rationals without sign. The
extension to such as are positive or negative presents no diificulty whatever.

X See Formulaire de Mathematiques, Vol. ii. Part in, § 61 (Turin, 1899).

§ Eight classes may be defined, but four are all that we need.



272 Infinity and Continuity [chap, xxxin

assume in future that u is an infinite class, and further, to prevent

reduction to our former case, I shall assume, in considering {%) and (3),
• that u has no maximum, that is, that every term of u is less than some
other term of u ; and in considering (1) and (4), I shall assume that u
has no minimum. For the present I confine myself to (2) and (3), and
I assume, in addition to the absence of a maximum, the existence of

rationals greater than any u, that is, the existence of the class (3).

Under these circumstances, the class (2) will be a segment. For (2)

consists of all rationals which are less than a variable u ; hence, in the

first place, since u has no maximum, (2) contains the whole of u. In the

second place, since every term of (2) is less than some u, which in turn

belongs to (2), every term of (2) is less than some other term of (2);

and every term less than some term of (2) is a fortiori less than some w,

and is therefore a term of (2). Hence (2) is identical with the class of

terms less than some term of (2), and is therefore a segment.

Thus we have the following conclusion : If u be a single rational, or

a class of rationals all of which are less than some fixed rational, then

the rationals less than u, if ti be a single term, or less than a variable

term of u, if u be a class of terms, always form a segment of rationals.

My contention is, that a segment of rationals is a real number.

260. So far, the method employed has been one which may be

employed in any compact series. In what follows, some of the theorems

will depend upon the fact that the rationals are a denumerable series.

I leave for the present the disentangling of the theorems dependent

upon this fact, and proceed to the properties of segments of rationals.

Some segments, as we have seen, consist of the rationals less than

some given rational. Some, it will be found, though not so defined, are

nevertheless capable of being so defined. For example, the rationals

less than a variable term of the series '9, "99, "999, etc., are the same as

the rationals less than 1. But other segments, which correspond to

what are usually called irrationals, are incapable of any such definition.

How this fact has led to irrationals we shall see in the next chapter.

For the present I merely wish to point out the well-known fact that

segments are not capable of a one-one correlation with rationals. There

are classes of rationals defined as being composed of all terms less than

a variable term of an infinite class of rationals, which are not definable

as all the rationals less than some one definite rational*. Moreover

there are more segments than rationals, and hence the series of segments

has continuity of a higher order than the rationals. Segments form a

series in virtue of the relation of whole and part, or of logical inclusion

(excluding identity). Any two segments are such that one of them

is wholly contained in the other, and in virtue of this fact they form

a series. It can be easily shown that they form a compact series.

What is more remarkable is this : if we apply the above process to the

* Cf. Part I, chap, v, p. 00.
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series of segments, forming segments of segments by reference to
classes of segments, we find that every segment of segments can be
defined as all segments contained in a certain definite segment. Thus
the segment of segments defined by a class of segments is always
identical with the segment of segments defined by some one segment.
Also every segment defines a segment of segments which can be defined

by an infinite class of segments. These two properties render the
series of segments perfect, in Cantor's language ; but the explanation of
this term must be left till we come to the doctrine of limits.

We might have defined our segments as all rationals greater than
some term of a class u of rationals. If we had done this, and inserted

the conditions that u was to have no minimum, and that there were to
be rationals less than every u, we should have obtained what may be
called upper segments, as distinguished from the former kind, which
may be called lower segments. We should then have found that, corre-

sponding to every upper segment, there is a lower segment which contains

all rationals not contained in the upper segment, with the occasional

exception of a single rational. There will be one rational not belonging
to either the upper or the lower segment, when the upper segment
can be defined as all rationals greater than a single rational. In this

case, the corresponding lower segment will consist of all rationals less

than this single rational, which will itself belong to neither segment.
Since there is a rational between any two, the class of rationals not
greater than a given rational cannot ever be identical with the class of
rationals less than some other; and a class of rationals having a
maximum can never be a segment. Hence it is impossible, in the case

in question, to find a lower segment containing all the rationals not
belonging to the given upper segment. But when the upper segment
cannot be defined by a single rational, it will always be possible

to find a lower segment containing all rationals not belonging to the

upper segment.

Zero and infinity may be introduced as limiting cases of segments,

but in the case of zero the segment must be of the kind which we
called (1) above, not of the kind (2) hitherto discussed. It is easy to

construct a class of rationals such that some term of the class will be less

than any given rational. In this case, the class (1) will contain no terms,

and will be the null-class. This is the real number zero, which, however,

is not a segment, since a segment was defined as a class which is not null.

In order to introduce zero as a class of the kind which we called (2), we
should have to start with a null class of rationals. No rational is less

than a term of a null class of rationals, and thus the class (2), in such a

case, is null. Similarly the real number infinity may be introduced.

This is identical with the whole class of rationals. If we have any
class u of rationals such that no rational is greater than all w's, then

every rational is contained in the class of rationals less than some

R. 18
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M. Or again, if we have a class of rationals of which a term is less than

any assigned rational, the resulting class (4) (of terms greater than

some u) will contain every rational, and will thus be the real numher
infinity. Thus both zero and infinity may be introduced as extreme

terms among the real numbers, but neither is a segment according to the

definition.

261. A given segment may be defined by many different classes of

rationals. Two such classes u and v may be regarded as having the

segment as a common property. Two infinite classes u and » will define

the same lower segment if, given any ii, there is a w greater than it, and

given any v, there is a u greater than it. If each class has no maximum,

this is also a necessary condition. The classes u and v are then what

Cantor calls coherent {zusammengehorig). It can be shown, without

considering segments, that the relation of being coherent is symmetrical

and transitive*, whence we should infer, by the principle of abstraction,

that both have to some third term a common relation which neither has

to any other term. This third term, as we see from the preceding

discussion, may be taken to be the segment which both define. We
may extend the . word coherent to two classes u and v, of which one

defines an upper segment, the other a lower segment, which between

them include all rationals with at most one exception. Similar remarks,

mutatis mutandis, will still apply in this case.

We have now seen that the usual properties of real numbers belong

to segments of rationals. There is therefore no mathematical reason for

distinguishing such segments from real numbers. It remains to set

forth, first the nature of a limit, then the current theories of irrationals,

and then the objections which make the above theory seem preferable.

Note. The above theory is virtually contained in Professor Peano's

article already referred to (" Sui Numeri Irrazionali," Rivista di Mate-

matica, vi, pp. 126— 140), and it was from this article, as well as from the

Formulahe de Mathematiques, that I was led to adopt the theory. In

this article, separate definitions of real numbers (§ 2, No. 5) and of

segments (§ 8, "0) are given, which makes it seem as though the two

were distinguished. But after the definition of segments, we find the

remark (p. 133) :
" Segments so defined differ only in nomenclature from

real numbers." Pi-ofessor Peano proceeds first to give purely technical

reasons for distinguishing the two by the notation, namely that the

addition, subtraction, etc. of real numbers is to be differently conducted

from analogous operations which are to be performed on segments.

Hence it would appear that the whole of the view I have advocated is

contained in this article. At the same time, there is some lack of

clearness, since it appears from the definition of real numbers that they

are regarded as the limits of classes of rationals, whereas a segment is

* Cf. Cantor, Math. Aiiiiu/i-ii, xlvi, and Riviula di Matematica, \, pp. 1S8, 159.
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in no sense a limit of a class of rationals. Also it is nowhere suggested

—

indeed, from the definition of real numbers the opposite is to be

inferred—that no real number can be a rational, and no rational can be

a real number. And this appears where he points out (p. 134) that 1

differs from the class of proper fractions (which is no longer the case as

regards the real number 1, when this is distinguished both from the

integer 1 and from the rational number 1 : 1), or that we say 1 is less

than tJ9, (in which case, I should say, 1 must be interpreted as the class

of proper fractions, and the assertion must be taken to mean : the

proper fractions are some, but not all, of the rationals whose square

is less than 2). And again he says {ib.) :
" The real number, although

determined by, and determining, a segment u, is commonly regarded as

the extremity, or end, or upper limit, of the segment"; whereas there is

no reason to suppose that segments not having a rational limit have a

limit at all. Thus although he confesses {ib.) that a complete theory

of irrationals can be constructed by means of segments, he does not

seem to perceive the reasons (which will be given in the next chapter)

why this must be done—reasons which, in fact, are rather philosophical

than mathematical.

18—2



CHAPTEK XXXIV.

LIMITS AND IRRATIONAL NUMBERS.

262. The mathematical treatment of continuity rests wholly upon

the doctrine of limits. It has been thought by some mathematicians

and some philosophers that this doctrine had been superseded by the

Infinitesimal Calculus, and that this has shown true infinitesimals

to be presupposed in limits*. But modern mathematics has shown,

conclusively as it seems to me, that such a view is erroneous. The
method of limits has more and more emerged as fundamental. In this

Chapter, I shall first set forth the general definition of a limit, and

then examine its application to the creation of irrationals.

A compact series we defined as one in which there is a term between

any two. But in such a series it is always possible to find two classes of

terms which have no term between them, and it is always possible to

reduce one of these classes to a single term. For example, if P be the

generating relation and x any term of the series, then the class of terms

having to x the relation P is one between which and x there is no termf.

The class of terms so defined is one of the two segments determined

by X ; the idea of a segment is one which demands only a series in

general, not necessarily a numerical series. In this case, if the series be

compact, X is said to be the limit of the class ; when there is such a

term as x, the segment is said to be terminated, and thus every

terminated segment in a compact series has its defining term as a limit.

But this does not constitute a definition of a limit. To obtain the

general definition of a limit, consider any class u contained in the series

generated by P. Then the class u will in general, with respect to any

term x not belonging to it, be divisible into two classes, that whose

terms have to x the relation P (which I shall call the class of terms pre-

ceding x), and that whose terms have to x the relation P (which I shall

call the class of terms following x). If x be itself a term of m, we

* This is the view, for instance, of Cohen, Das Princip der Infinitesimal-

Methods und seine Geschichte, Berlin, 1883 ; see pp. 1, 2.

+ It is perhaps superfluous to explain that a term is between two classes u, v, when

it has the relation P to every term of u, and the relation P to every term of v, or

vice versa.



262-264] Limits and Irrational Numbers 277

consider all the terms of u other than x, and these are still divisible into

the above two classes, which we may call tt^t and 7r„a7 respectively.

If, now, TTuX be such that, if y be any term preceding x, there is a term

of TTw'; following y, i.e. between x and y, then a' is a limit of 'ttuOo. Similarly

if TTiifl; be such that, if z be any term after x, there is a term of if^x

between x and z, then a? is a limit of ttuX. We now define that x is

a limit of u if it is a limit of either 7r«.r or ttuOc. It is to be observed that

u may have many limits, and that all the limits together form a new
class contained in the series generated by P. This is the class (or rather

this, by the help of certain further assumptions, becomes the class)

which Cantor designates as the first derivative of the class u.

263. Before proceeding further, it may be well to make some

general remarks of an elementary character on the subject of limits.

In the first place, limits belong usually to classes contained in compact

series—classes which may, as an extreme case, be identical with the

compact series in question. In the second place, a limit may or may
not belong to the class u of which it is a limit, but it always belongs to

some series in which u is contained, and if it is a term of u, it is still a

limit of the class consisting of all terms of u except itself. In the

third place, no class can have a limit unless it contains an infinite

number of terms. For, to revert to our former division, if u be finite,

TTuX and TTv/v will both be finite. Hence each of them will have a term

nearest to x, and between this term and x no term of u will lie. Hence

X is not a limit of u ; and since x is any term of the series, u will have

no limits at all. It is common to add a theorem that every infinite

class, provided its terms are all contained between two specified terms

of the series generated by P, must have at least one limit; but this

theorem, we shall find, demands an interpretation in terms of segments,

and is not true as it stands. In the fourth place, if u be co-extensive

with the whole compact series generated by P, then every term of this

series is a limit of u. There can be no other terms that are limits

in the same sense, since limits have only been defined in relation to this

compact series. To obtain other limits, we should have to regard the

series generated by P as forming part of some other compact series—

a

case which, as we shall see, may arise. In any case, if u be any compact

series, every term of m is a limit of u ; whether u has also other limits,

depends upon further circumstances. A limit may be defined generally

as a term which immediately follows (or precedes) some class of terms

belonging to an infinite series, without immediately following (or

preceding, as the case may be) any one term of the series. In this way,

we shall find, limits may be defined generally in all infinite series which

are not progressions—as, for instance, in the series of finite and trans-

finite integers.

264. We may now proceed to the various arithmetical theories of

irrationals, all of which depend upon limits. We shall find that, in the
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exact form in which they have been given by their inventors, they all

involve an axiom, for which there are no arguments, either of philo-

sophical necessity or of mathematical convenience; to which there are

grave logical objections ; and of which the theory of real numbers given

in the preceding Chapter is wholly independent.

Arithmetical theories of irrationals could not be treated in Part II,

since they depend essentially upon the notion of order. It is only by

means of them that numbers become continuous in the sense now usual

among mathematicians ; and we shall find in Part VI that no other

sense of continuity is required for space and time. It is very important

to realize the logical reasons for which an arithmetical theory of

irrationals is imperatively necessary. In the past, the definition of

irrationals was commonly effected by geometrical considerations. This

procedure was, however, highly illogical ; for if the application of

numbers to space is to yield anything but tautologies, the numbers

applied must be independently defined ; and if none but a geometrical

definition were possible, there would be, properly speaking, no such

arithmetical entities as the definition pretended to define. The alge-

braical definition, in which irrationals were introduced as the roots

of algebraic equations having no rational roots, was liable to similar

objections, since it remained to be shown that such equations have

roots ; moreover this method will only yield the so-called algebraic

numbers, which are an infinitesimal proportion of the real numbers, and

do not have continuity in Cantor's sense, or in the sense required by

Geometry. And in any case, if it is possible, without any further

assumption, to pass from Arithmetic to Analysis, from rationals to

irrationals, it is a logical advance to show how this can be done.

The generalizations of number—with the exception of the intro-

duction of imaginaries, which must be independently effected—are all

necessary consequences of the admission that the natural numbers form

a progression. In every progression the terms have two kinds of

relations, the one constituting the general analogue of positive and

negative integers, the other that of rational numbers. The rational

numbers form a denumerable compact series ; and segments of a denumer-

able compact series, as we saw in the preceding Chapter, form a series

which is continuous in the strictest sense. Thus all follows from the

assumption of a progression. But in the present Chapter we have to

examine irrationals as based on limits ; and in this sense, we shall find

that they do not follow without a new assumption.

There are several somewhat similar theories of irrational numbers.

I will begin with that of Dedekind*.

265. Although rational numbers are such that, between any two,

there is always a third, yet there are many ways of dividing all rational

* Sletigkeit und irrationals Zahlen, 2iid ed., Brunswick, 1892.
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numbers into two classes; such that all numbers of one class come after

all numbers of the other class, and no rational number lies between the

two classes, while yet the first class has no first term and the second has

no last terra. For example, all rational numbers, without exception,

may be classified according as their squares are greater or less than 2.

All the terms of both classes may be arranged in a single series, in which

there exists a definite section, before which comes one of the classes,

and after which comes the other. Continuity seems to demand that

some term should correspond to this section. A number which lies

between the two classes must be a new number, since all the old numbers
are classified. This new number, which is thus defined by its position in

a series, is an irrational number. When these numbers are introduced,

not only is there always a number between any two numbers, but there

is a number between any two classes of which one comes wholly after the

other, and the first has no minimum, while the second has no maximum.
Thus we can extend to numbers the axiom by which Dedekind defines

the continuity of the straight line {op. cit. p. 11) :

—

" If all the points of a line can be divided into two classes such that

every point of one class is to the left of every point of the other class,

then there exists one and only one point which brings about this

division of all points into two classes, this section of the line i^to

two parts."

266. This axiom of Dedekind's is, however, rather loosely worded, and

requires an emendation suggested by the derivation of irrational numbers.

If all the points of a line are divided into two classes, no point is left

over to represent the section. If all be meant to exclude the point repre-

senting the section, the axiom no longer characterizes continuous series,

but applies equally to all series, e.g. the series of integers. The axiom

must be held to apply, as regards the division, not to all the points of the

line, but to all the points forming some compact series, and distributed

throughout the line, but consisting only of a portion of the points

of the line. When this emendation is made, the axiom becomes ad-

missible. If, from among the terms of a series, sonie can be chosen

out to form a compact series which is distributed throughout the

previous series; and if this new series can always be divided in

Dedekind's manner into two portions, between which lies no term of

the new series, but one and only one term of the original series, then

the original series is continuous in Dedekind's sense of the word. The
emendation, however, destroys entirely the self-evidence upon which

alone Dedekind relies (p. 11) for the proof of his axiom as applied

to the straight line.

Another somewhat less complicated emendation may be made, which

gives, I think, what Dedekind meant to state in his axiom. A series,

we may say, is continuous in Dedekind's sense when, and only when,

if all the tertns of the series, without exception, be divided into two



280 Infinity aind Continuity [chap, xxxiv

classes, su(;h that the whole of the first class precedes the whole of

the second, then, however the division be effected, either the first class

has a last term, or the second class has a first term, but never both.

This term, which comes at one end of one of the two classes, may then

be used, in Dedekind's manner, to define the section. In discrete series,

such as that of finite integers, there is both a last term of the first

class and a first term of the second class * ; while in compact series

such as the rationals, where there is not continuity, it sometimes

happens (though not for every possible division) that the first class

has no last t^erm and the last class has no first term. Both these cases

are excluded by the above axiom. But I cannot see any vestige of

self-evidence in such an axiom, either as applied to numbers or as applied

to space.

267. Leaving aside, for the moment, the general problem of con-

tinuity, let us return to Dedekind's definition of irrational numbers.

The first question that arises is this : What right have we to assume

the existence of such numbers ? What reason have we for supposing

that there must be a position between two classes of which one is wholly

to the right of the other, and of which one has no minimum and the

other no maximum .'' This is not true of series in general, since many
series are discrete. It is not demanded by the nature of order. And,

as we have seen, continuity in a certain sense is possible without it.

Why then should we postulate such a number at all.? It must he

remembered that the algebraical and geometrical problems, which ir-

rationals are intended to solve, must not here be brought into the

account. The existence of irrationals has, in the past, been inferred

from such problems. The equation a?" — 2 = must have a root, it was

argued, because, as x grows from to 2, 0^ — 2 increases, and is first

negative and then positive ; if oc changes continuously, so does a? - 2

;

hence ofi—'it must assume the value in passing from negative to positive.

Or again, it was argued that the diagonal of unit square has evidently a

precise and definite length x, and that this length is such that a^* — 2 = 0.

But such arguments were powerless to show that x is truly a number.

They might equally well be regarded as showing the inadequacy of

numbers to Algebra and Geometry. The present theory is designed

to prove the arithmetical existence of irrationals. In its design, it is

preferable to the previous theories ; but the execution seems to fall short

of the design.

Let us examine in detail the definition of ^% by Dedekind's method.

It is a singular fact that, although a rational number lies between any

two single rational numbers, two classes of rational numbers may be

defined so that no rational number lies between them, though all ot

* If the series contains a proper part which is a progression, it is only true in

general, not without exception, that the first class must have a last term.
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one class are higher than all of the other. It is evident that one at

least of these classes must consist of an infinite number of terms. For
if not, we could pick out the two of opposite kinds which were nearest

together, and insert a new number between them. This one would be
between the two classes, contrary to the hypothesis. But when one of

the classes is infinite, we may arrange all or some of the terms in a series

of terms continually approaching the other class, without reaching it,

and without having a last term. Let us, for the moment, suppose our
infinite class to be denumerable. We then obtain a denumerable series

of numbers a„, all belonging to the one class, but continually approaching
the other class. Let 5 be a fixed number of the other class. Then
between a„ and B there is always another rational number; but this

may be chosen to be another of the «'s, say a„+i ; and since the series of

d& is infinite, we do not necessarily obtain, in this way, any number not
belonging to the series of a's. In the definition of irrationals, the series of

Vs is also infinite. Moreover, if the Us, also be denumerable, any rational

number between a„ and bm, for suitable values of p and q, either is a^^p
or bm+q, or else lies between a„+p and a„+^+i or between 6^+^ and bm+q+i-
In fact, ttn+p always lies between a„ and bm,- By successive steps, no term
is obtained which lies between all the Vs and all the a's. Nevertheless,

both the a's and the Fs are convergent. For, let the a\ increase, while

the ^s diminish. Then 6„ — a„ and 5„ — a„+i continually diminish, and
therefore a„^i — an, which is less than either, is less than a continually

diminishing number. Moreover this number diminishes without limit

;

for if bn — an had a limit e, the number Un + e/2 would finally lie between

the two classes. Hence an+i — a-n becomes finally less than any assigned

number. Thus the a's and Vs are both convergent. Since, moreover,

their difference may be made less than any assigned number e, they have

the same limit, if they have any. But this limit cannot be a rational

number, since it lies between all the «'s and all the Vs. Such seems

to be the argument for the existence of irrationals. For example, if

Thus x = % + \lx=9, + ^ , and a? - 1 = 1 +7^— k = etc.
'

9, + x 2 +2+x

The successive convergents to the continued fraction I+5— „— „

—

are such that all the odd convergents are less than all the even con-

vergents, while the odd convergents continually grow, and the even

ones continually diminish. Moreover the difference between the odd

and the next even convergent continually diminishes. Thus both

series, if they have a limit, have the same limit, and this limit is

defined as \/2.

But the existence of a limit, in this case, is evidently a sheer as-

sumption. In the beginning of this Chapter, we saw that the existence
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of a limit demands a larger series of which the limit forms part. To
create the limit by means of the series whose limit is to be found would

therefore be a logical error. It is essential that the distance from the

limit should diminish indefinitely. But here, it is only the distance of

consecutive terms which is known to diminish indefinitely. Moreover

all the a's are less than 6„. Hence they continually differ less and less

from bn- But whatever n may be, 6„ cannot be the limit of the a's,

for bn+i lies between 6„ and all the a's. This cannot prove that a limit

exists, but only that, if it existed, it would not be any one of the a's or

6's, nor yet any other rational number. Thus irrationals are not proved

to exist, but may be merely convenient fictions to describe the relations

of the cCs and 6's.

268. The theory of Weierstrass concerning irrationals is somewhat

similar to that of Dedekind. In Weierstrass's theory, we have a series

of terms a-^, a^, . , a,i, . . , such that S a„,. for all values of n, is less

than some given number. This case is presented, e.g., by an infinite

decimal. The fraction 3'14«159 . . . , however many terms we take,

remains less than 3"1416. In this method, as Cantor points out*, the

limit is not created by the summation, but must be supposed to exist

already in order that S a„ may be defined by means of it. This is the
1

same state of things as we found in Dedekind's theory : series of rational

numbers cannot prove the existence of irrational numbers as their limits,

but can only prove that, if there is a limit, it must be irrational.

Thus the arithmetical theory of irrationals, in either of the above

forms, is liable to the following objections. (1) No proof is obtained

from it of the existence of other than rational numbers, unless we

accept some axiom of continuity different from that satisfied by

rational numbers ; and for such an axiom we have as yet seen no

ground. (2) Granting the existence of irrationals, they are merely

specified, not defined, by the series of rational numbers whose limits

they are. Unless they are independently postulated, the series in

question cannot be known to have a limit ; and a knowledge of the

irrational number which is a limit is presupposed in the proof that

it is a limit. Thus, although without any appeal to Geometry, any

given irrational number can be specified by means of an infinite series

of rational numbers, yet, from rational numbers alone, no proof can

be obtained that there are irrational numbers at all, and their existence

must be proved from a new and independent postulate.

Another objection to the above theory is that it supposes rationals

and irrationals to form part of one and the same series generated by

relations of greater and less. This raises the same kind of difficulties as

we found to residt, in Part II, from the notion that integers are greater

* Mannichfalligkeitslehre, p. 22. I quote Weierstrass's theory from the account

in Stolz, Vorlesungen iiher aUgemeine Arithmetik, i.
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or less than rationals, or that some rationals are integers. Rationals

are essentially relations between integers, but irrationals are not such

relations. Given an infinite series of rationals, there may be two

integers whose relation is a rational which limits the series, or there

may be no such pair of integers. The entity postulated as the limit,

in this latter case, is no longer of the same kind as the terms of

the series which it is supposed to limit ; for each of them is, while

the limit is not, a relation between two integers. Of such hetero-

geneous terms, it is difficult to suppose that they can have relations

of greater and less ; and in fact, the constitutive relation of greater

and less, from which the series of rationals springs, has to receive

a new definition for the case of two irrationals, or of a rational and

an irrational. This definition is, that an irrational is greater than a

rational, when the irrational limits a series containing terms greater

than the given rational. But what is really given here is a relation

of the given rational to a class of rationals, namely the relation of

belonging to the segment defined by the series whose limit is the given

irrational. And in the case of two irrationals, one is defined to be

greater than the other when its defining series contains terms greater

than any terms of the defining series of the other—a condition which

amounts to saying that the segment corresponding to the one contains

as a proper part the segment corresponding to the other. These
definitions define a relation quite different from the inequality of two
rationals, namely the logical relation of inclusion. Thus the irrationals

cannot form part of the series of rationals, but new terms corresponding

to the rationals must be found before a single series can be constructed.

Such terms, as we saw in the last chapter, are found in segments ; but
the theories of Dedekind and Weierstrass leave them still to seek.

269. The theory of Cantor, though not expressed, philosophically

speaking, with all the requisite clearness, lends itself more easily to the

interpretation which I advocate, and is specially designed to prove
the existence of limits. He remarks* that, in his theory, the existence

of the limit is a strictly demonstrable proposition ; and he strongly

emphasizes the logical error involved in attempting to deduce the

existence of the limit from the series whose limit it is {ib., p. 22) f.

Cantor starts by considering what he calls fundamental series (which

are the same as what I have called progressions) contained in a larger

series. Each of these fundamental series is to be wholly ascending or

wholly descending. Two such series are called coherent (ztisammenge-

horig) under the following circumstances :

—

* Op. cit., p. 24.

t Cantor's theory of irrationals will be found in op. cit., p. 23, and in Stolz,

VoHesungen uber allgemeine Arithmetik, i, 7. I shall follow, to begin with, a later

account, which seems to me clearer ; this forms § 10 in an article contained in Math.

Annalen, xlvi, and in Rivista di Malematica, v.
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(1) If both are ascending, and after any term of either there is

always a term of the other

;

(2) If both are descending, and before any term of either there is

always a term of the other ;

(3) If one is ascending, the other descending, and the one wholly

precedes the other, and there is at most one term which is between the

two fundamental series.

The relation of being coherent is symmetrical, in virtue of the

definition ; and Cantor shows that it is transitive. In the article from

which the above remarks are extracted. Cantor is dealing with more
general topics than the definition of irrationals. But the above general

account of coherent series will help us to understand the theory of

irrationals. This theory is set forth as follows in the Mannichfaltig-

Tceitslehre (p. 23 IF.) :

—

A fundamental series of rationals is defined as a denumerable series

such that, given any number e, there are at most a finite number of

terms in the series the absolute values of whose differences from sub-

sequent terms exceed e. That is to say, given any number e, however

small, any two terms of the series which both come after a certain term

have a difference which lies between + e and — e. Such series must be

of one of three kinds : (1) Any number e being mentioned, the absolute

values of the terms, from some term onwards, will all be less than e,

whatever e may be ; (2) from some term onwards, all the terms may be

greater than a certain positive number p ; (3) from some term onwards,

all the terms may be less than a certain negative number —p. A real

number b is to be defined by the fundamental series, and is said in the

first case to be zero, in the second to be positive, and in the third to

be negative. To define the addition, etc., of these new real numbers,

we observe that, if a„, a/ be the i/th terms of two fundamental series,

the series whose z/th term is a, + a/ or a„ — aj or a^ x aj is also a funda-

mental series ; while if the real number defined by the series (a^)* is

not zero, («„' / «^) also defines a fundamental series. If b, b' be the real

numbers defined by the series (a„), (aj), the real numbers defined by

(a^ 4- aJ), (a^ — aJ), («„ x aj) and {aJ I a„) are defined to be 6 -)- b', b — V,

b xb' and b' / b respectively. Hence we proceed to the definitions of equal,

greater and less among real numbers. We define that b=b' means b-b'=0;

b>b' means that b — b' is positive ; and b <b' means that b — b' is

negative—all terms which have been already defined. Cantor remarks

further that in these definitions one of the numbers may be rational.

This may be formally justified, in part, by the remark that a denu-

merable series whose terms are all one and the same rational number is

a fundamental series, according to the definition ; hence in constructing

* Tlie symbol (ay) denotes the whole series whose vth term is ay, not this term

alone.
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the differences a^ — aj, by which b — b'\s defined, we may put some fixed

rational a in place of aj for all values of v. But the consequence that
we can define b-a does not follow, and that for the following reason.

There is absolutely nothing in the above definition of the real numbers
to show that a is the real number defined by a fundamental series whose
terms are all equal to a. The only reason why this seems self-evident is,

that the definition by limits is unconsciously present, making us think

that, since a is plainly the limit of a series whose terms are all equal

to a, therefore a must be the real number defined by such a series.

Since, however. Cantor insists—rightly, as I think—that his method
is independent of limits, which, on the contrary, are to be deduced from
it (pp. 24—5), we must not allow this preconception to weigh with us.

And the preconception, if I am not mistaken, is in fact erroneous.

There is nothing in the definitions above enumerated to show that a
real number and a rational number can ever be either equal or unequal,

and there are very strong reasons for supposing the contrary. Hence
also we must reject the proposition (p. 24) that, if b be the real number
defined by a fundamental series (a„), then

Lim a^ = b.

V = CXI '

Cantor is proud of the supposed fact that his theory renders this pro-

position strictly demonstrable. But, as we have seen, there is nothing
to show that a rational can be subtracted from a real number, and
hence the supposed proof is fallacious. What is true, and what has

all the mathematical advantages of the above theorem, is this : Con-
nected with every rational a there is a real number, namely that defined

by the fundamental series whose terms are all equal to a ; if 6 be the

real number defined by a fundamental series (a„) and if by be the real

number defined by a fundamental series whose terms are all equal to a,,

then (6^) is a fundamental series of real numbers whose limit is b. But
from this we cannot infer, as Cantor supposes (p. 24), that Lim a„ exists

;

this will only be true in the case where (a„) has a rational limit. The
limit of a series of rationals either does not exist, or is rational ; in no

case is it a real number. But in all cases a fundamental series of

rationals defines a real number, which is never identical with any

rational.

270. Thus to sum up what has been said on Cantor's theory : By
proving that two fundamental series may have the relation of being

coherent, and that this relation is symmetrical and transitive, Cantor

shows, by the help of the principle of abstraction (which is tacitly

assumed), that two such series both have some one relation to one third

term, and to no other. This term, when our series consist of rationals,

we define as the real number which both determine. We can then define

the rules of operation for real numbei-s, and the relations of equal,

greater and less between them. But the principle of abstraction leaves
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us in doubt as to what the real numbers really are. One thing, however,

seems certain. They cannot form part of any series containing rationals,

for the rationals are relations between integers, while the real numbers

are not so ; and the constitutive relation in virtue of which rationals

form a series is defined solely by means of the integers between which

they are relations, so that the same relation cannot hold between two

real numbers, or between a real and a rational number. In this doubt

as to what real numbers may be, we find that segments of rationals, as

defined in the preceding chapter, fulfil all the requirements laid down
in Cantor's definition, and also those derived from the principle of

abstraction. Hence there is no logical ground for distinguishing seg-

ments of rationals from real numbers. If they are to be distinguished,

it must be in virtue of some immediate intuition, or of some wholly new

axiom, such as, that all series of rationals must have a limit. But this

would be fatal to the uniform development of Arithmetic and Analysis

from the five premisses which Peano has found sufficient, and would be

wholly contrary to the spirit of those who have invented the arithmetical

theory of irrationals. The above theory, on the contrary, requires no new

axiom, for if there are rationals, there must be segments of rationals;

and it removes what seems, mathematically, a wholly unnecessaiy

complication, since, if segments will do all that is required of irrationals,

it seems superfluous to introduce a new parallel series with precisely the

same mathematical properties. I conclude, then, that an irrational

actually is a segment of rationals which does not have a limit ; while

a real number which would be commonly identified with a rational is a

segment which does have a rational limit ; and this applies, e.g., to the

real number defined by a fundamental series of rationals whose terms

are all equal. This is the theory which was set forth positively in the

preceding Chapter, and to which, after examining the current theories of

in-ationals, we are again brought back. The greater part of it applies to

compact series in general ; but some of the uses of fundamental series,

as we shall see hereafter, presuppose either numerical measurement of

distances or stretches, or that a denumerable compact series is contained

in our series in a certain manner*. The whole of it, however, applies to

any compact series obtained from a progression as the rationals are

obtained from the integers ; and hence no property of numbers is

involved beyond the facb that they form a progression.

* See Chapter xxxvi.



CHAPTEK XXXV.

CANTOR'S FIRST DEFINITION OF CONTINUITY.

271. The notion of continuity has been treated by philosophers, as

a rule, as though it were incapable of analysis. They have said many
things about it, including the Hegelian dictum that everything discrete

is also continuous and vice versa*. This remark, as being an exemplifi-

cation of Hegel's usual habit of combining opposites, has been tamely

repeated by all his followers. But as to what they meant by continuity

and discreteness, they preserved a discreet and continuous silence ; only

one thing was evident, that whatever they did mean could not be
relevant to mathematics, or to the philosophy of space and time.

In the last chapter of Part III, we agreed provisionally to call a

series continuous if it had a term between any two. This definition

usually satisfied Leibniz !•, and would have been generally thought
sufficient until the revolutionary discoveries of Cantor. Nevertheless

there was reason to surmise, before the time of Cantor, that a higher

order of continuity is possible. For, ever since the discovery of incom-

mensurables in Geometry—a discovery of which is the proof set forth in

the tenth Book of Euclid—it was probable that space had continuity of

a higher order than that of the rational numbers, which, nevertheless,

have the kind of continuity defined in Part III. The kind which belongs

to the rational numbers, and consists in having a term between any two,

we have agreed to call compactness ; and to avoid confusion, I shall never

again speak of this kind as continuity. But that other kind of con-

tinuity, which was seen to belong to space, was treated, as Cantor

remarks]:, as a kind of religious dogma, and was exempted from that

conceptual analysis which is requisite to its comprehension. Indeed it

was often held to show, especially by philosophers, that any subject-

matter possessing it was not validly analyzable into elements. Cantor

has shown that this view is mistaken, by a precise definition of the kind

* Logic, Wallace's Translation^ p. 188; Werke, v, p. 201.

t Phil. Werke, Gerhardt's ed., Vol. ii, p. .515. Blit cf. Cassirer, Leibniz' System,

Berlin, 1901, p. 183.

I Mannichfaltigkeitslehre, p. 28.
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of continuity which must belong to space. This definition, if it is to

be explanatory of space, must, as he rightly urges*, be effected without

any appeal to space. We find, accordingly, in his final definition, only

ordinal notions of a general kind, which can be fuUy exemplified in

Arithmetic. The proof that the notion so defined is precisely the iiind

of continuity belonging to space, must be postponed to Part VI. Cantor

has given his definition in two forms, of which the earlier is not purely

ordinal, but involves also either number or quantity. In the present

chapter, I wish to translate this earlier definition into language as

simple and untechnical as possible, and then to show how series 'which

are continuous in this sense occur in Arithmetic, and generally in the

theory of any progression whatever. The later definition will be given

in the following Chapter.

272. In order that a series should be continuous, it must have two

characteristics : it must be perfect and cohesive (zusammenhangend,

bien enchainee)")". Both these terms have a technical meaning requiring

considerable explanation. I shall begin with the latter.

(1) Speaking popularly, a series is cohesive, or has cohesion,

when it contains no finite gaps. The precise definition, as given by

Cantor, is as follows :
" We call T a cohesive collection of points, if for

any two points t and t' of T, for a number e given in advance and as

small as we please, there are always, in several ways, a finite number of

points ti, t2,...t^, belonging to T, such that the distances tt„ t^t^, t^i,...

tjk' are all less than 6."J This condition, it will be seen, has essential

reference to distance. It is not necessary that the collection considered

should consist of numbers, nor that e should be a number. All that is

necessary is, that the collection should be a series in which there are

distances obeying the axiom of Archimedes and having no minimum,

and that e should be an arbitrary distance of the kind presented by

the series. If the series be the whole field of some asymmetrical

transitive relation, or if it be the whole of the terms having a certain

asymmetrical transitive relation to a given term, we may' substitute

stretch for distance ; and even if the series be only part of such a series,

we may substitute the stretch in the complete series of which our series

forms part. But we must, in order to give any meaning to cohesion,

have something numerically measurable. How far this condition is

necessary, and what can be done without it, I shall show at a later

stage. It is through this condition that our discussions of quantity

and measurement, in Part III, become relevant to the discussion of

continuity.

* Acta Math, n, p. 403.

t Acta Math, it, pp. 405, 406; Mannichfaltigkeitslehre, p. 31.

I The words "in several ways" seem superfluous. They are omitted by Vivanti:

see Formulaire de Mathimatiques, Vol. i, vi, § 1, No. 22.
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If the distances or stretches in our series do not obey the axiom of

Archimedes, there are some among them that are incapable of a finite

numerical measure in terms of some others among them. In this case,

there is no longer an analogy of the requisite kind with either the

rational or the real numbers, and the series is necessarily not

cohesive. For let 8, d be two distances ; let them be such that, for any

finite number n, wS is less than d. In this case, if S be the distance e, and

d be the distance tt\ it is plain that the condition of cohesion cannot

be satisfied. Such cases actually occur, and—what seems paradoxical

—

they can be created by merely interpolating terms in certain cohesive

series. For example, the series of segments of rationals is cohesive

;

and when these segments have rational limits, the limits are not

contained in them. Add now to the series what may be called the

completed segments, i.e. the segments having rational limits together

with their limits. These are new terms, forming part of the same series,

since they have the relation of whole and part to the former terms. But

now the difference between a segment and the corresponding completed

segment consists of a single rational, while all other differences in the

series consist of an infinite number of rationals. Thus the axiom of

Archimedes fails, and the new series is not cohesive.

The condition that distances in the series are to have no minimum is

satisfied by real or rational numbers ; and it is necessary, if cohesion

is to be extended to non-numerical series, that, when any unit distance

is selected, there should be distances whose numerical measure is less

than 6, where e is any rational number. For, if there be a minimum
distance, we cannot make our distances tt^ , t^t^ . . . less than this minimum,

which is contrary to the definition of cohesion. And there must not

only be no minimum to distances in general, but there must be no

minimum to distances from any given term. Hence every cohesive series

must be compact, i.e. must have a term between any two.

It must not be supposed, however, that every compact series is

cohesive. Consider, for example, the series formed of and 2 — m/n,

where m, n are any integers such that m is less than )i. Here there

is a term between any two, but the distance from cannot be

made less than 1. Hence the series, though compact, is not co-

hesive. This series, however, is not complete, being part only of the

series of rationals, by means of which its distances are measured. In

a complete series, the conditions are somewhat different. ^Ve must

distinguish two cases, according as there are or are not distances,

(a) If there are distances, and equal distances do not correspond to

equal stretches, it may happen that, though the series is compact, the

distances from some term never become less than some finite distance.

This case would be presented by magnitudes, if we were to accept

Meinong's opinion that the distance of any finite magnitude from zero

is always infinite (op. cit. p. 84). It is presented by numbers, if we

R. 19
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measure distances (as there are many reasons for doing) by \og xjy.

Thus in this case, with regard to distances, the series is not cohesive,

though it is complete and compact. (6) If there are no distances,

but only stretches, then, assuming the axiom of Archimedes, any stretch

will be less than ne, for a suitable value of n. Hence, dividing

the stretch into n parts, one at least of these will be less than e. But

there is no way of proving that all can be made less than e, unless we

assume either the axiom of linearity (that any stretch can be divided

into n equal parts), or a more complicated but more general axiom, to

the effect that a stretch d can be divided ihto oi parts, each of which is

greater than d / (n + l) and less than d j {n — 1 ), whatever integer n may
be. With this axiom and the axiom of Archimedes, a complete compact

series must be cohesive ; but these two axioms together render com-

pleteness superfluous and compactness redundant. Thus we see that

cohesion is in almost all cases a condition distinct from compactness.

Compactness is purely serial, while cohesion has essential reference to

numbers or to the conditions of numerical measurement. Cohesion

implies compactness, but compactness never implies cohesion, except

in the sole case of the complete series of rationals or real numbers.

273. (2) To explain what is meant by a perfect series is more

difficult. A series is perfect when it coincides with its first derivative*.

To explain this definition, we must examine the notion of the derivatives

of a series"!", ^iid this demands an explanation of a limiting-point of a

series. Speaking generally, the terms of a series are of two kinds, those

which Cantor calls isolated points, and those which he calls limiting-

points. A finite series has onh' isolated points ; an infinite series must

define at least one limiting-point, though this need not belong to the

series. A limiting-point of a series is defined by Cantor to be a term

such that, in any interval containing the term, there are an infinite

number of terms of the series (ib. p. 343). The definition is given in

terms of the points on a line, but it has no essential reference to space.

The limiting-point may or may not be a term of the original series.

The assemblage of all limiting-points is called the first derivative of the

series. The first derivative of the first derivative is called the second

derivative, and so on. Peano gives the definition of the first derivative

of a class of real numbers as follows : Let m be a class of real numbers,

and let ir be a real number (which may or may not be a u) such that the

lower limit of the absolute values of the differences of oc from terms of u

other than x is zero ; then the class of terms a; satisfying this condition

is the first derivative of mJ. This definition is virtually identical with

that of Cantor, but it brings out more explicitly the connection of the

derivative with, limits. A series, then, is perfect, when it consists of

* Acta Math, ii, p. 40.5. + Ib. pp. 341-4.

I Formulaire, A'ol. ii, No. 3 (1899), § 71, I'O and 4-0.
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exactly the same terms as its first derivative ; 'i.e. when all its points are

limiting-points, and all its limiting-points belong to it.

274. But with regard to the latter point, namely, that all limiting-

points of the series must belong to it, some explanation is necessarv.

Take, for example, the series of rational numbers. Every rational

number is the limit of some series of rational numbers, and thus the

rationals are contained in their first derivative. But as regards those

series of rationals which do not have a rational limit, we agreed in the

preceding chapter that they do not have a limit at all. Hence all series

of rationals which have a limit have a rational limit, and therefore, by
the letter of the definition, the rationals should form a perfect series.

But this is not the case. Cantor, as we saw in connection with irrationals,

believes, what we were compelled to regard as erroneous, that every series

fulfilling certain conditions, which may be called the conditions of con-

vergency, must have a limit. Hence he regards those series of rationals

which have no rational limit as having an irrational limit, and as therefore

ha\ing a limit not belonging to the series of rationals ; and therefore the

series of rationals does not contain all the terms of its first derivative.

In fact, the first derivative of the rational numbers is held to be the real

numbers. But when ^^"e regard the real numbers as segments of rationals,

it is impossible to take this vie^^ ; and \\'hen we deny the existence-

theorem for limits, it is necessary to modify Cantor's definition of

perfection*. This modification we must now examine.

What we must say is, that a series is perfect when all its points are

limiting-points, and when further, any series being chosen out of our

first series, if this new series is of the sort which is usually regarded as

defining a limit, then it actually has a limit belonging to our first series.

To make this statement precise, we must examine what are the condi-

tions usually considered as defining a limit. In the case of denumerable

series, they are simple, and have already been set forth. They come to

this, that, given any distance e, however small, all the terms of our series

after some definite term, say the with, are such that any two of them
have a difference whose absolute value is less than e. This statement,

it will be seen, involves either number or quantity, i.e. it is not purely

ordinal. It is a curious fact that, though the supposed condition for

the existence of a limit cannot, by our present method, be stated in

purely ordinal terms, the limit of a denumerable series, if there be one,

can always be defined in purely ordinal terms. I shall distinguish

Cantor's fundamental series in a compact series into progressions and

regi'essions, according as earlier terms have to later ones always the

relation P, or always the relation P (where P is the generating relation

of the compact series in which the said progressions and regressions are

* This point is ably discussed by Couturat, Revue de Met. et de Morale, March,

1900, p. 167.
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contained). The compact series is further assumed to be complete. A
term ^r is then the limit of a progression, if every term of the progression

has to J' the relation P, while every term which ha^ to x the relation P
also has this rejation to some term of the progression. This definition,

it will be seen, 'is purely ordinal; and a similar definition will apply to a

regression.

Let us examine next what are the usual conditions for the existence

of a limit to a non-denumerable series. When we come to examine

non-numerical series, we shall find it inconvenient to be restricted to

denumerable series, and therefore it will be well to consider other series

at once. Here, of course, if any denumerable series contained in our

larger series fulfils the conditions for a limit, there will be a corresponding

definition of a limiting-point in our larger series. And the upper or

lower limit of the whole or part of our larger series, if there is one, may
be defined exactly as in the case of a progression or a regression. But

general conditions for the existence of a limit cannot be laid down,

except by reference to denumerable series contained in our larger series.

And it will be observed that Cantor's definition of a limiting-poiut

assumes the existence of such a point, and cannot be turned into a

definition of the conditions under which there are such points. This

illustrates the great importance of Cantor's fundamental series.

The method of segments will, however, throw some light on this

matter. AVe saw in Chapter xxxiii that any class of terms in a series

defines a segment, and that this segment sometimes can, but sometimes

cannot, be defined by a single term. When it can be so defined, this term

is its upper limit ; and if this term does not belong to the class by which

the segment was defined, then it is also the upper limit of that class.

But when the segment has no upper limit, then the class by which the

segment was defined also has no upper limit. In all cases, however

—

and this is one of the chief virtues of segments—the segment defined by

an infinite class which has no upper limit is the upper limit of the

segments defined by the several members of the class. Thus, whether

or not the class has an upper limit, the segments which its various

terms define always have one—provided, that is, that the compact series

in which the class is contained has terms coming after all terms of

the class.

We can now express, without assuming the existence of limits in

ca-ses where this is not demonstrable, what is meant by a series containing

its first derivative. When any class of terms is contained in a compact

series, the conditions which are commonly said to insure the existence

of an upper limit to the class, though they do not insure this, do insm'e

an upper limit to the class of segments defined by the several members

of the class. And as regards lower limits, the same proposition holds

concerning what we called upper segments. Hence we may define : A
class u of terms forming the whole or part of a series is perfect when
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each of the terms of u is the upper or lower limit of some class contained

in u, and when, if v be any class contained in u, and the lower segments

defined bv the several members of v have an upper limit, or the upper
segments have a lower limit, this limiting segment is one of those that

can be defined by a single term of u, i.e. have a term of u for their

upper or lower limit respectively. This definition, it must be admitted,

is more complicated than Cantor''s, but it is free from the unjustifiable

assumption of the existence of limits.

'We may repeat the definition of perfection in what is perhaps less

difficult language. Given any series, and anv class of terms u contained

in this series, there are an upper and a lower segment corresponding to

every term of u. Any infinite set of terms v being chosen out of ii,

there are certain conditions which are commonlv said to insure that v

has an upper limit, which, it is admitted, may belong neither to u, nor

to the series in which ;/ is contained. What these conditions d(J insure,

however, is that the class of lower segments corresponding to v has an

upper limit. If the series is perfect, v will have an upper limit whenever

the corresponding class of segments has one, and this upper limit of v

wiU be a term of ii. The definition of perfection requires that this

should hold both for upper and lower limits, and for any class v con-

tained in II.

275. As the question concerning the existence of limits, which has

necessitated the above complication, is one of some philosophical im-

portance, I shall repeat the arguments against assuming the existence

of limits in the class of series to which the rational numbei-s belong.

Where a series is imperfect, while its first derivative is perfect, there

the first derivative is logically prior to its ovra formation. That is to

say. it is only by presupposing the perfect series that it can be shown

to be the derivative of the imperfect series. V\e have already seen that

this is the case with individual iiTational numbers; it is easy to see

that the principle is general. Wherever the derivative contains a term

not belonging to the original series, that term is the limit of some

denumerable series forming an integral part of the first series. If this

series with a limit have the general term a„, then—wording the defi-

nition so as not to applv onlv to series of numbers—there is always a

definite number m, for anv specified distance e, however small, such

that, if n is greater than m, the distance between fl„+j, and «„ is less

than e, whatever positive integer p mav be. From this it is inferred

that the series {a„) has a limit, and it is shown that, in many ca-^es,

this limit cannot belong to the series out of which the series (a,,) was

chosen. But the inference that there is a Hmit is precarious. It may
be supported either bv previous knowledge of the term which is the

limit, or bv some axiom necessitating the existence of such a term.

AVhen the term which is the limit is independently known, it may be

easilv shown to be the limit. But when it is not known, it cannot be
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proved to exist at all, unless we introduce some axiom of continuity.

Such an axiom is introduced by Dedekind, but we saw that his axiom

is unsatisfactory. The principle of abstraction, which shows that two

coherent series have something in common, is fully satisfied by segments.

And in some cases, among which is that of the rationals, it seems that

the constitutive relation of the imperfect series cannot hold between any

terms not belonging to this series, so that the existence of limits not

belonging to the series is wholly impossible. For a limit must have

a certain position in a series of which the series which it limits forms

part, and this requires some constitutive relation of which the limit, as

well as the terms limited, must be capable. An independent complete

series, such as the rationals, cannot, in fact, have any limiting-points

not belonging to it. For, if R be the constitutive relation, and two

terms a, h, have the relation R, any third term c, which has this relation

or its converse to either, and therefore both, of the terms a, b, belongs

to the same series as a and b. But the limit, if it exists, must have the

constitutive relation to the terms which it limits ; hence it must belong

to the complete series to which they belong. Hence any series which

has actual limiting-points not belonging to it is only part of some

complete series ; and a complete series which is not perfect is one in

which the limits defined in the usual way, but not belonging to the

series, do not exist at all. Hence, in any complete series, either some

definable limits do not exist, or the series contains its first derivative.

In order to' render the arbitrariness of assuming the existence of

limits still more evident, let us endeavour to set up an axiom of con-

tinuity more irreproachable than Dedekind''s. We shall find that it can

still be denied with perfect impunity.

When a number of positions in a series continually differ less and

less from each other, and are known to be all on one side of some given

position, there must exist (so our axiom might run) some position to

which they approximate indefinitely, so that no distance can be specified

so small that they will not approach nearer than by this distance. If

this axiom be admitted, it will follow that all imperfect series, whose

first derivatives are perfect, presuppose these first derivatives, and are to

be regarded as selections from them. Let us examine the consequences

of denying our axiom in the case of a series of numbers. In this

case, the unwary might suppose, the position next to all the terms

an, but not belonging to them, would be (say) p, where p — On is

greater than e, for a suitable value of e, whatever n may be. But

if our series is compact, there is a term between p and p — e, say p.

Thus p' — ttn is less than p — an, whatever n may be. Thus p' is

nearer all the «'s than p is, contrary to the hypothesis. But the

above denial was not direct, and the fact that it seemed correct

illustrates the fallacies which in this subject are hard to avoid. The

axiom is : There is a term to which the d's approach as near as we like.
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The denial was : There is a term nearest to the a's, but at a finite

distance. The denial should have been : There is no term to which

the a'a approach as near as we like. In other words, whatever term we
specify, say p, there is some finite distance e, such that ^ — a„ is greater

than e, whatever Un may be. This is true in the case of series of rational

numbers which have no rational limit. In this case, there is no term

nearest to the a's, but at a finite distance, while also, whatever term

beyond all the a's we specify (except where our series has a rational

limit), none of the a's approach nearer to this term than by a certain

finite distance 6. Every term beyond the «'s is at more than some

finite distance from all of them, but there is no finite distance which

every term beyond the a's exceeds. The introduction of irrationals

introduces symmetry into this odd state of things, so that there is a

term to which the a's approach indefinitely, as well as a series of terms

indefinitely approaching the a's. When irrationals are not admitted,

if we have a term p after all the a's, and a small distance e, then, if e

be specified, p can be chosen so that p — a„ is less than e, whatever n

may be ; but if p be specified, an e can always be found (except when

the limit is rational) so that p — a,i is greater than e, whatever n may be.

This state of things, though curious, is not self-contradictory. The
admission of irrationals, as opposed to segments, is thus logically un-

necessary ; as it is also mathematically superfluous, and fatal to the

theory of rationals, there are no reasons in its favour, and strong reasons

against it. Hence, finally, any axiom designed to show the existence

of limits in cases where they cannot otherwise be shown to exist, is

to be rejected ; and Cantor's definition of perfection must be modified

as. above. This conclusion will, in future, be regarded as established.

Having now analyzed Cantor's earlier definition of continuity, I shall

proceed to examine his later ordinal definition, and the application of

its various portions to series more general than those of numbers,

showing, if possible, the exact points in which these various portions

are required.



CHAPTER XXXVI.

ORDINAL CONTINUITY*.

276. The definition of continuity which we examined in the pre-

ceding chapter was, as we saw, not purely ordinal ; it demanded, in at

least two points, some reference to either numbers, or numerically

measurable magnitudes. Nevertheless continuity seems like a purely

ordinal notion ; and this has led Cantor to construct a definition which

is free from all elements extraneous to order f. I shall now examine

this definition, as well as others which may be suggested. We shall find

that, so long as all references to number and quantity are excluded, there

are theorems of great importance, especially as regards fundamental

series, which, with any suggested ordinal definition except that of

Cantor, remain indemonstrable, and are presumably sometimes falsej

—

a fact from which the merits of Cantor's definition, now to be given, are

apparent.

277. Cantors definition of the continuum in his later article § is as

follows. AA^e start (§ 9) from the type of series presented by the rational

numbers greater than and less than 1, in their order of magnitude.

This type we call tj. A series of this type we define by the following

Inarks. (1) It is denumerable, that is, by taking its terms in a suitable

order (which, however, must be different from that in which they are

given), we can give them a one-one correspondence with the finite

integers. (2) The series has no first or last term. (3) There is a term

between any two, i.e. the series is compact {uberall d'lcht). It is then

proved that these three characteristics completely define the type of

order presented by the rationals, that is to say, there is a one-one

correspondence, between any two series having these three properties, in

which earlier terms correspond to earlier terms, and later ones to later

ones. This is established bv the use of mathematical induction, which

is applicable in virtue of the fact that series of this type are denumer-

* The present chapter deals with the same subject as 'SI. Couturat's article, "Sur

la definition du Continu," Revue de Metaphy.nque et de ilorale, March, 1900. 1 agree

in the main with this article, in which much of what 1 said in the preceding chapter,

and shall say in this, will be found.

t Math. Annalen, xi,vi.

X Mathematical proofs of such theorems as are not already well known will be

found in RdM, vii, .3.

§ Math. Annalen, xlvi, § 11.
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able. Thus all series which are denumerable, endless*, and compact,

are ordinally similar. V\^e now proceed (§ 10) to the consideration of

fundamental series contained in any one-dimensional series M. We
show (as has been already explained) what is meant by calling two

fundamental series coherent, and we give an ordinal definition of the

limit of a fundamental series, namely, in the case of a progression, the

limit comes after the whole progression, but every term before the limit

comes before some term of the progression ; with a corresponding

definition for the limit of a regression, ^^'e prove that no fundamental

series can have more than one limit, and that, if a fundamental series

has a limit, this is also the limit of all coherent series ; also that two

fundamental series, of which one is part of the other, are coherent. Any
term of M which is the limit of some fundamental series in M is called

a principal term of M. If all the terms of M are principal terms, M is

called condensed in itself (insichdicht). If every fundamental series in J/
has a limit in J/, M is called closed (abgeschlossen)f. If M is both

closed and condensed in itself, it is perfect. All these properties, if they

belong to J/, belong to anv series which is ordinally similar to J/.

^^^ith these preparations, we advance at last to the definition of the

continuum (| 11). Let be the type of the series to which belong the

real numbers from to 1, both inclusive. Then 6, as we know, is a

perfect type. But this alone does not characterize 0. It has further

the property of containing within itself a series of the type tj, to which

the rationals belong, in such a way that between any two terms

of the ^-series there are terms of the 77-series. Hence the following

definition of the continuum

:

A one-dimensional continuum M is a series which (1) is perfect,

(2) contains within itself a denumerable series S of ^^'hich there are

terms between any two terms of M.
In this definition, it is not necessary to add the other properties

which are required to show that S is of the type 77. For if S had a first

or last term, this would be also the first or last term of M; hence we

could take it away from S, and the remaining series would still satisfy

the condition (2), but would have no first or last term; and the

condition (2) together with (1) insures that .S' is a compact series.

Cantor proves that any series M satisfying the above conditions is ordi-

nally similar to the number-continuum, i.e. the real numbers from to 1,

both inclusive; and hence it follows that the above definition includes

precisely the same class of series as those that were included in his

former definition. He does not assert that his new definition is purely

ordinal, and it might be doubted, at first sight, whether it is so. Let

us see for ourselves whether any extra-ordinal notions are contained in it.

* I.e. having neither a beginning nor an end.

t Not to be confounded with the elementary sense of a closed series discussed in

Part IV.
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278. The only point as to which any doubt could arise is with

regard to the condition of being denumerable. To be a denumerable

collection is to be a collection whose terms are all the terms of some

progression. This notion, so far, is purely ordinal. But in the case

supposed, that of the rationals or of any ordinally similar series, the

terms forming the series must be capable of two orders, in one of which

they form a compact series, while in the other they form a progression.

To discover whether or not a given set of terms is capable of these two

orders, will in general demand other than ordinal conditions ; never-

theless, the notion itself is purely ordinal. Now we know, from the

similarity of all such series to the series of rationals (which involves only

ordinal ideas), that no such series is perfect. But it remains to be seen

whether we can prove this without appealing to the special properties

of the rationals which result from there being a series in which there is

distance. We know, as a matter of fact, that no denumerable series can

be perfect*, but we want here a purely ordinal proof of this theorem.

Such a proof, however, is easily given. For take the terms of our

denumerable compact series S in the order in which they form a

progression, and in this order call them u. Starting with the first in

this order, which we will call x^, there must be one which, in the other

order S, follows this term. Take the first such term, a^i, as the second

in a fundamental series v. This term has a finite number of predecessors

in the progression u, and therefore has successors in S which are also

successors in u ; for the number of successors in ^S" is always infinite.

Take the first of these common successors, say x^, as the third term of

our fundamental series v. Proceeding in this way, we can construct an

ascending fundamental series in «S', the terms of which have the same

order in m as in .S". This series cannot have a limit in ^S*, for each term x^

succeeds, in S, every term which precedes it in u. Hence any term of «S'

will be surpassed by some term x^ of our fundamental series v, and

hence this fundamental series has no limit in S. The theorem that a

denumerable endless series cannot be perfect is, therefore, purely ordinal.

From this point onwards there is no difficulty, and our former theory of

segments enables us to state the matter simply. Given a denumerable,

endless, compact series S, construct all the segments defined by funda-

mental series in ^S*. These form a perfect series, and between any two

terms of the series of segments there is a segment whose upper (or

lower) limit is a term of .S*. Segments of this kind, which may be called

rational segments, are a series of the same type as S, and are contained

in the whole series of segments in the required manner. Hence the

ordinal definition of the continuum is complete.

279. It must not be supposed that continuity as above defined can

only be exemplified, in Arithmetic, by the devious course from integers

to rationals, and thence to real numbers. On the contrary, the integers

* Acta Mathematica, u, p. 409.
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themselves can be made to illustrate continuity. Consider all possible

infinite classes of integers, and let them be arranged on the following

plan. Of two classes u, v, of which the smallest number in u is less than

the smallest in v, u comes first. If the first n terms of u and v are

identical, but the (n + 1)''^ terms are different, that which has the

smaller (/i+l)* term is to come first. This series has a first term,

namely, the whole class of the integers, but no last term. Any completed

segment of the series, however, is a continuous series, as the reader can

easily see for himself. The denumerable compact series contained in it

is composed of those infinite classes which contain all numbers greater

than some number, i.e. those containing all but a finite number of

numbers. Thus classes of finite integers alone suffice to generate con-

tinuous series.

280. The above definition, it will be observed, depends upon pro-

gressions. As progressions are the very essence of discreteness, it seems

paradoxical that we should require them in defining continuity*. And,
after all, as it is certain that people have not in the past associated any

precise idea with the word conthiiiiti/, the definition we adopt is, in some

degree, arbitrary. Series having the properties enumerated in Cantor's

definition would generally be called continuous, but so would many others

which his definition excludes. In any case it will be a valuable inquiry

to ask what can be done by compact series without progressions.

Let u be any endless compact series, whose generating relation is P,

and concerning which nothing further is known. Then, by means of any

term or any class of terms in u, we can define a segment of u. Let us

denote by U the class of all lower segments of u. A lower segment, it

may be well to repeat, is a class v of terms contained in u, not null,

and not coextensive with u, and such that v has no last term, and

every term preceding a c is a v. In the converse case, when v has

no first term, and every term following a w is a », u is called an

upper segment. It is then easy to prove that every segment consists

of all the terms preceding (or following) either some single term of u, or

a variable term of some class of terms of u ; and that every single term,

and every class of terms, defines an upper and a lower segment in this

manner. Then, if V denote the class of upper segments, it is easy to

prove that both U and V are again endless compact series, whose

generating relation is that of whole or part ; while if u has one or two

ends, so have U and V, though the end-terms are not segments according

to the definition. If we now proceed to the consideration of segments

* Mr Whitehead has shown that the following simpler definition is equivalent

to Cantor's. A series is continuous when (1) every segment, upper or lower^ has a

limit, and the series has a first and a last term ; (2) a denumerable compact series is

contained in it in such a way that there are terms of this latter series between any

two terms of our original series. In this definition, progressions are relevant only

in defining a denumerable series.
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in U or V (U say), we shall find that the segment of LPs defined by any

class whatever of C/'s can always be defined by a single U, which, if the

class is infinite and has no last term, is the upper limit of the class, and

which, in all cases, is the logical sum of all the members of the class

—

members which, it must be remembered, are all themselves classes

contained in ?/*- Hence all classes contained in U and having no last

term have an upper limit in U; and also (what is a distinct proposition)

all classes contained in U and having no first term have a lower limit

in U, except in the case where the lower limit is the logical zero or

null-class ; and the lower limit is always the logical product of all the

classes composing the class which it limits. Thus by adding to U the

nuU-class, we insure that U shall be a closed series. There is a sense

in which U is condensed in itself, namely, this : every term of U is the

upper limit of a suitably chosen class contained in U, for every term is

the upper limit of the segment of ITs which it defines ; and every term

of U is a lower limit of the class of those Ws of which it is a proper

part. But there is absolutely no proof, so far at least as I have been

able to discover, that everv term of U is the upper or lower limit of a

fundamental series. There is no a priori reason why, in any series, the

limit of any class should always be also the limit of a fundamental

series ; this seems, in fact, to be a prerogative of series of the types to

which rationals and real numbers respectively belong. In our present

case, at least, though our series is, in the above general sense, condensed

in itself, there seems no reason for supposing its terms to be all of them

limits of fundamental series, and in this special sense the series may not

be condensed in itself.

281. It is instructive to examine the result of confining the terms

of U to such segments as can be defined by fundamental series. In this

case it is well to consider, in addition to upper and lower segments, their

supplements, as they may be called, of which I shall shortly give the

definition. Let a compact series v be given, generated by a transitive

asymmetrical relation P, and let u be any fundamental series in v. If

earlier terms of u have to later ones the relation P, I shall call u a

progresfiion ; if the relation P, I shall call u a regression. If now w be

any class whatever contained in v, w defines, as we have already seen,

four other classes in v, namely (1) the class of terms before every w,

which I shall call ic-rr ; (2) the class of terms after every a-, which I shall

call TUTT
; (3) the class of terms before some w, which I shall caU ttk ;

(4) the class of terms after some w, which I shall call ttw. The classes

(3) and (4) are lower and upper segments respectively ; the classes (1) and

* The definition of the logical sum of the members of a class of classes, iu a fomi

not involving finitude, is, I believe, due to Peano. It is as follows : Let vi be a class

of classes ; then the logical sum of the members of w is the class of terms x such that

there is some class belonging to vy, to which x belongs. See Formulaire, ^ ol. n,

Parti (1897), No. 401.
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(2) are supplements to (-i) and (3) respectively, and I shall call them
supplemental segments. When k' has an upper limit, this is the first term
of K'TT, and thus ic'tt is not a segment, since no upper segment has a first

term. But when ic has no upper limit, then, whether w be finite or

infinite, ictt is a segment. Similar remarks apply to lower limits. If ic

has a last term, this belongs neither to iric nor to lctt, but all other terms

of I' belong to one or other class ; if ic has no last term, all terms of v

belong to ttic or rcTr. Similar remarks apply to ic'tt and ttiv. Applying
these general definitions to the cases of progressions and regressions,

we shall find that, for a progression, only the classes (2) and (3) are

important; for a regression, only the classes (1) and (4). The question

where a progression begins or a regression ends is quite unimportant.

Since a progi-ession has no last term, and a regression no first term,

the segment defined by either, together with its supplement, contains

every term of c'. Whether progressions and regressions in v have limits

always, sometimes, or never, there seems no way of deciding from the

given premisses. I have not been able to discover an instance of a

compact series where they never have limits, but I cannot find any proof

that such an instance is impossible.

Proceeding now to classes of segments, as we proceeded before to our
class U, we have here fou? such classes to consider, namely : (1) The class

I'TT, each of whose terms is the class u-n- defined by some reg^-ession u,

i.e., the terms of v which come before all the terms of some regression in

V ; (2) the class vtt, consisting of all the classes mtt defined by pro-

gressions u ; (3) the class ttv, whose terms are ttw, where u is some
p}-ogression ; (-i) the class vtt, ^^•hose terms are tnr, where u is some
regi-ession. Each of these four classes is a class of classes, for its terms

are classes contained in v. Each of the four is itself a compact series.

There is no way of pro^ang, so far as I know, that (1) and (3), or (2)

and (4), have any common terms. Each pair would have a common
term if v contained a progression and a regression which were coherent,

and had no limit in v, but there is no way of discovering whether this

case ever arises in the given series v.

When we come to examine whether the four classes thus defined are

condensed in themselves, we obtain the most curious results. Every

fundamental series in any one of the four classes has a limit, but not

necessarily in the series of which its terms are composed, and conversely,

every term of each of our four classes is the limit of a fundamental

series, but not necessarily of a series contained in the same class to which

the limiting term belongs. The state of things, in fact, is as follows :

Every progression in vtt or irv has a limit in ttv.

Every progression in vtt or "ifv has a limit in -n-v.

Every regression in vtt or ttv has a limit in vtt.

Every regi-ession in vtt or ttv has a limit in v-if.

Every term of vir is the limit of a regression in vtt and of one in ttv.
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Every term of vtt is the limit of a regression in vtt and of one in irv.

Every term of irv is the limit of a progression in vtt and of one

in TTV.

Every term of ttv is the Hmit of a progression in vir and of one

in TTv.

Hence vrr is identical with the class of limits of regressions in vir or tto
;

VTT is identical with the class of limits of regi-essions in vtt or ifv ;

irv is identical with the class of limits of progressions in vir or ivv ;

TTv is identical with the class of limits of progressions in ttb or vtt.

Thus each of our four classes has a kind of one-sided perfection;

two of the four are perfect on one side, the other two on the other.

But I cannot prove of any one of the four classes that it is wholly

perfect. We might attempt the combination of vir and irv, and also of

VTT and irv. For vir and irv together form one series, whose generating

relation is still whole and part. This series will be perfect, and will

contain the limits alike of progressions and of regressions in itself. But

this series may not be compact ; for if there be any progression u and

regression u in v, which both have the same limit in v (a case which, as

we know, occurs in some compact series), then iru and u'lr wiU be

consecutive terms of the series formed of irv and vir together, for it'ir

will contain the common limit, while irii wiU not contain it, but

all other terms of v will belong to both or to neither. Hence when our

series is compact, we cannot show that it is perfect ; and when we have

made it perfect, we can show that it may not be compact. And a

series which is not compact can hardly be called continuous.

Although we can prove that, in our original compact series v, there

are an infinite number of progressions coherent with a given progression

and having no terra in common with it, we cannot prove that there is

even one regression coherent with a given progression ; nor can we

prove that any progression or regression in x< has a limit, or that

any term of w is a limit of a progression or regression. We cannot

prove that any progression u and regression u are such that iru = uir,

nor yet that iru and it'ir may differ by only a single term of v. Nor,

finally, can we prove that any single progression in vir has a limit in vir,

with similar propositions concerning the other three classes vw, irv, irv.

At least, I am unable to discover any way of proving any of these

theorems, though in the absence of instances of the falsity of some

of them it seems not improbable that these may be demonstrable.

If it is the fact—as it seems to be—that, starting only from a

compact series, so many of the usual theorems are indemonstrable,

we see how fundamental is the dependence of Cantor's ordinal theory

upon the condition that the compact series from which we start is to be

denumerable. As soon as this assumption is made, it becomes easy

to prove all those of the above propositions which hold concerning the

types 77 and 6 respectively. This is a fact which is obviously of con-
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siderable philosophical importance ; and it is with a view of bringing it

out clearly that I have dwelt so long upon compact series which

are not assumed to be denumerable.

282. The remark which we made just now, that two compact

series may be combined to form one which sometimes has consecutive

terms, is rather curious, and applies equally to continuity as defined by
Cantor. Segments of rationals form a continuous series, and so do
completed segments {i.e. segments together with their limits) ; but the

two together form a series which is not compact, and therefore not

continuous. It is certainly contrary to the usual idea of continuity

that a continuous series should cease to be so merely by the interpolation

of new terms between the old ones. This should, according to the usual

notions, make our series still more continuous. It might be suggested

that, philosophically speaking, a series cannot be called continuous unless

it is complete, i.e. contains a certain term together with all the terms

having to the given term a specified asymmetrical transitive relation or its

converse. If we add this condition, the series of segments of rationals is

not complete with regard to the relation by which we have hitherto

regarded it as generated, since it does not consist of all classes of

rationals to which a given segment has the relation of whole and part,

and each of which contains all terms less than any one of its terms

—

this condition is also satisfied by completed segments. But every series

is complete with regard to some relation, simple or complex. This is

the reason why completeness need not, from a mathematical standpoint,

be mentioned in the definition of continuity, since it can always be

insured by a suitable choice of the generating relation.

We have now seen in what Cantor's definition of continuity consists,

and we have seen that, while instances fulfilling the definition may
be found in Arithmetic, the definition itself is purely ordinal—the only

datum required is a denumerable compact series. Whether or not the

kind of series which Cantor defines as continuous is thought to be the

most similar to what has hitherto been vaguely denoted by the word,

the definition itself, and the steps leading to it, must be acknowledged

to be a triumph of analysis and generalization.

Before entering upon the philosophical questions raised by the

continuum, it will be well to continue our review of Cantor's most

remarkable theorems, by examining next his transfinite cardinal and

ordinal numbers. Of the two problems with which this Part is

concerned, we have hitherto considered only continuity ; it is now time

to consider what mathematics has to say concerning infinity. Only

when this has been accomplished, shall we be in a position adequately

to discuss the closely allied philosophical problems of infinity and

continuity.



CHAPTER XXXVII.

TRANSFINITE CAHDINALS.

283. The mathematical theory of infinity may almost be said

to begin with Cantor. The Infinitesimal Calculus, though it cannot

wholly dispense with infinity, has as few dealings with it as possible,

and contrives to hide it away before facing the world. Cantor has

abandoned this cowardly policy, and has brought the skeleton out of its

cupboard. He has been emboldened in this course by denying that it

is a skeleton. Indeed, like many other skeletons, it was wholly

dependent on its cupboard, and vanished in the light of day. Speaking

without metaphor. Cantor has established a new branch of ^Mathematics,

in which, bv mere correctness of deduction, it is shown that the

supposed contradictions of infinity all depend upon extending, to the

infinite, results which, while they can be proved concerning finite

numbers, are in no sense necessarilv true of all numbers. In this theory,

it is necessary to treat separately of cardinals and ordinals, which are

far more diverse in their properties when they are transfinite than when

they are finite. Following the same order as previously—the order

which seems to me to be alone philosophically correct—I shall begin

with transfinite cardinals*.

284. The transfinite cardinals, which are also called powers, may be

defined in the first place so as to include the finite cardinals, leaving it

to be investigated in what respects the finite and the transfinite are

distinguished. Thus Cantor gives the following definition^-.

" We call the power or cardinal number of M that general idea

which, by means of our active faculty of thought, is deduced from the

collection M, by abstracting from the nature of its diverse elements and

from the order in which they are given."

This, it win be seen, is merely a phrase indicating what is to be

spoken of, not a true definition. It presupposes that every collection

* This is the order followed in Math. Annalen, xlvi, but not in the Mannich-

Jalfigheits/ehre.

t Math. Annalen, xlvi, § 1.
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has some such property as that indicated—a property, that is to

sav, independent of the nature of its terms and of their order ; depend-

ing, we might feel tempted to add, only upon their number. In fact,

number is taken by Cantor to be a primitive idea, and it is, in his theory,

a primitive proposition that every collection has a number. He is

therefore consistent in giving a specification of number which is not a

formal definition.

By means, however, of the principle of abstraction, we can give, as

we saw in Part II, a formal definition of cardinal numbers. This

method, in essentials, is given by Cantor immediately after the above

informal definition. We have already seen that, if two classes be called

similni- when there is a one-one relation which couples every term of

either with one and only one term of the other, then similarity is sym-

metrical and transiti^•e, and is reflexive for all classes. A one-one relation,

it should be observed, can be defined without any reference to number,

as follows : A relation is one-one when, if ^r has the relation to y, and .r'

differs from ,r, y' from y, then it follows that j:' does not have the

relation to y, nor .r to y'. In this there is no reference to number ; and

the definition of similarity also is therefore free from such reference.

Since similarity is reflexive, transitive, and symmetrical, it can be

analyzed into the product of a many-one relation and its converse, and

indicates at least one common property of similar classes. This property,

or, if there be several, a certain one of these properties, we may call the

cardinal number of similar classes, and the many-one relation is that of

a class to the number of its terms. In order to fix upon one definite

entity as the cardinal number of a given class, we decide to identify the

number of a class with the whole class of classes similar to the given

class. This class, taken as a single entity, has, as the proof of the

principle of abstraction shows, all the properties required of a cardinal

number. The method, however, is philosophically subject to the doubt

resulting fi"om the contradiction set forth in Part I, Chapter x.*

In this way we obtain a definition of the cardinal number of a class.

Since similarity is reflexive for classes, every class has a cardinal number.

It might be thought that this definition would only apply to finite

classes, since, to pi'ove that all terms of one class are correlated with all

of another, complete enumeration might be thought necessary. This,

however, is not the case, as may be seen at once by substituting any for

all—a word which is generally preferable where infinite classes are

concerned. Two classes u, v are similar when there is some one-one

relation R such that, if .r be any u, there is some term y of v such that

irRy ; and if y' be any v, there is some term x' of u such that w'Ry'.

Here there is no need whatever of complete enumeration, but only of

propositions concei-ning any u and any v. For example, the points on

a given line are similar to the lines thi'ough a given point and meeting

* See Appendix.

H. 20
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the given line ; for any point on the given line determines one and only

one line through the given point, and any line through the given point

meeting the given line determines one and only one point on the given

line. Thus where our classes are infinite, we need some general

proposition about any term of either class to establish similarity, but

we do not need enumeration. And in order to prove that every (or any)

class has a cardinal number, we need only the observation that any term

of any class is identical with itself. No other general proposition about

the terms of a class is requisite for the reflexive property of similarity.

285. Let us now examine the chief properties of cardinal numbers.

I shall not give proofs of any of these properties, since I should merely

repeat what has been said by Cantor. Considering first their relations

to classes, we may observe that, if there be two sets of classes which are

similar in pairs, and no two of the one set have any common part, nor

jet any two of the other set, then the logical sum of all the classes of

one set is similar to the logical sum of all the classes of the other set.

This proposition, familiar in the case of finite classes, holds also of

infinite classes. Again, the cardinal number of a class u is said to be

greater than that of a class v, when no part of v is similar to u, but

there is a part of u which is similar to v. In this case, also, the number

of V is said to be less than that of u. It can be proved that, if there

is a part of u which is similar to w, and a part of v which is similar

to II, then u and v are similar*. Thus equal, greater, and less are all

incompatible with each other, all transitive, and the last two asym-

metrical. We cannot prove at all simply—and it seems more or less

doubtful whether we can prove at all—that of two different cardinal

numbers one must be greater and the other less^f". It is to be observed

that the definition of greater contains a condition not required in the

case of finite cardinals. If the number of v be finite, it is sufficient

that a proper part of u should be similar to v. But among transfinite

cardinals this is not sufficient. For the general definition of greater,

therefore, both parts are necessary. This difference between finite

and transfinite cardinals results from the defining difference of finite

and infinite, namely that when the number of a class is not finite,

it always has a proper part which is similar to the whole; that is,

every infinite class contains a part (and therefore an infinite number

of parts) having the same number as itself. Certain particular cases of

this proposition have long been known, and have been regarded as con-

stituting a contradiction in the notion of infinite number. Leibniz, for

example, points out| that, since every number can be doubled, the

* Bernstein and Schroder's theorem ; for proofs see Borel, Lemons sur la tMorie

4es fonctions, Paris, 1898, Note I, and Zermelo, Gottinger Nachrichten, 1901,

pp. 34—38.

t Cantor's grounds for holding that this is so are vague, and do not appear to

me to he valid. They depend upon the postulate that every class is the field of some

well-ordered relation. See Cantor, Math. Annalen, xlvi, note to § 2.

X Gerhardt's ed. I, p. 338.
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number of numbers is the same as the number of even numbers, whence
he deduces that there is no such thing as infinite number. The first to

generalize this property of infinite collections, and to treat it as not
contradictory, wa^, so far as I know, Bolzano*- But the strict proof

of the proposition, when the finite cardinals are defined by means of

mathematical induction, as well as the demonstration that it is not
contradictory, are due to Cantor and Dedekind. The proposition itself

may be taken as the definition of the transfinite among cardinal numbers,

for it is a property belonging to all of them, and to none of the finite

cardinals f. Before examining this property further, however, we must
acquire a more intimate acquaintance with the other properties of

cardinal numbers.

286. I come now to the strictly arithmetical properties of cardinals,

i.e. their addition, multiplication, etc.:[:. The addition of numbers is

defined, when they are transfinite, exactly as it was defined in the case

of finite numbei-s, namely by means of logical addition. The number
of the logical sum of t\\o classes which have no common term is the

sum of the numbers of the two classes. This can be extended by suc-

cessive steps to any finite number of classes ; for an infinite number of

classes, forming a class of classes, the sum of their numbers, if no two
have any common term, is still the number of their logical sum—and
the logical sum of any class of classes, finite or infinite, is logically

definable. For sums of two or three numbers, so defined, the com-
mutative and associative laws still hold, i.e. we still have

a + h = h + a and a + {h -'rc) = {a-\-b) + c.

The multiplication of two numbers is thus defined by Cantor : If M
and N be two classes, we can combine any element of M with any
element of N to form a couple {m, n) ; the number of all such couples

is the product of the numbers of M and N. If we wish to avoid the

notion of a couple in the definition, we may substitute the following §

:

Let u be" a class of classes, a in number ; let each of these classes be-

longing to u contain b terms ; and let no two of these classes have anv
common term ; then ah is the number of the logical sum of all these

classes. This definition is still purely logical, and avoids the notion of

a couple. Multiplication so defined obeys the commutative, associative,

and distributive laws, i.e. we have

ab = ba, a (be) = {ah) c, a(b + c) = ab + ac.

Hence addition and multiplication of cardinals, even when these are

transfinite, satisfy all the elementary rules of Arithmetic.

* Paradoxien des Unendlichen, § 21.

t See Dedekind, Was sind und was sollen die Zahlen ? No. 64.

+ Cantor, Math. Annahn, xlvi, § 3 ; ^^Tiiteliead, American Journal of Math.
Vol. XXIV, No. 4.

§ Vivanti, Theorie des Ensembles, Formulaire de Mathematiques, Vol. i, Part vi,

§ 2, No. 4.

20—2



308 Infinity and Continuity [chap, xxxvii

The definition of powers of a number {a!') is also effected logically

{ib. § 4). For this pm-pose, Cantor first defines what he calls a covering

(Belegung) of one class X by another M. This is a law by which, to

every element n of ]V is joined one and only one element m of M, but
the same element m may be joined to many elements of N. That is,

a Belegung is a many-one relation, whose domain includes N, and
which correlates with the terms of N always terms of M. If a be the

number of terms in M, b the number in X, then the number of aU such

many-one relations is defined to be a^. It is easy to see that, for finite

numbers, this definition agrees with the usual one. For transfinite

numbers, indices have stiU the usual properties, i.e.

a''a' = 0,*+", a'b" = (ab)", (a^y = aK
In the case where a = 2, a'' is capable of a simpler definition, deduced

from the above. If a = 2, 2* will be the number of ways in which

b terms can be related each to one of two terms. Now when those

which are related to one of the two are given, the rest are related to

the other. Hence it is enough, in each case, to specify the class of

terms related to one of the two. Hence we get in each case a class

chosen out of the b terms, and in all cases we get all such classes.

Hence S** is the number of classes that can be formed out of b terms,

or the number of combinations of b things anv number at a time—

a

familiar theorem when b is finite, but still true when b is transfinita

Cantor has a proof that 2' is always greater than b—a proof which,

however, leads to difficulties when b is the number of all classes, or,

more generally, when there is some collection of b terms in which all the

sets chosen out of the b terms are themselves single terms of b*.

The definitions of multiplication given by Cantor and Vivanti re-

quire that the number of factors in a product should be finite ; and

this makes it necessary to give a new and independent definition of

powers, if the exponent is allowed to be infinite. I\Ir A. X. AMiiteheadf

has given a definition of multiplication which is free from this restriction,

and therefore allows powers to be defined in the ordinary way as pro-

ducts. He has also found proofs of the formal laws when the number

of summands, brackets, or factors is infinite. The definition of a product

is as follows : Let k be a class of classes, no two of which have any terms

in common. Choose out, in every possible way, one term and only one

from each of the classes composing k. By doing this in all possible

ways, we get a class of classes, called the multiplicative class of k. The

number of terms in this class is defined to be the product of the numbers

of terms in the various classes which are members of k. Where k has

a finite number of members, it is easy to see that this agrees with the

usual definition. Let «, v, w be the members of k, and let them have

respectively a, /8, 7 terms. Then one term can be chosen out of m in

* See Chapter xliii, infra. t American Journal of Mathematics, loc. cit.
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a ways : for every way there are ^ ways of choosing one term out of v ,

and for every way of choosing one term out of u and one out of v, there

are <y ways of choosing one out of w. Hence there are a /3 7 ways of

choosing one term out of each, when multiplication is understood in its

usual sense. The multiplicative class is an important notion, by means of
which transfinite cardinal Arithmetic can be carried a good deal further

than Cantor has carried it.

287. All the above definitions apply to finite and transfinite integers

alike, and, as we see, the formal laws of Arithmetic still hold. Trans-
finite integers differ from finite ones, however, both in the properties of

their relation to the classes of which they are the numbers, and also in

regard to the properties of classes of the integers themselves. Classes of

numbers have, in fact, very different properties according as the numbers
are all finite or are in part at least transfinite.

Among transfinite cardinals, some are particularly important,

especially the number of finite numbers, and the number of the con-

tinuum. The number of finite numbers, it is plain, is not itself a

finite number ; for the class finite number is similar to the class even

finite number, which is a part of itself. Or again the same conclusion

may be proved by mathematical induction—a principle which also

serves to define finite numbers, but which, being of a more ordinal

nature, I shall not consider until the next chapter. The number of

finite numbers, then, is transfinite. This number Cantor denotes by
the Hebrew Aleph with the suffix ; for us it will bp more convenient

to denote it by a^. Cantor proves that this is the least of all the

transfinite cardinals. This results from the following theorems Qoc.

cit. § 6)

:

(^) Every transfinite collection contains others as parts whose

number is a,,.

(B) Every transfinite collection which is part of one whose

number is a„, also has the number »„.

(C) No finite collection is similar to any proper part of itself.

(D) Every transfinite collection is similar to some proper part of

itself*.

From these theorems it follows that no transfinite number is less than

the number of finite numbers. Collections which have this number are

said to be denumerable, because it is always possible to count such

collections, in the sense that, given any term of such a collection, there

is some finite number n such that the given term is the wth. This

is merely another way of saying that all the terms of a denumerable

collection have a one-one correlation with the finite numbers, which again

is equivalent to saying that the number of the collection is the same

as that of the finite numbers. It is easy to see that the even numbers,

the primes, the perfect squares, or any other class of finite numbers

* Theorems C and D require that the finite should be defined by mathematical

induction, or else they become tautologous.



310 Infinity and Continuity [chap, xxxvn

having no maximum, will form a denumerable series. For, arranging

any such class in order of magnitude, there will be a finite number of

terms, say n, before any given term, which will thus be the (n + l)th

term. What is more remarkable is, that all the rationals, and even

all real roots of equations of a finite degree and with rational co-

efficients (i.e. all algebraic numbers), form a denumerable series. And
even an ?i-dimensional series of such terms, where w is a finite number,

or the smallest transfinite ordinal, is still denumerable*. That the

rational numbers are denumerable can be easily seen, by arranging them

in the order in which those with smaller sum of numerator and denomi-

nator precede those with larger sum, and of those with equal sums, those

with the smaller numerators precede those with larger ones. Thus we

get the series

1, 1/2, % 1/3, 3, 1/4, 2/3, 3/2, 4., 1/5 ...

This is a discrete series, with a beginning and no end ; every rational

number will occur in this series, and will have a finite number of pre-

decessors. In the other cases the proof is rather more difficult.

All denumerable series have the same cardinal number a^, however

different they may appear. But it must not be supposed that there is

no number greater than a^. On the contrary, there is an infinite series

of such numbers f. The transfinite cardinals are asserted by Cantor to

be well-ordered, that is, such that every one of them except the last of

all (if there be a last) has an immediate successor, and so has every

class of them which has any numbers at all after it. But they do not

all have an immediate predecessor ; for example, a„ itself has no imme-

diate predecessor. For if it had one, this would have to be the last of

the finite numbers; but we know that there is no last finite number. But

Cantor's grounds for his assertion that the cardinals are well-ordered seem

insufficient, so that for the present this must remain an open question.

288. Of the transfinite numbers other than aj, the most important

is the number of the continuum. Cantor has proved that this number

is not a„|, and hopes to prove that it is ai§—a hope which, though

he has long cherished it, remains unfulfilled. He has shown that the

number of the continuum is S""!!—a most curious theorem ; but it

must still remain doubtful whether this number is aj, though there

are reasons which rendered this probable IT. As to the definition of a,

* See Acta Mathematica, u, pp. 306, 313, 326.

t See Jahresbericht der deutschen Mathematiker-Vereinigung 1, 1892; Bivista di

Matematica, II, pp. 165-7. Cantor's assertion that there is no greatest transfinite

cardinal is open to question. See Chap, xuii, infra.

X Acta Math. II, p. 308. § lb. p. 404. oj is the numher next after a^.

II
Math. Annalen, xlvi, § 4, note.

1 See Couturat, De I'hifini Mathematique, Paris, 1896, p. 655. The ground

alleged by Cantor for identifying the second power with that of the continuum is,

that every infinite linear collection of points has either the first power, or that of the

continuum, whence it would seem to follow that the power of the continuum must

be the next after the first. (Math. Annalen, 23, p. 488 ; see also Acta Math, vii.) But
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and of the whole succession of transfinite cardinals, this is a matter

which is better postponed until we have discussed the transfinite ordinals.

It must not be supposed that we can obtain a new transfinite cardinal

by merely adding one to it, or even by adding any finite number or a„.

On the contrary, such puny weapons cannot disturb the transfinite

cardinals. It is known that in the case of a^ and a certain class of trans-

finite cardinals, a number is equal to its double ; also that in the case of

Oq and a presumably different class of transfinite cardinals, a number is

equal to its square. The sum of two numbers belonging to the former

of these classes is equal to the greater of the two numbers. It is not

known whether all transfinite cardinals belong to one or both of these

classes *-

289. It may be asked : In what respect do the finite and transfinite

cardinals together form a single series .'' Is not the series of finite

numbers complete in itself, without the possibility of extending its

generating relation .'' If we define the series of integers by means of

the generating relation of differing by one—the method which is

most natural when the series is to be considered as a progression

—

then, it must be confessed, the finite integers form a complete series,

and there is no possibility of adding terms to them. But if, as is

appropriate in the theory of cardinals, we consider the series as arising

by correlation with that of whole and part among classes of which the

integers can be asserted, then we see that this relation does extend

beyond finite numbers. There are an infinite number of infinite classes

in which any given finite class is contained ; and thus, by correlation

with these, the number of the given finite class precedes that of any one

of the infinite classes. Whether there is any other sense in which all

integers, finite and transfinite, form a single series, I leave undecided

;

the above sense would be sufficient to show that there is no logical

error in regarding them as a single series, if it were known that of

any two cardinals one must be the greater. But it is now time to turn

our attention to the transfinite ordinals.

the inference seems somewhat precarious. Consider^ for example^ the following

analogy : in a compact series, the stretch determined by two terms consists either of

an infinite number of terms, or, when the two terms coincide, of one term only, and
never of a finite number of terms other than one. But finite stretches are presented

by other types of series, e.g. progressions.

ITie theorem that the number of the continuum is 2«o results very simply from the

proposition of Chapter xxxvi, that infinite classes of finite integers form a continuous

series. The number of all classes of finite integers is 2"»o {vide supra), and the number of

finite classes is oq. Hence the number of all infinite classes of finite integers is 2«o for

the subtraction of ap does not diminish any number greater than qq ; 2'»o is therefore

the number of the continuum. To prove that this number is a^ it would therefore

be sufficient to show that the number of infinite classes of finite integers is the same
as the number of types of series that can be formed of all the finite integers ; for the

latter number, as we shall see in the next chapter, is a^.

* Cf. Whitehead, loc. cit. pp. 392-4.



CHAPTEE XXXVIII.

TRANSFINITE ORDINALS.

290. The transfinite ordinals are, if possible, even more interesting

and remarkable than the transfinite cardinals. Unlike the latter, they

do not obey the commutative law, and their arithmetic is therefore quite

different from elementary arithmetic. For every transfinite cardinal, or

at any rate for any one of a certain class, there is an infinite collection

of transfinite ordinals, although the cardinal number of all ordinals is

the same as or less than that of all cardinals. The ordinals which

belong to series whose cardinal number is «„ are called the second class

of ordinals ; those corresponding to a^ are called the third class, and

so on. The ordinal numbers are essentially classes of series, or better

still, classes of generating relations of series ; they are defined, for the

most part, by some relation to mathematical induction. The finite

ordinals, also, may be conceived as types of series : for example, the

ordinal number n may be taken to mean " a serial relation of n terms
;"

or, in popular language, ?i terms in a row. This is an ordinal notion,

distinct from " nth,'" and logically prior to it*. In this sense, n is the

name of a class of serial relations. It is this sense, not that expressed

by "nth," which is generalized by Cantor so as to apply to infinite

series.

291. Let us begin with Cantor's definition of the second class of

ordinal numbers f.
" It is now to be shown," he says, " how we are led to the definitions

of the new numbers, and in what way are obtained the natural sections,

which I call classes of numbers, in the absolutely endless series of real

integers.... The series (1) of positive real whole numbers 1, 2, 3, ... v,...

arises from repeated positing and combination of units which are pre-

supposed and regarded as equal ; the number v is the expression both for a

certain finite amount {Anzahl) of such successive positings,and for the com-

bination of the units posited into a whole. Thus the formation of finite

* Cf. supra Part IV, Chap, xxix, §§ 231, 232.

t Mannichfaltigkeitslehre, § 11, pp. 32, 33.
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real whole numbers rests on the addition of a unit to a number «hich

has already been formed ; I call this moment, which, as we shall see

immediately, also plays an essential part in the formation of the higher

integers, the Jitst principle of formation. The amount {Anznld) of

possible numbers v of the class (1) is infinite, and there is no greatest

among them. Thus ho\\e\er contradictory it would be to speak of

a greatest number of the class (1), there is yet nothing objectionable

in imagining a new number, which we will call o), which is to express

that the whole collection (1) is given by its la^^ in its natural order

of succession. (In the same way as v expresses the combination of a

certain finite amount of units into a whole.) It is even permissible to

think of the newly created number o) as a limit, towards which the

numbers v tend, if by this nothing else is understood but that a> is

the first integer which follows all the numbers v, i.e. is to be called

gi'eater than each of the numbers v. By allowing further additions

of units to follow the positing of the number a> we obtain, by the help

of \h&Jirst principle of formation, the further numbers

w + l, (w + 2, (o + V, ;

Since here again we come to no greatest number, we imagine a new one,

which we mav call 2&), and which is to be the first after all previous

numbers ;' and co + v.

" The logical function which has given us the two numbers w and Sw
is evidently different from the fir.sf principle of formation ; I call it the

.second principle offoiniation of real integers, and define it more exactly

as follows : If we have any determinate succession of defined real integers,

among which there is no greatest number, by means of this second

principle of formation a new number is created, which is regarded as

the limit of those numbers, i.e. is defined as the next numbei- greater

than all of them."

The two principles of formation will be made clearer by considering

that an ordinal number is merely a type or class of series, or rather

of their generating relations. Thus if we have any series which has

no last term, every part of such a series which can be defined as all

the terms up to and including a certain term of the series will ha^e

a last term. But since the series itself has no last term, it is of a

different type from any such part or segment of itself. Hence the

ordinal number representing the series as a whole must be different

from that representing any such segment of itself, and must be a

number having no immediate predecessor, since the series has no last

term. Thus a is simply the name of the class progression, or of the

generating relations of series of this class. The second principle of

formation, in short, is that by which we define a certain type of series

having no last term. Considering the ordinals preceding any ordinal

a which is obtained by the second principle as representing segments
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of a series represented by a, the ordinal a itself represents the limit

of such segments ; and as we saw before, the segments always have a,

limit (provided they have no maximum), even when the original series-

has none*.

In order to define a class among transfinite ordinals (of which, as

is evident, the succession is infinite). Cantor introduces what he calls

a principle of limitation {Hemmungsprincip)\ . According to this

principle, the second class' of ordinals is to consist only of those whose

predecessors, from 1 upwards, form a series of the first power, i.e. a series

whose cardinal number is a,,, or one whose terms, in a suitable order,

have a one-one relation to the finite integers. It is then shown that

the power, or cardinal number, of the second class of ordinals as a

whole, is different from «(, (p. 35), and is further the very next cardinal

number after «„ (p- 37). What is meant by the next cardinal number

to ao results clearly from the following proposition (p. 38) : "liM be any

well-defined collection of the power of the second class of numbers,

and if any infinite portion M' ofM be taken, then either the collection

M' can be considered as a simply infinite series, or it is possible to

estabhsh a unique and reciprocal correspondence between M and M'.""

That is to say, any part of a collection of the second power is either

finite, or of the first power, or of the second ; and hence there is no

power between the first and second.

292. Before proceeding to the addition, multiplication, etc., of

ordinals, it will be well to take the above propositions, as far as possible,

out of their mathematical dress, and to state, in ordinary language,

exactly what it is they mean. As for the ordinal a, this is simply the

name for the class of generating relations of progressions. We have

seen how a progression is defined : it is a series which has a first term,

and a term next after each term, and which obeys mathematical induc-

tion. By mathematical induction itself we can show that every part

of a progression, if it has a last term, has some finite ordinal number n,

where ?i denotes the class of series consisting of n terms in order ; while

every part which has no last term is itself a progression ; also we can

show (what is indeed obvious) that no finite ordinal will represent a

progression. Now progressions are a perfectly definite class of series,

and the principle of abstraction shows that there is some entity to

which all of them have a relation which they have to nothing else

—

for all progressions are ordinally similar (i.e. have a one-one relation

* On the segments of well-ordered series see Cantor's article in Math. Annalen,

xLix, § 13. It is important to observe that the ordinals above explained are

analogous, in their genesis, to the real numbers considered as segments {mde Chap.

XXXIII, supra). Here, as there, the existence of a is not open to question when

the segment-theory is adopted, whereas on any other theory the existence-theorem

is indemonstrable and unplausible.

t Mannichfaltigkeitshhre, p. 34.
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such that earUer terms are correlated with earlier ones, and later with

later), and ordinal similarity is symmetrical, transitive, and (among
series) reflexive. This entity, to which the principle of abstraction

points, may be taken to be the type or class of serial relations, since

no series can belong to moi-e than one type of series. The type to

which progressions belong, then, is what Cantor calls w. Mathematical

induction, starting from any finite ordinal, can never reach w, since

ft) is not a member of the class of finite ordinal's. Indeed, we may define

the finite ordinals or cardinals—and where series are concerned, this

seems the best definition^—as those which, starting from or 1, can be

reached by mathematical induction. This principle, therefore, is not to

be taken as an axiom or postulate, but as the definition of finitude. It

is to be observed that, in virtue of the principle that every number has

an immediate successor, we can prove that any assigned number, say,

10,937, is finite—provided, of course, that the number assigned is a

finite number. That is to say, every proposition concerning 10,937

can be proved without the use of mathematical induction, which, as

most of us can remember, was not mentioned in the Arithmetic of our

childhood. There is therefore no kind of logical error in using the

principle as a definition of the class of finite numbers, nor is there a

shadow of a reason for supposing that the principle applies to all

ordinal or all cardinal numbers.

At this point, a word to the philosophers may be in season. Most
of them seem to suppose that the distinction between the finite and

the infinite is one whose meaning is immediately evident, and they

reason on the subject as though no precise definitions were needed.

But the fact is, that the distinction of the finite from the infinite is

by no means easy, and has only been brought to light by modern

mathematicians. The numbers and 1 are capable of logical definition,

and it can be shown logically that every number has a successor. We
can now define finite numbers either by the fact that mathematical

induction can reach them, starting from or 1—in Dedekind's language,

that they form the chain of or 1—or by the fact that they are the

numbers of collections such that no proper part of them has the same

number as the whole. These two conditions may be easily shown to be

equivalent. But they alone precisely distinguish the finite from the

infinite, and any discussion of infinity which neglects them must be more

or less frivolous.

293. With regard to numbers of the second class other than to,

we may make the following remark. A collection of two or more

terms is always, except possibly for some very large infinite collections,

the field of more than one serial relation. Men may be arranged by

their rank, age, wealth, or in alphabetical order : all these relations

among men generate series, and each places mankind in a different

order. But when a collection is finite, all possible orders give one and
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the same ordinal number, namely that corresponding to the cardinal

number of the collection. That is to say, all series which can be formed

of a certain finite number of terms are ordinally similar. With infinite

series, this is quite different. An infinite collection of terms which is

capable of different orders may belong, in its various orders, to quite

different types. We have already seen that the rationals, in one order,

form a compact series with no beginning or end, while in another order

they form a progression. These are series of entirely different types;

and the same possibility extends to all infinite series. The ordinal type

of a series is not changed by the interchange of two consecutive terms,

nor, consequently, in virtue of mathematical induction, by any finite

number of such interchanges. The general principle is, that the type

of a series is not changed by what may be called a. permutation. That

is, if P be a serial relation by which the terms of u are ordered, R a

one-one relation whose domain and whose converse domain are both m,

then RPR is a serial relation of the same type as P ; and all serial

relations whose field is u, and which are of the same type as P, are of

the above form RPR. But by a rearrangement not reducible to a

permutation, the type, in general, is changed. Consider, for example,

the natural numbers, first in their natural order, and then in the order

in which 2 comes first, then all the higher numbers in their natural

order, and last of all 1. In the first order, the natural numbers form

a progression ; in the second, they form a progression together with

a last term. In the second form, mathematical induction no longer

applies ; there are propositions which hold of 2, and of every subsequent

finite number, but not of 1. The first form is the type of any funda-

mental series of the kind we considered in Chapter xxxvi ; the second is

the t}pe of any such series together with its limit. Cantor has shown

that every denumerable collection can be given an order which corre-

sponds to any assigned ordinal number of the second class*. Hence

the second class of ordinal numbers may be defined as all the types

of well-ordered series in which any one given denumerable collection can

be arranged by means of different generating relations. The possibility

of such different types depends upon the fundamental property of infinite

collections, that an infinite part of an infinite collection can always

be found, which will have a one-one correlation with the whole. If

the original collection was a series, the part, by this correlation, becomes

a series ordinally similar to the whole : the remaining terms, if added

after all the terms of the infinite part, will then make the whole

ordinally different from what it wasf.

* Acta Math, ii, p. 394.

t The remaining terms, if they be finite in number, will often not alter the type

if added at the beginning ; but if they be infinite, they will in general alter it even

then. This will soon be more fully explained.
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A\'e may assimilate the theory of ordinals to that of cardinals as

follows. Two relations will be said to be like when there is a one-one

relation ^', whose domain is the field of one of them (P), and which

is such that the other relation is SPS. If P be a well-ordered relation.

I.e. one which generates a well-oi-dered series, the class of relations like

P may be defined as the ordinal number of P. Thus ordinal numbers
result from likeness among relations as cardinals from similarity among
cleisses.

294. We can now understand the rules for the addition and multi-

plication of transHnite ordinals. Both operations obey the eissociative,

but not the commutative law. The distributive law is true, in general,

only in the form 7 (a -I- /3) = 7a -f 7/8,

where a + iB, a, yS are multipliei-s*. That addition does not obey the

connnutative law may be easily seen. Take for example 00 + 1 and
1 -I- to. The fii-st denotes a progression followed by a single term

:

this is the type presented by a progression and its limit, which is

different from a simple progression. Hence co + 1 is a different ordinal

from ID. But 1 -f o) denotes a progression preceded by a single term,

and this is again a progression. Hence 1 -(- co = ea, but l+a> does not

equal w + 1 f . The numbei-s of the second class are, in fact, of two

kinds, (1) those \\hich have an immediate predecessor, (2) those which

have none. Numbei-s such as co, m . 2, a).3,...a)-, w^.-o)"... have no

immediate predecessor. If any of these numbers be added to a finite

number, the same transfinite number reappeai"s ; but if a finite number
be added to anv of these numbei-s, we get a new number. The numbei-s

with no pi-edecessor represent series which have no end, while those

which have a predecessor represent series which have an end. It is

plain that terms added at the beginning of a series with no end leave it

endless; but the addition of a terminating series after an endless one pro-

duces a terminating series, and therefore a new type of oixler. Thus there

is nothing mysterious about these rules of addition, which simply express

the type of series resulting from the combination of t« o given series.

Hence it is easy to obtain the rules of subtraction]:. If a is less than

/S, the equation a -I- f= /3

has always one and only one solution in ^, which we may represent by

/S — a. This gives the type of series that must be added after a to

produce /?. But the equation

* Mannichfanigkeitslehre, p. 39; a+ 3 will be the type of a series consisting of

two parts, namely a part of the type a followed by a part of the type 3 ; ya will be

the t)-pe of a series consisting of a series of the type a of series of the type y. Thus

a series composed of two progressions is of the type a . 2.

t Math. Aitiialen. xlvi, ^ 8.

J MaimichfaUigkeits/ehre, p. 39.
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will sometimes have no solution, and at other times an infinite number

of solutions. Thus the equation

^+0) = tu + 1

has no solution at all : no number of terms added at the beginning of

a progression will produce a progression together with a last term. In

fact, in the equation f + a = /3, if a represents an endless type, while /3

represents a terminating type, it is sufficiently evident that terms added

before a can never produce a terminating type, and therefore can never

produce the type /3. On the other hand, if we consider the equation

this will be satisfied by ^= w + n, where n is zero or any finite number.

For 11 before the second w will coalesce with this to form co, and thus

o) + M + a) = G). 2. In this case, therefore, ^ has an infinite number of

values. In all such cases, however, the possible values of ^ have a

minimum, which is a sort of principal value of the difference between /S

and a. Thus subtraction is of two kinds, according as we seek a

number which, added to a, will give /3, or a number to which a may be

added so as to give /3. In the first case, provided a is less than /3, there

is always a unique solution ; in the second case, there may be no

solution, and there may be an infinite number of solutions.

295. The multiplication of ordinals is defined as follows*- Let

M and N be two series of the types a and /3. In N, in place of each

element n, substitute a series Mn of the type a ; and let jS* be the series

formed of all the terms of all series M^, taken in the following order

:

(1) any two elements of S which belong to the same series Mn are to

preserve the order they had in Mn ; two elements which belong to

different series Mn, Mn' are to have the order which n and n have in N.

Then the type of .S* depends only upon a and /3, and is defined to be

their product afd, where a is the multiplicand, and /8 the multiplicator.

It is easy to see that products do not always obey the commutative law.

For example, 2 . o is the type of series presented by

which is a progression, so that 2 . to = w. But &). 2 is the type

^1, ^2) ^3 ••• ^V1 •••! J\, J2, /3) •• Jv, •••

which is a combination of two progressions, but not a single progression.

In the former series, there is only one term, e-^, which has no immediate

predecessor ; in the latter there are two, e-^ and /i

.

Of division, as of subtraction, two kinds must be distinguished
"f.

If

there are three ordinals a, /3, 7, such that /S = 07, then the equation

/S = af has no other solution than f = 7, and we may therefore denote .

* Math. Annalen, xlvi, § 8.

t Mannichfaltigkeitslehre, p. 40.
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7 by 0/a*. But the equation /3 = fa, if soluble at all, may have several

or even an infinity of roots ; of which, however, one is always the

smallest. This smallest root is denoted by /3//a.

Multiplication of ordinals is the process of representing a series of

series as a single series, each series being taken as a whole, and preserving

its place in the series of series. Division, on the other hand, is the

process of splitting up a single series into a series of series, without

altering the order of its terms. Both these processes have some im-

portance in connection with dimensions. Division, as is plain, is only

possible with some types of series ; those with which it is not possible

may be called primes. The theory of primes is interesting, but it is

not necessary for us to go into it f

.

296. Every rational integral or exponential function of w is a

number of the second class, even when such numbers as &)", a>"^, etc.,

occur I . But it must not be supposed that all types of denumerable

series are capable of such a form. For example, the type r], which

represents the rationals in order of magnitude§, is wholly incapable of

expression in terms of m. Such a type is not called by Cantor an

ordinal number. The term ordinal number is reserved for well-ordered

series, i.e. such as have the following two properties
||

:

I. There is in the series F a first term.

II. If F' is a part of F, and if F possesses one or more terms which

come after all the terms of F', then there is a term f of

F which immediately follows F', so that there is no term of

F before/' and after all terms of F'.

All possible functions of w and finite ordinals only, to the exclusion of

other types such as that of the rationals, represent well-ordered series,

though the converse does not hold. In every well-ordered series, there

is a term next after any given term, except the last term if there be

one ; and provided the series is infinite, it always contains parts which

are progressions. A term which comes next after a progression has

no immediate predecessor, and the type of the segment formed of its

predecessors is of what is called the second species. The other terms

have immediate predecessors, and the types of the segments formed of

their predecessors are said to be of the first species.

* Cantor has changed his notation in regard to multiplication : formerly, in a . ^,

a was the multiplicator, and /3 the multiplicand; now, the opposite order is

adopted. In following older worksj except in actual quotations, I have altered the

order to that now adopted.

+ See Mannichfaltigkeitslehre, p. 40.

I On the exponential function, see Math. Annalen, xlix, §§ 18-20.

§ Math. Annalen, xlvi, § 9.

II
Math. Annalen, xlix, § 12. The definition may be replaced by the following,

which is equivalent to it: a series is well-ordered if every class contained in the

series (except of course the nuU-cIass) has a first term.
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297. The consideration of series which are not well-ordered is im-

portant, though the rejiults have far less affinity to Arithmetic than in

the case of well-ordered series. Thus the type iq is not expressible as a

function of (u, since all functions of w represent series with a first term,

whereas 17 has no first term, and all functions of a represent series in

which every term has an immediate successor, which again is not the

case with r). Even the series of negative and positive integers and zero

cannot be expressed in terms of w, since this series has no beginning.

Cantor defines for this purpose a serial type *&>, which may be taken as

the type of a regression (ib. § 7). The definition of a progression, as

we have seen, is relative to some one-one aliorelative Pf. When P

generates a progression, this progression with respect to P is a regression

with respect to P, and its type, considered as generated by P, is denoted

by *&). Thus the whole series of negative and positive integers is

of the type *&> -t- w. Such a series can be divided anywhere into two

progressions, generated by converse relations ; but in regard to one

relation, it is not reducible to any combination of progressions. Such a

series is completely defined, by the methods of Part IV, as follows : P is

a one-one aliorelative ; the field of P is identical with that of P ; the

disjunctive relation "some finite positive power of P" is transitive and

asymmetrical ; and the series consists of all terms having this relation

or its converse to a given term together with the given term. The class

of series corresponding to any transfinite ordinal type may always be

thus defined by the methods of Part IV ; but where a type cannot be

expressed as a function of w or * to or both, it will usually be necessary,

if we are to define our tvpe completely, either to bring in a reference to

some other relation, in regard to which the terms of our series form a pro-

gression, or to specify the behaviour of our series with respect to limits.

Thus the type of the series of rationals is not defined by specifying that

it is compact, and has no beginning or end ; this definition applies also,

for example, to what Cantor calls the semi-continuum, i.e. the continuum

with its ends cut off. We must add that the rationals are denumerable,

i.e. that, with respect to another relation, they form a progression.

I doubt whether, in this case, the behaviour of the rationals with

regard to limits can be used for definition. Their chief characteristics

in this respect are : (1) that they are condensed in themselves, i.e. every

term of them is the limit of certain progressions and regressions

;

(2) in any interval, a progression or a regression which has no limit is

contained. But both these characteristics belong to the series of

irrational numbers, i.e. to the series obtained by omitting all rationals

from the series of real numbers ; yet this series is not denumerable.

t An aliorelative is a relation which no term can have to itself. This term is due

to Pierce. See Schroder, Algebra u. Logik der Relative, p. 131.
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Thus it would seem that we cannot define the tj-pe -q, to which the

rationals belong, without reference to two generating relations. The
type r) is that of endless compact series whose terms, with reference to

another relation, form a progression.

From the last remark, we see clearly the importance of the correlation

of series, with which we began the discussions of Part V. For it is only

by means of correlation that the type of the rationals, and hence the

continuum, can be defined. Until we bring in some other relation than
that by which the order of magnitude among rationals arises, there

is nothing to distinguish the type of the rationals from that of the

irrationals.

298. The consideration of ordinals not expressible as functions of

w shows clearly that ordinals in general are to be considered—as I

suggested at the beginning of this chapter—as classes or types of

serial relations, and to this view Cantor himself now apparently adheres;

for in the article in the Mathematische Anncden, Vol. xlvi, he speaks of

them always as types of order, not as numbers, and in the following

article (Math. Anncden, xux, § 12), he definitely restricts ordinal numbers

to well-ordered series. In his earlier writings, he confined himself

more to functions of to, which bear many analogies to more familiar

kinds of numbers. These are, in fact, types of order which may be

presented by series of finite and transfinite cardinals which begin with

some cardinal. But other types of order, as we have now seen, have

very little resemblance to numbers.

299. It is worth while to repeat the definitions of general notions

involved in terms of what may be called relation-arithmetic*. If P, Q be

two relations such that there is a one-one relation S whose domain is the

field of P and which is such that Q = SPS, then P and Q are said to be

nice. The class of relations like P, which I denote by \P, is called

P's relation-number. If the fields of P and Q have no common terms,

P -I- ^ is defined to be P or Q or the relation which holds between any

term of the field of P and any term of the field of Q, and between no

other terms. Thus P + Q is not equal to Q + P. Again \P + XQ is

defined as \ (P + Q). For the summation of an infinite number of

relations, we require an aliorelative whose field is composed of relations

whose fields are mutually exclusive. Let P be such a relation, p its

field, so that ^ is a class of relations. Then 2pp is to denote either one

of the relations of the class p or the relation of any term belonging

to the field of some relation Q of the class p to a term belonging to the

field of another relation R (of the class p) to which Q has the relation P.

(If P be a serial relation, and p> a class of serial relations, Spp will be the

generating relation of the sum of the various series generated by terms

of jo taken in the order generated by P.) We may define the sum

* C'f. Part IV, Chap, xxix, § 231.

R. 21
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of the relation-numbers of the various terms of p as the relation-number

of 2j^. If all the terms of p have the same relation-number, say a,

and if /3 be the relation-number of P, a x /3 will be defined to be the

relation-number of Spp. Proceeding in this way, it is easy to prove

generally the three formal laws which hold of well-ordered series,

namely

:

a (/S -I- 7) = a/3 + a7

(a/S)7 = a(,87).

The proofs are very closely analogous to those discovered by Mr White-

head for cardinal numbers {Amer. Journal of Math., Vol. xxiv); but

they differ by the fact that no method has yet been discovered for

defining an infinite product of relation-numbers, or even of ordinal

numbers.

300. It is to be observed that the merit of the above method is

that it allows no doubt as to existence-theorems—a point in which

Cantor's work leaves something to be desired. As this is an important

matter, and one in which philosophers are apt to be sceptical, I shall

here repeat the argument in outline. It may be shown, to begin with,

that no finite class embraces all terms : this results, with a little care,

from the fact that, since is a cardinal number, the number of numbers

up to and including a finite number n is n + 1. Further, if n be a

finite number, n + 1 is a new finite number different from all its prede-

cessors. Hence finite cardinals form a progression, and therefore the

ordinal number to and the cardinal number ao exist (in the mathematical

sense). Hence, by mere rearrangements of the series of finite cardinals,

we obtain all ordinals of Cantor's second class. We may now define the

ordinal number co^ as the class of serial relations such that, if u be a class

contained in the field of one of them, to say that u has successors implies

and is implied by saying that u has a,, terms or a finite number of terms

;

and it is easy to show that the series of ordinals of the first and second

classes in order of magnitude is of this type. Hence the existence of (Bj

is proved; and a^ is defined to be the number of terms in a series

whose generating relation is of the type oji. Hence we can advance to

(»2 and a 2 and so on, and even to «„ and a„, whose existence can be

similarly proved : £o„ will be the type of generating i-elation of a series

such that, if M be a class contained in the series, to say that u has

successors is equivalent to saying that 11 is finite or has, for a suitable

finite value of n, a^ terms. This process gives us a one-one correlation

of ordinals with cardinals : it is evident that, by extending the process,

we can make each cardinal which can belong to a well-ordered series

correspond to one and only one ordinal. Cantor assumes as an axiom that

every class is the field of some well-ordered series, and deduces that all

cardinals can be correlated with ordinals by the above method. This
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assumption geems to me unwarranted, especially in view of the fact that
no one has yet succeeded in arranging a class of ^"^ terms in a well-

ordered series. We do not know that of any two different cardinal

numbers one must be the greater, and it may be that 2"" is neither

greater nor less than Hj and a^ and their successors, which may be called

well-ordered cardinals because they apply to well-ordered classes.

301. There is a difficulty as regards the type of the whole series of
ordinal numbers. It is easy to prove that every segment of this series

is well-ordered, and it is natural to suppose that the whole series is also

well-ordered. If so, its type would have to be the greatest of all ordinal

numbers, for the ordinals less than a given ordinal form, in order of

magnitude, a series whose type is the given ordinal. But there cannot be
a greatest ordinal number, because every ordinal is increased by the

addition of 1. From this contradiction, M. Burali-Forti, who dis-

covered it*, infers that of two different ordinals, as of two different

cardinals, it is not necessary that one should be greater and the
other less. In this, however, he consciously contradicts a theorem of

Cantor's which affirms the opposite f. I have examined this theorem
with all possible care, and have failed to find any flaw in the proof j.

But there is another premiss in M. Burali-Forti's argument, which
appears to me more capable of denial, and that is, that the series of all

ordinal numbers is well-ordered. This does not follow from the fact

that all its segments are well-ordered, and must, I think, be rejected,

since, so far as I know, it is incapable of proof. In this way, it would
seem, the contradiction in question can be avoided.

302. We may now return to the subject of the successive derivatives

of a series, already briefly discussed in Chapter xxxvi. This forms one of

the most interesting applications of those ordinals which are functions

of ffl, and may even be used as an independent method of defining them.
We have already seen how, from a series P, its first derivative is

obtained §. The first derivative of P, which is denoted by P', is the

class of its limiting points. P", the second derivative of P', consists of

the limiting-points of P', and so on. Every infinite collection has

at least one limiting-point : for example, w is the limit of the fiiiite

ordinals. By induction we can define any derivative of finite order P".

If P"" consists of a finite number of points, P''+i vanishes ; if this happens
for any finite number v, P is said to be of the 1st genus and the i^th

* "Una questione sui numeri transfiniti," liendiconti del circolo Matematico di

Palermo, Vol. xi (1897).

t Theorem n of § 13 of Cantor's article in Math. Annalen, Vol. xlix.

+ I have reproduced the proof in symbolic form, in which errors are more easily

detected, in RdM, Vol. viii, Prop. 5.47 of my article.

§ What follows is extracted from Acta Math, ii, pp. 341-360. I shall assume for

simplicity that all definable limits exists i.e. that a series has a limit whenever the

corresponding segments have one. I have shown in Chapter xxxvi how to state results

so as to avoid this assumption ; but the necessary circumlocution is tiresome.

21—2
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species. But it may happen that no P" vanishes, and in this case

all finite derivatives may have common points. The points which all

have in common form a collection which is defined as P". It is to be

observed that P" is thus defined without requiring the definition of m.

A term x belongs to P" if, whatever finite integer v may be, x belongs

to P"^ It is to be observed that, though P" may contain points not

belonging to P, yet subsequent derivatives introduce no new points.

This illustrates the creative nature of the method of limits, or rather of

segments : when it is first applied, it may yield new terms, but later

applications give no further terms. That is, there is an intrinsic differ-

ence between a series which has been, or may have been, obtained as the

derivative of some other series, and one not so obtainable. Every series

which contains its first derivative is itself the derivative of an infinite

number of other series*. The successive derivatives, like the segments

determined by the various terms of a regression, form a series in which

each term is part of each of its predecessors ; hence P", if it exists, is the

lower limit of all the derivatives of finite order. From P" it is easy to go

on to P" + ", P"- ^, etc. Series can be actually constructed in which any

assigned derivative, finite or transfinite of the second class, is the first to

vanish. When none of the finite derivatives vanishes, P is said to be of

the second genus. It must not be inferred, however, that P is not

denumerable. On the contrary, the first derivative of the rationals is

the number-continuum, which is perfect, so that all its derivatives are

identical with itself; yet the rationals, as we know, are denumerable.

But when P" vanishes, P is always denumerable, if v be finite or of

the second class.

The theory of derivatives is of great importance to the theory of

real functions f, where it practically enables us to extend mathematical

induction to any ordinal of the second class. But for philosophy, it

seems unnecessary to say more of it than is contained in the above

remarks and in those of Chapter xxxvi. Popularly speaking, the first

derivative consists of all points in whose neighbourhood an infinite

number of terms of the collection are heaped up ; and subsequent deriva-

tives give, as it were, different degrees of concentration in any neigh-

bourhood. Thus it is easy to see why derivatives are relevant to

continuity : to be continuous, a collection must be as concentrated as

possible in every neighbourhood containing any terms of the collection.

But such popular modes of expression are incapable of the precision

which belongs to Cantor's terminology.

'^ Formulab-e de Mathematiques, Vol. ii. Part iii, § 71, 4-8.

t See Dini, Theorie der Functionen, Leipzig, 1892; esp. Chap, xiii and

Translator's preface.



CHAPTER XXXIX.

THE INFINITESIMAL CALCULUS.

303. The Infinitesimal Calculus is the traditional name for the

diiFerential and integral calculus together, and as such I have retained

it ; although, as we shall shortly see, there is no allusion to, or implica-

tion of, the infinitesimal in any part of this branch of mathematics.

The philosophical theory of the Calculus has been, ever since the

subject was invented, in a somewhat disgraceful condition. Leibniz

himself—who, one would have supposed, should have been competent

to give a correct account of his own invention—had ideas, upon this

topic, which can only be described as extremely crude. He appears

to have held that, if metaphysical subtleties are left aside, the

Calculus is only approximate, but is justified practically by the fact

that the errors to which it gives rise are less than those of observa-

tion*. When he was thinking of Dynamics, his belief in the actual

infinitesimal hindered him from discovering that the Calculus rests

on the doctrine of limits, and made him regard his dx and dy as

neither zero, nor finite, nor mathematical fictions, but as really

representing the units to which, in his philosophv, infinite division

was supposed to leadf. And in his mathematical expositions of the

subject, he avoided giving careful proofs, contenting himself with

the enumeration of rulesl- At other times, it is true, he definitely

rejects infinitesimals as philosophically \alid§; but he failed to show

how, without the use of infinitesimals, the results obtained by means

of the Calculus could yet be exact, and not approximate. In this

respect, Newton is preferable to Leibniz : his Lemmas
||

give the true

foundation of the Calculus in the doctrine of limits, and, assuming the

continuity of space and time in Cantor's sense, they give valid proofs

* Cf. MathematimI Works, Gerhardt's ed. iv, pp. 91-93; Phil. Workx,

Gerhardt's ed. ii, p. 282.

t See Math. Works, Gerhardt's ed. vi, pp. 2.'5o, 247, 2o2.

X See Math. Works, Gerhardt's ed., \o\. v, pp. 220 ff.

§ E.g. Phil. Works, Gerhardt's ed., ii, p. 30.5. Cf. Cassirer, Leibniz .Si/st^in

(Marburg, 1902), pp. 200-7.

II
Prineipia, Part I, Section i.
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of its rules so far as spatio-temporal magnitudes are concerned. But

Newton was, of course, entirely ignorant of the fact that his Lemmas
depend upon the modern theory of continuity ; moreover, the appeal

to time and change, which appears in the word fluxion, and to space,

which appears in the Lemmas, was wholly minecessary, and served

merely to hide the fact that no definition of continuity had been

given. Whether Leibniz avoided this error, seems highly doubtful;

it is at any rate certain that, in his first published account of the

Calculus, he defined the differential coefficient by means of the tangent

to a curve. And by his emphasis on the infinitesimal, he gave a wrong

direction to speculation as to the Calculus, which misled all mathe-

maticians before Weierstrass (with the exception, perhaps, of De

Morgan), and all philosophers down to the present day. It is only

in the last thirty or forty years that mathematicians have provided the

requisite mathematical foimdations for a philosophy of the Calculus; and

these foundations, as is natural, are as yet little known among philo-

sophers, except in France*. Philosophical works on the subject, such

as Cohen's Princ'ip der Infimtesimalmethode und seine Geschichie\, are

vitiated, as regards the constructive theory, by an undue mysticism,

inherited from Kant, and leading to such results as the identification of

intensive magnitude with the extensive infinitesimal|. I shall examine

in the next chapter the conception of the infinitesimal, which is essential

to all philosophical theories of the Calculus hitherto propounded. For

the present, I am only concerned to give the constructive theory as it

results from modem mathematics.

304. The differential coefficient depends essentially upon the notion

of a continuous function of a continuous variable. The notion to be

defined is not purely ordinal ; on the contrary, it is applicable, in the

first instance, only to series of numbers, and thence, by extension, to

series in which distances or stretches are numerically measureable. But

first of all we must define a continuous function.

We have already seen (Chap, xxxii.) what is meant by a function of a

variable, and what is meant by a continuous variable (Chap, xxxvi.). K
the function is one-valued, and is only ordered by correlation with the

variable, then, when the variable is continuous, there is no sense in asking

whether the function is continuous ; for such a series by correlation is

always ordinally similar to its prototype. But when, as where the variable

and the field of the function are both classes of numbers, the function

has an order independent of correlation, it may or may not happen that

the values of the function, in the order obtained by correlation, form a

continuous series in the independent order. When they do so in any

interval, the function is said to be continuous in that interval. The

* See Couturat, De I'lnfini Mathemutiqiie, passim.

t Berlin, 188.3. The historical part of this n-ork, it should he said, is admirable.

+ Op. cit. p. 1.5.
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precise definitions of continuous and discontinuous functions, ^^here both

X and f{x) are numerical, are given by Dini * £is follows. The inde-

pendent variable x is considered to consist of the real numbers, or of all

the real numbers in a cei-tain interval ; f{x), in the interval considered,

is to be one-valued, even at the end-points of the interval, and is to be

also composed of real numbers. We then have the following definitions,

the function being defined for the interval between a and yS, and a being

some real number in this interval.

" We call y(a') cmttiiiuoiis for x = a, or in the point a, in which it

has the value f{a), if for everv positive number cr, different from 0,

but as small as we please, there exists a positive number e, different

from 0, such that, for all values of h which are numerically less than e,

the difference f{a + h) —f{a) is numerically less than cr. In other

words,y(.r) is continuous in the point x = a, where it has the valuey(a),

if the limit of its values to the right and left of a is the same, and

equal toy(«).'''

" Again, J\x) is discontinuous for x = a, if, for anyf positive value

of cr, "there is no corresponding positive value of e such that, for all

values of 8 which are numerically less than e, f{a -\- S) —f(a) is always

less than cr; in other words, _/"(j') is discontinuous for x = a, when the

values_/"(« -I- /() oi f{x) to the right of a, and the values f{a — h) oif{x)
to the left of a, the one and the other, have no determinate limits, or, if

they have such, these are diflt'erent on the two sides of a ; or, if they are

the same, they differ fi-om the value f{a), which the function has in the

point fl."

These definitions of the continuity and discontinuity of a function, it

must be confessed, are somewhat complicated ; but it seems impossible to

introduce anv simplification without loss of rigour. Roughly, we may
say that a function is continuous in the neighbourhood of a, when its

values as it approaches a approach the value f{a), and have f{a) for

their limit both to left and right. But the notion of the limit of a

function is a somewhat more complicated notion than that of a limit in

general, with which we have been hitherto concerned. A function 6f a

perfectlv general kind will have no limit as it approaches any given

point. In order that it should have a limit as .r approaches a from the

left, it is necessai-y and sufficient that, if any number e be mentioned,

any two values of f{x), when x is sufficiently near to a, but less than a,

will differ by less than e ; in popular language, the value of the function

does not make any sudden jumps as .r approaches a from the left.

Under similar circumstances, f{x) will have a limit as it approaches a

from the right. But these two limits, even when both exist, need not be

equal either to each other, or to /(a), the value of the function when

* Op. cit. § 30, pp. 50, 51.

t The German (not the Italian) has every instead of any, but this is a slip.
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X = a. The precise condition for a determinate finite limit may be thus

stated *

:

" In order that the values of y to the right or left of a finite number

a (for instance to the right) should have a determinate and finite limit,

it is necessary and sufficient that, for every arbitrarily small positive

number a, there should be a positive number e, such that the difference

ya+€— ya+s between the value ya+e o^ y for oc = a-\-e, and the value

ya+ii which corresponds to the value a + S of x, should be numei-ically

less than a, for every S which is greater than and less than e."

It is possible, instead of thus defining the limit of a function, and

then discussing whether it exists, to define generally a whole class of

limits f. In this method, a number z belongs to the class of limits of y
for x= a, if, within any interval containing a, however small, y will

approach nearer to z than by any given difference. Thus, for example,

sin Ijx, as x approaches zero, will take every value from — 1 to + 1 (both

inclusive) in every finite interval containing zero, however small. Thus

the interval from — 1 to 4- 1 forms, in this case, the class of limits

for x=Q. This method has the advantage that the class of limits always

exists. It is then easy to define the limit as the only member of the

class of limits, in case this class should happen to have only one member.

This method seems at once simpler and more general.

305. Being now agreed as to the meaning of a continuous function,

and of the limit of a function, we can attack the question of the

derivative of a function, or differential coefficient. It was formerly

supposed that all continuous functions could be differentiated, but this

is now known to be erroneous. Some can be differentiated everywhere,

others everywhere except in one point, others have everywhere a differen-

tial on the right, but sometimes none on the left, others contain an

infinite number of points, in any finite interval, in which they cannot

be differentiated, though in an infinitely greater number of points they

can be differentiated, others lastly—and these are properly the most

general class—cannot be differentiated anywhere at all J. But the

conditions under which a function may be differentiated, though they

are of some importance to the philosophy of space and of motion, need

not greatly concern us here ; and in any case, we must first know what a

differential is.

If f{x) be a function which is finite and continuous at the point x,

then it may happen that the fraction

\f{x+h)-f{xW
has a definite limit as S approaches to zero. If this does happen, the

* Dini, op. cit. p. .38.

t See Peano, lihnsta di Matematica, ii, pp. 77-79; Formulaire, Part in, § 7-^; l-O.

I See Dini, op. cit. Chaps, x, xi, xii; EncyUlopildie der math. Wissenxchaften,

Band ii, Heft i (Leipssig, 1899), esp. pp. 20-22.
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limit is denoted hy f\x), and is called the derivative or differential of

f{x) in the point x. If, that is to say, there be some number z such

that, given any number e however small, if 8 be any number less than

some number r), but positive, then {f{oo ±h) — f(x)]/ ± 8 differs from

z by less than e, then z is the derivative of /"(a?) in the point x. If the

limit in question does not exist, then y(^) has no derivative at the point

X. It f{x) be not continuous at this point, the limit does not exist;

if ,f{x) be continuous, the limit may or may not exist.

306. The only point which it is important to notice at present is,

that there is no implication of the infinitesimal in this definition. The
number B is always finite, and in the definition of the limit there is

nothing to imply the contrary. In fact, {/ (x + B) — f{x)\lh, regarded

as a function of B, is wholly indeterminate when 8 = 0. The limit of a

function for a given value of the independent variable is, as we have

seen, an entirely different notion from its value for the said value of the

independent variable, and the two may or may not be the same number.

In the present case, the limit may be definite, but the value for S = can

have no meaning. Thus it is the doctrine of limits that underlies the

Calculus, and not any pretended use of the infinitesimal. This is the

only point of philosophic importance in the present subject, and it is

only to elicit this point that I have dragged the reader through so much
mathematics.

307. Before examining the infinitesimal on its own account, it

remains to define the definite integral, and to show that this, too, does

not involve the infinitesimal. The indefinite integral, which is the

mere converse of the differential, is of no importance to us ; but the

definite integral has an independent definition, which must be briefly

examined.

Just as the derivative of a function is the limit of a fraction, so the

definite integral is the limit of a sum* The definite integral may be

defined as follows : Let f{x) be a function which is one-valued and

finite in the interval a to /3 (both inclusive). Divide this interval into

any n portions by means of the (« — 1) points x-i, x^, ... Xn-^, and denote

by Bi, 82, ... Bn the n intervals x^ — a., X;^ — X2, ... IS — Xn-^. In each of

these intervals, Bg, take any one of the values, sayy(fg), which y(j')

assumes in this interval, and multiply this value by the interval 8,.

n
Now form the sum % f(Xg) Bg. This sum will always be finite. If

1

now, as n increases, this sum tends to one definite limit, however f{^s)

* The definitiou of the definite integral differs little in different modern works.

Cp. Dini, op. cit. §§ 178-181 ; Jordan, Cours d'Analyxe, \o\. i (Paris, 1893), Chap, i,

§§ 41-58; Encyklopildie der mathematischen Wis-teiuchaften, ii, A. 2, § 31. The
definition as the limit of a sum is more consonant with Leihniz's views than that as

the inverse of a derivative, but was banished by Bernoulli and Euler, and only

brought back by Cauchy. See references in the last-mentioned place.
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may be chosen in its interval, and however the intervals be chosen (pro-

vided only that all are less than any assigned number for sufficiently

great values of n)—then this one limit is called the definite integral

of f{x) from a to /3. If there is no such limit, f{x) is not integrable

from a to /3. »

308. As in the case of the derivative, there is only one important

remark to make about this definition. The definite integral involves

neither the infinite nor the infinitesimal, and is itself not a sum, but

only and strictly the limit of a sum. All the terms which occur in the

sum whose limit is the definite integral are finite, and the sum itself

is finite. If we were to suppose the limit actually attained, it is true,

the number of intervals would be infinite, and the magnitude of each

would be infinitesimal ; but in this case, the sum becomes meaningless.

Thus the sum must not be regarded as actually attaining its limit. But

this is a respect in which series in general agree. Any series which

always ascends or always descends and has no last term cannot reach its

limit ; other infinite series may have a term equal to their limit, hut if

so, this is a mere accident. The general rule is, that the limit does not

belong to the series which it limits ; and in the definition of the deriva-

tive and the definite integral we have merely another instance of this faut.

The so-called infinitesimal calculus, therefore, has nothing to do with

the infinitesimal, and has only indirectly to do with the infinite—its

connection with the infinite being, that it involves limits, and only

infinite series have limits.

The above definitions, since they involve multiplication and division,

are essentially arithmetical. Unlike the definitions of limits and con-

tinuity, they cannot be rendered purely ordinal. But it is evident that

they may be at once extended to any numerically measurable magnitudes,

and therefore to all series in which stretches or distances can be measured.

Since spaces, times, and motions are included under this head, the Cal-

culus is applicable to Geometry and Dynamics. As to the axioms

involved in the assumption that geometrical and dynamical fmictions

can be differentiated and integrated, I shall have something to say at a

later stage. For the present, it is time to make a critical examination of

the infinitesimal on its own account.



CHAPTER XL.

THE INFIMTESI.MAL AND THE BIPROPER INFINITE.

309. UxTiL recent times, it was universally believed that continuitv,

the derivative, and the definite integral, all in\ohed actual infinitesimals,

i.e. that even if the definitions of these notions could be formally freed

from explicit mention of the infinitesimal, vet, where the definitions

applied, the actual infinitesimal must always be found. This belief is

now generallv abandoned. The definitions which have been given in

previous chapters do not in anv way implv the infinitesimal, and this

notion appears to have become mathematically useless. In the present

chapter, I shall first give a definition of the infinitesimal, and then

examine the cases where this notion arises. I shall end bv a critical

discussion of the belief that continuitv implies the infinitesimal.

The infinitesimal has, in general, been very vaguely defined. It has

been regarded as a number or magnitude which, though not zero, is less

than anv finite number or magnitude. It has been the dx or dy of the

Calculus, the time during which a ball thrown vertically upwards is at

rest at the highest point of its coui-se, the distance between a point on

a line and the next point, etc., etc. But none of these notions are at

all precise. The dx and dij, as we saw in the last chapter, are nothing

at all : dyjdx is the limit of a fraction whose numerator and denominator

are finite, but is not itself a fi-action at all. The time during \\hich a

ball is at rest at its highest point is a very complex notion, involving

the whole philosophic theory of motion : in Part VII we shall find,

when this theory has been developed, that there is no such time. The

distance between consecutive points presupposes that there are con-

secutive points—a view which there is every reason to deny. And so

with most instances—thev afford no precise definition of what is meant

by the infinitesimal.

310. There is, so far as I know, only one precise definition, which

rendei-s the infinitesimal a purely relative notion, correlative to some-

thing arbitrarily assumed to be finite, ^^^len, instead, we regard what

had been taken to be infinitesimal as finite, the con-elative notion is

what Cantor calls the improper infinite {UneigentUcli-Unendlkhes). The
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definition of the relation in question is obtained by denying the axiom

of Archimedes, just as the transfinite was obtained by denying mathe-

matical induction. If P, Q be any two numbers, or any two measurable

magnitudes, they are said to be finite with respect to each other when,

if P be the lesser, there exists a finite integer n such that nP is greater

than Q. The existence of such an integer constitutes the axiom of

Archimedes and the definition of relative finitude. It will be observed

that it presupposes the definition of absolute finitude among numbers

—

a definition which, as we have seen, depends upon two points, (1) the

connection of 1 with the logical notion of simplicity, or of with

the logical notion of the null-class
; (2) the principle of mathematical

induction. The notion of relative finitude is plainly distinct from that

of absolute finitude. The latter applies only to numbers, classes and

divisibilities, whereas the former applies to any kind of measurable

magnitude. Any two numbers, classes, or divisibilities, which are both

absolutely finite are also relatively finite ; but the converse does not

hold. For example, o) and (u . 2, an inch and a foot, a day and a year,

are relatively finite pairs, though all thi-ee consist of terms which are

absolutely infinite.

The definition of the infinitesimal and the improper infinite is then

as follows. If P, Q be two numbers, or two measurable magnitudes of

the same kind, and if, ?i being any finite integer whatever, nP is always

less than Q, then P is infinitesimal with respect to Q, and Q is infinite

with respect to P. With regard to numbers, these relative terms are

not required ; for if, in the case supposed, P is absolutely finite, then Q
is absolutely infinite ; while if it were possible for Q to be absolutely

finite, P would be absolutely infinitesimal—a case, however, which we

shall see reason to regard as impossible. Hence I shall assume in future

that P and Q are not numbers, but are magnitudes of a kind of which

some, at least, are numerically measurable. It should be observed that,

as regards magnitudes, the axiom of Archimedes is the only way of

defining, not only the infinitesimal, but the infinite also. Of a magni-

tude not numerically measurable, there is nothing to be said except that

it is greater than some of its kind, and less than others ; but from such

propositions infinity cannot be obtained. Even if there be a magnitude

greater than all others of its kind, there is no reason for regarding it as

infinite. Finitude and infinity are essentially numerical notions, and

it is only by relation to numbers that these terms can be applied to

other entities.

311. The next question to be discussed is. What instances of in-

finitesimals are to be found ? Although there are far fewer instances

than was formerly supposed, there are yet some that are important. To

begin with, if we have been right in regarding divisibility as a magni-

tude, it is plain that the divisibility of any whole containing a finite

number of simple parts is infinitesimal as compared with one containing
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an infinite number. The number of parts being taken as the measure,

every infinite whole will be greater than n times every finite whole,

whatever finite number n may be. This is therefore a perfectly clear

instance. But it must not be supposed that the ratio of the divisibilities

of two wholes, of which one at least is transfinite, can be measured by

the ratio of the cardinal numbers of their simple parts. There are two

reasons why this cannot be done. The first is, that two transfinite

cardinals do not have any relation strictly analogous to ratio ; indeed,

the definition of ratio is effected by means of mathematical induction.

The relation of two transfinite cardinals a, y expressed by the equation

a/3 = 7 bears a certain resemblance to integral ratios, and a/3 = y8 may
be used to define other ratios. But ratios so defined ai-e not very similar

to finite ratios. The other reason why infinite divisibilities must not be

measured by transfinite numbers is, that the whole must always have

more divisibility than the part (provided the remaining part is not

relatively infinitesimal), though it may have the same transfinite number.

In short, divisibilities, like ordinals, are equal, so long as the wholes are

finite, when and only when the cardinal numbers of the wholes are the

same ; but the notion of magnitude of divisibility is distinct from that

of cardinal number, and separates itself visibly as soon as we come to

infinite wholes.

Two infinite wholes may be such that one is infinitely less divisible

than the other. Consider, for example, the length of a finite straight

line and the area of the square upon that straight line ; or the length

of a finite straight line and the length of the whole straight line of

which it forms part (except in finite spaces) ; or an area and a volume

;

or the rational numbers and the real numbers ; or the collection of

points on a finite part of a line obtainable by von Staudt's quadrilateral

construction, and the total collection of points on the said finite part*.

All these are magnitudes of one and the same kind, namely divisibilities,

and all are infinite divisibilities ; but they are of many different orders.

The points on a limited portion of a line obtainable by the quadrilateral

construction form a collection which is infinitesimal with respect to the

said portion ; this portion is ordinally infinitesimal f with respect to any

bounded area ; any bounded area is ordinally infinitesimal with respect to

any bounded volume ; and any bounded volume (except in finite spaces) is

ordinally infinitesimal with respect to all space. In all these cases, the

word infinitemnal is used strictly according to the above definition,

obtained from the axiom of Archimedes. What makes these various

infinitesimals somewhat unimportant, from a mathematical standpoint, is,

that measurement essentially depends upon the axiom of Archimedes, and

cannot, in general, be extended by means of transfinite numbers, for the

reasons which have just been explained. Hence two divisibilities, of

* See Part VI, Chap. xlv. t See Part VI, Chap. xLvn, § 397.
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which one is infinitesimal with respect to the other, are regarded usually

as different kinds of magnitude ; and to regard them as of the same kind

gives no advantage save philosophic correctness. All of them, however,

are strictly instances of infinitesimals, and the series of them well illus-

trates the relativity of the term infinitesimal.

All interesting method of comparing certain magnitudes, analogous

to the divisibilities of any infinite collections of points, with those of

continuous stretches is given by Stolz *, and a very similar but more

general method is given by Cantorf. These methods are too mathe-

matical to be fully explained here, but the gist of Stolz's method may
be briefly explained. Let a collection of points .r' be contained in some

finite interval a to b. Divide the interval into any number n of parts,

and divide each of these parts again into any number of parts, and so

on ; and let the successive divisions be so effected that all parts become

in time less than any assigned number 8. At each stage, add together

all the parts that contain points of x . At the wth stage, let the

resulting sum be Sm- Then subsequent divisions may diminish this sum,

but cannot increase it. Hence as the number of divisions increases,

Sm must approach a limit L. If x is compact throughout the interval,

we shall have L = b — a\ if any finite derivative of x vanishes, L = 0.

L obviously bears an analogy to a definite integral ; but no conditions

are required for the existence of L. But L cannot be identified with

the divisibility ; for some compact series, e.g. that of rationals, are

less divisible than others, e.g. the continuum, but give the same value

of Z.

312. The case in which infinitesimals were formerly supposed to be

peculiarly evident is that of compact series. In this case, however, it is

possible to prove that there can be no infinitesimal segments j, provided

numerical measurement be possible at all—and if it be not possible, the

infinitesimal, as we have seen, is not definable. In the first place, it is

evident that the segment contained between two different terms is always

infinitely divisible ; for since there is a term c between any two a and h,

there is another d between a and c, and so on. Thus no terminated

segment can contain a finite number of terms. But segments defined by

a class of terms may (as we saw in Chapter xxxiv) have no limiting term.

In this case, however, provided the segment does not consist of a single

term a, it will contain some other term h, and therefore an infinite

number of terms. Thus all segments are infinitely divisible. The next

point is to define multiples of segments. Two terminated segments can

be added by placing a segment equal to the one at the end of the other

to form a new segment ; and if the two were equal, the new one is said

* Math. Annalen, 23, "Ueber einen zn einer unendlichen Punktmenge gehorigen

Grenzwerth."

t lb. "Ueber unendlicbe lineare Punktmamiigfaltigkeiten," No. 6.

% See Peano, Eivista di Matematica, Vol. n, pp. 58-62.
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to be double of each of them. But if the two segments are not termi-

nated, this process cannot be employed. Their sum, in this case, is

defined by Professor Peano as the logical sum of all the segments obtained

by adding two terminated segments contained respectively in the two
segments to be added*. Having defined this sum, we can define any
finite multiple of a segment. Hence we can define the class of terms

contained in some finite multiple of our segment, i.e. the logical sum of

all its finite multiples. If, with respect to all greater segments, our
segment obeys the axiom of Archimedes, then this new class will contain

all terms that come after the origin of our segment. But if our segment
be infinitesimal with respect to any other segment, then the class in

question will fail to contain some points of this other segment. In this

case, it is shown that all transfinite multiples of our segment are equal

to each other. Hence it follows that the class formed by the logical

sum of all finite multiples of our segment, which may be called the

infinite multiple of our segment, must be a non-terminated segment,

for a terminated segment is always increased by being doubled. " Each
of these results," so Professor Peano concludes, " is in contradiction with

the usual notion of a segment. And from the fact that the inftnitesimal

segment cannot be rendered finite by means of any actually infinite

multiplication, I conclude, with Cantor, that it cannot be an element

in finite magnitudes "
(p. 62). But I think an even stronger conclusion

is warranted. For we have seen that, in compact series, there is, cor-

responding to every segment, a segment of segments, and that this is

always terminated by its defining segment ; further that the numerical

measurement of segments of segments is exactly the same as that of

simple segments ; whence, by applying the above result to segments of

segments, we obtain a definite contradiction, since none of them can be
unterminated, and an infinitesimal one cannot be terminated.

In the case of the rational or the real numbers, the complete know-
ledge which we possess concerning them renders the non-existence of

infinitesimals demonstrable. A rational number is the ratio of two
finite integers, and any such ratio is finite. A real number other than

zero is a segment of the series of rationals ; hence if ^ be a real number
other than zero, there is a class u, not null, of rationals such that,

if «/ is a u, and z is less than «/, z is an x, i.e. belongs to the segment
which is x. Hence every real number other than zero is a class con-

taining rationals, and all rationals are finite ; consequently every real

number is finite. Consequently if it were possible, in any sense, to

speak of infinitesimal numbers, it would have to be in some radically

new sense.

313. I come now to a very difficult question, on which I would

gladly say nothing—I mean, the question of the orders of infinity and
infinitesimality of functions. On this question the greatest authorities

* Loc. cit. p. 61j No. 9.
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are divided : Du Bois Reymond, Stolz, and many others, maintaining

that these form a special class of magnitudes, in which actual infi-

nitesimals occur, while Cantor holds strongly that the whole theory

is erroneous*- To put the matter a^ simply as possible, consider a

functiony(J') whose limit, as x approaches zero, is zero. It may happen

that, for some finite real number a, the ratio f{x)joc^ has a finite limit

as X approaches zero. There can be only one such number, but there

may be none. Then a, if there is such a number, may be called the

order to which y(a') becomes infinitesimal, or the order of smallness of

/"(.r) as X approaches zero. But for some functions, e.g. 1/logir, there

is no such number a. If a be any finite real number, the limit of

l/.r" log X, as X approaches zero, is infinite. That is, when x is suffi-

ciently small, 1/^log.r is very large, and may be made larger than any

assigned number by making x sufficiently small—and this whatever

finite number a may be. Hence, to express the order of smallness of

Ijlogx, it is necessary to invent a new infinitesirnal number, which may
be denoted by \lg. Similarly we shall need infinitely great numbers to

express the order of smallness of (say) e~^'^ as x approaches zero. And
there is no end to the succession of these orders of smallness : that of

1/log (log x), for example, is infinitely smaller than that of l/loga?,

and so on. Thus we have a whole hierarchy of magnitudes, of which

all in any one class are infinitesimal with respect to all in any higher

class, and of which one class only is formed of all the finite real

numbers.

In this development. Cantor finds a vicious circle ; and though the

question is difficult, it would seem that Cantor is in the right. He
objects {loc. cit.) that such magnitudes cannot be introduced unless we

have reason to think that there are such magnitudes. The point is

similar to that concerning limits ; and Cantor maintains that, in the

present case, definite contradictions may be proved concerning the

supposed infinitesimals. If there were infinitesimal numbers j, then

even for them we should have

Lim^j^o 1/ (log X .xi>) =

since xJ must ultimately exceed J. And he shows that even continuous,

difFerentiable, and uniformly growing functions- may have an entirely

ambiguous order of smallness or infinity : that, in fact, for some such

functions, this order oscillates between infinite and infinitesimal values,

according to the manner in which the limit is approached. Hence we

may, I think, conclude that these infinitesimals are mathematical fictions.

And this may be reinforced by the consideration that, if there were

infinitesimal numbers, there would be infinitesimal segments of the

number-continuum, which we have just seen to be impossible.

* See Du Bois Reymond, Allgemeine Functionentheorie (1882), p. 279 ff. ;
Stolz,

AUgemeine Arithmetik, Part i (Leipzig, 188-5), Section ix, Anhang; Cantor, Rimta

di Mutematica, v, pp. 104-8.
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314. Thus to sum up what has been said concerning the in-

finitesimal, we see, to begin with, that it is a relative term, and that,

as regards magnitudes other than divisibilities, or divisibilities of wholes

which are infinite in the absolute sense, it is not capable of being other

than a relative term. But where it has an absolute meaning, there this

meaning is indistinguishable from finitude. We saw that the infini-

tesimal, though completely useless in mathematics, does occur in certain

instances—for example, lengths of bounded straight lines are infinitesimal

as compared to areas of polygons, and these again as compared to volumes

of polyhedra. But such genuine cases of infinitesimals, as we saw, are

always regarded by mathematics as magnitudes of another kind, because

no numerical comparison is possible, even by means of transfinite numbers,

between an area, and a length, or a volume and an area. Numerical

measurement, in fact, is wholly dependent upon the axiom of Archimedes,

and cannot be extended as Cantor has extended numbers. And finally

we saw that there are no infinitesimal segments in compact series, and

—

what is closely connected—that orders of smallness of functions are not

to be regarded as genuine infinitesimals. The infinitesimal, therefore

—so we may conclude—is a very restricted and mathematically very

unimportant conception, of which infinity and continuity are alike

independent.

B. 22



CHAPTER XLI.

PHILOSOPHICAL ARGUMENTS CONCERNING
THE INFINITESIMAL.

315. We have now completed our summary review of what mathe-

matics has to say concerning the continuous, the infinite, and the

infinitesimal. And here, if no previous philosophers had treated of

these topics, we might leave the discussion, and apply our doctrines

to space and time. For I hold the paradoxical opinion that what

can be mathematically demonstrated is true. As, however, almost all

philosophers disagree with this opinion, and as many have written

elaborate arguments in favour of views different from those above

expounded, it will be necessary to examine controversially the principal

types of opposing theories, and to defend, as far as possible, the points

in which I differ from standard writers. For this purpose, the work of

Cohen already referred to will be specially useful, not only because it deals

explicitly with our present theme, but also because, largely owing to

its historical excellence, certain very important mathematical errors,

which it appears to me to contain, have led astray other philosophers

who have not an acquaintance with modern mathematics at first hand*

316. In the above exposition, the differential appeared as a philo-

sophically unimportant application of the doctrine of limits. Indeed,

but for its traditional importance, it would scarcely have deserved even

mention. And we saw that its definition nowhere involves the in-

finitesimal. The dx and dy of a differential are nothing in themselves,

and dyjda: is not a fraction. Hence, in modern works on the Calculus,

the notation f [x) has replaced dyjda:, since the latter form suggests

erroneous notions. The notation _/"' {x), it may be observed, is more

similar to Newton's y, and its similarity is due to the fact that, on

this point, modern mathematics is more in harmony with Newton than

with Leibniz. Leibniz employed the form dyjdx because he believed

in infinitesimals ; Newton, on the other hand, definitely asserts that

his fluxion is not a fraction. " Those ultimate ratios," he says, " with

* For example, Mr Latta, in his article "On the Relations of the Philosophy of

Spinoza and that of Leibniz," Mind, N. S. No SI

.
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which quantities vanish are not truly the ratios of ultimate quantities,

but limits towards which the ratios of quantities decreasing without

limit do always converge, and to which they approach nearer than by
any given difference*."

But when we turn to such works as Cohen's, we find the dx and
the dy treated as separate entities, as real infinitesimals, as the intensively

'

real elements of which the continuum is composed (pp. 14, 28, 144, 147).

The view that the Calculus requires infinitesimals is apparently not

thought open to question ; at any rate, no arguments whatever are

brought up to support it. This view is certainly assumed as self-evident

by most philosophers who discuss the Calculus. Let us see for ourselves

what kind of grounds can be urged in its favour.

317. Many arguments in favour of the view in question are

derived by most writers from space and motion—arguments which
Cohen to some extent countenances (pp. 34, 37), though he admits

that the differential can be obtained from numbers alone, which however,

following Kant, he regards as implying time (pp. 20, 21). Since the

analysis of space and motion is still to come, I shall confine myself for

the present to such arguments as can be derived from purely numerical

instances. For the sake of definiteness, I shall as far as possible extract

the opinions to be controverted from Cohen.

318. Cohen begins (p. 1) by asserting that the problem of the

infinitesimal is not purely logical : it belongs rather to Epistemology,

which is distinguished, I imagine, by the fact that it depends upon the

pure intuitions as well as the categories. This Kantian opinion is wholly

opposed to the philosophy which underlies the present work ; but it

would take us too far from our theme to discuss it here, and I mention
it chiefly to explain the phraseology of the work we are examining.

Cohen proceeds at once to reject the view that the infinitesimal calculus

can be independently derived by mathematics from the method of limits.

This method, he says (p. 1), " consists in the notion that the elementary

conception of equality must be completed by the exact notion of the

limit. Thus in the first place the conception of equality is presup-

posed.... Again, in the second place, the method of limits presupposes

the conception of magnitude But in the presupposed conception of

magnitude the limiting magnitude is at the same time presupposed.

The equality which is defined in the elementary doctrine of magnitude
pays no attention to these limiting magnitudes. For it, magnitudes

count as equal if and although their difference consists in a limiting

magnitude. Hence the elementary conception of equality must be

—

this is the notion of the method of limits—not so much completed as

* Principia, Bk i, Section i, Lemma xi, Scholium. The whole Scholium is

highly important, though portions of it are less free from error than the passage

quoted in the text.

22—2 .
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corrected by the exact conception of the Kmit. Equahty is to be

regarded as an earlier stage of the Hmiting relation*."

319. I have quoted this passage in full, because its errors are

typical of those to which non-mathematicians are liable in this question.

In the first place, equality has no relevance to limits. I imagine that

Cohen has in mind such cases as a circle and the inscribed polygon,

where we cannot say that the circle is equal to any of the polygons,

but only that it is their limit ; or, to take an arithmetical instance,

a convergent series whose sum is tt or V^- But in all such instances

there is much that is irrelevant and adventitious, and there are many
unnecessary complications. The absolutely simplest instance of a limit

is ft) considered as the limit of the ordinal numbers. There is here

certainly no kind of equality. Yet in all cases where limits are defined

by progressions—and these are the usual cases—we have a series of the

type presented by the finite ordinals together with o). Consider, for

example, the series 2 together with 2, the n being capable of all

positive integral finite values. Here the series is of the same type as

before, and here, as before, 2 is the limit of the series. But here—and

this is what has misled Cohen—the diiference between 2 and the

successive terms of the series becomes less than any assigned magnitude,

and thus we seem to have a sort of extended quality between 2 and the

late terms of the series 2 . But let us examine this. In the first
n

place, it depends upon the fact that rationals are a series in which

we have distances which are again rationals. But we know that distances

are unnecessary to limits, and that stretches are equally effective. Now

considering stretches, 2 is the limit of 2 because no rational comes

between 2 and all terms of the series 2 precisely the sense in which

tt) is the limit of the finite integers. And it is only because 2— forms

a progression, i.e. is similar to the series of finite integers, tbat we know

its limit to be 2. The fact that the terms, as we advance, differ little

from 2, depends either upon our having a series in which there is

distance, which is a fortuitous and irrelevant circumstance, or upon the

fact that the successive stretches up to 2 may be made less than any

assigned stretch up to 2, which follows from the notion of a limit,

but has nothing to do with equality. And whenever our series which

is to have a limit is part of a series which is a function of to, the stretch

from any term to the limit is always infinite in the only sense in which

such series have infinite stretches ; and in a very real sense the stretch

* Or i-atio : the German is Grenzverhiiltniss.
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grows no smaller as we approach the limit, for both the ordinal and
the cardinal number of its terms remain constant.

We have seen so fully already in what sense, and how far, magnitude
is involved in limits, that it seems unnecessary to say much on this

subject here. Magnitude is certainly not involved in the sense, which

is undoubtedly that intended by Cohen, that the limit and the terms

limited must be magnitudes. Every progression which forms part of

a series which is a function of w, and in which there are terms after

the progression, has a limit, whatever may be the nature of the terms.

Every endless series of segments of a compact series has a limit, what-

ever may be the nature of the compact series. Now of course in all

series we have magnitudes, namely the divisibilities of stretches ; but

it is not of these that we find the limit. Even in the case of segments,

the limit is an actual segment, not the magnitude of a segment ; and
what is relevant is only that the segments are classes, not that they

are quantities. But the distinction of quantities and magnitudes is, of

course, wholly foreign to Cohen's order of ideas.

320. But we now come to a greater error. The conception of

magnitude, Cohen says, which is presupposed in limits, in turn pre-

supposes limiting magnitudes. By limiting magnitudes, as appears

from the context, he means infinitesimals, the ultimate differences,

I suppose, between the terms of a series and its limit. What he means
seems to be, that the kinds of magnitude which lead to limits are

compact series, and that, in compact series, we must have infinitesimals.

Eveiy point in this opinion is mistaken. Limits, we have just seen,

need not be limits of magnitudes ; segments of a compact series, as we
saw in the preceding chapter, cannot be infinitesimal ; and limits do not

in any way imply that the series in which they occur are compact.

These points have been so fully proved already that it is unnecessary

to dwell upon them.

321. But the crowning mistake is the supposition that limits intro-

duce a new meaning of equality. Among magnitudes, equality, as we
saw in Part III, has an absolutely rigid and unique meaning : it applies

only to quantities, and means that they have the same magnitude.

There is no question of approximation here : what is meant is simply

absolute logical identity of magnitude. Among numbers (which Cohen

probably regards as magnitudes), there is no such thing as equality.

There is identity, and there is the relation which is usually expressed by
the sign of equality, as in the equation 2x3 = 6. This relation

had puzzled those who endeavoured to philosophize about Arithmetic,

until it was explained by Professor Peano*. When one term of the

equation is a single number, while the other is an expression composed

of two or more numbers, the equation expresses the fact that the class

* See e.g. Riv. di Mat. vii, p. 35.
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defined by the expression contains only one term, which is the single

number on the other side of the equation. This definition again is

absolutely rigid : there is nothing whatever approximate in it, and it is

incapable of any modification by infinitesimals. I imagine that what

Cohen means may be expressed as follows. In forming a differential

coefficient, we consider two numbers x and x + dx, and two others y and

y + dy. In elementary Arithmetic, x and x + dx would count as equal,

but not in the Calculus. There are, in fact, two ways of defining

equality. Two terms may be said to be equal when their ratio is unity,

or when their difference is zero. But when we allow real infinitesimals

dx, X and x + dx will have the ratio unity, but will not have zero for

their difference, since dx is different from absolute zero. This view,

which I suggest as equivalent to Cohen's, depends upon a misunder-

standing of limits and the Calculus. There are in the Calculus no such

magnitudes as dx and dy. There are finite differences Ar and A?/, but

no view, however elementary, will make x equal to a; + A/v. There are

ratios of finite differences, At//Aa7, and in cases where the derivative of

^/ exists, there is one real number to which Az//Ar can be made to

approach as near as we like by diminishing Aa? and Ay. This single

real number we choose to denote by dyjdx ; but it is not a fraction, and

dx and dy are nothing but typographical parts of one symbol. There is

no correction whatever of the notion of equality by the doctrine of

limits; the only new element introduced is the consideration of infinite

classes of terms chosen out of a series.

322. As regards the nature of the infinitesimal, we are told (p. 15)

that the differential, or the inextensive, is to be identified with the

intensive, and the differential is regarded as the embodiment of Kant's

category of reality. This view (in so far as it is independent of Kant)

is quoted with approval from Leibniz ; but to me, I must confess, it

seems destitute of all justification. It is to be observed that dx and dy,

if we allow that they are entities at all, are not to be identified with

single terms of our series, nor yet with differences between consecutive

terms, but must be always stretches containing an infinite number

of terms, or distances corresponding to such stretches. Here a dis-

tinction must be made between series of numbers and series in which we

have only measurable distances or stretches. The latter is the case of

space and time. Here dx and dy are not points or instants, which alone

would be truly inextensive; they are primarily numbers, and hence

must correspond to infinitesimal stretches or distances—for it would be

preposterous to assign a numerical ratio to two points, or—as in the

case of velocity—to a point and an instant. But dx and dy cannot

represent the distances of consecutive points, nor yet the stretch formed

by two consecutive points. Against this we have, in the first place, the

general ground that our series must be regarded as compact, which

precludes the idea of consecutive terms. To evade this, if we are
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dealing with a series in which there are only stretches, not distances, would
be impossible : for to say that there are always an infinite number of

intermediate points except when the stretch consists of a finite number
of terms would be a mere tautology. But when there is distance, it

might be said that the distance of two terms may be finite or in-

finitesimal, and that, as regards infinitesimal distances, the stretch is not
compact, but consists of a finite number of terms. This being allowed

for the moment, our dx and dy may be made to be the distances of

consecutive points, or else the stretches composed of consecutive points.

But now the distance of consecutive points, supposing for example that

both are on one straight line, would seem to be a constant, which would
give dyjdx= +1. We cannot suppose, in cases where x and y are both
continuous, and the function y is one-valued, as the Calculus requires,

that X and x + dx are consecutive, but not y and y + dy \ for every

value of y will be correlated with one and only one value of x, and vice

versa ; thus y cannot skip any supposed intermediate values between

y and y + dy. Hence, given the values of x and y, even supposing the

distances of consecutive terms to differ from place to place, the value

of dyjdx will be determinate ; and any other function y' which, for

some value of x, is equal to y, will, for that value, have an equal

derivative, which is an absurd conclusion. And leaving these mathe-
matical arguments, it is evident, from the fact that dy and dx are to

have a numerical ratio, that if they be intensive magnitudes, as is

suggested, they must be numerically measurable ones : but how this

measurement is effected, it is certainly not easy to see. This point may
be made clearer by confining ourselves to the fundamental case in which
both X and y are numbers. If we regard x and x +dx as, consecutive,

we must suppose either that y and y + dy are consecutive, or that

they are identical, or that there are a finite number of terms between
them, or that there are an infinite number. If we take stretches to

measure dx and dy, it will follow that dyjdx must be always zero, or

integral, or infinite, which is absurd. It will even follow that, if

y is not constant, dyjdx must be + 1. Take for example y =x^, where
X and y are positive real numbers. As x passes from one number to the

next, y must do so likewise; for to every value of y corresponds one
of X, and y grows as x grows. Hence if y skipped the number next to

any one of its values, it could never come back to pick it up ; but
we know that every real number is among the values of y. Hence y
and y + dy must be consecutive, and dyjdx = 1. If we measure by
distances, not stretches, the distance dy must be fixed when y is given,

and the distance dx when x is given. Now if x=l, y = i, dyjdx — 2
;

but, since x and y are the same number, dx and dy must be equal, since

each is the distance to the next number : therefore dyjdx = 1, which

is absurd. Similarly, if we take for y a decreasing function, we shall find

dyjdx = —1. Hence the admission of consecutive numbers is fatal to the
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Calculus ; and since the Calculus must be maintained, the Calculus is

fatal to consecutive numbers.

323. The notion that there must be consecutive numbers is rein-

forced by the idea of continuous change, which is embodied in calling

X and y "variables." Change in time is a topic which we shall have to

discuss at a later stage, but which has, undoubtedly, greatly influenced

the philosophy of the Calculas. People picture a variable to them-

selves—often unconsciously—as successively assuming a series of values,

as might happen in a dynamical problem. Thus they might say:

How can x pass from x-^ to x^, without passing through all intermediate

values? And in this passage, must there not be a next value, which it

assumes on first leaving the value x-i? Everything is conceived on the

analogy of motion, in which a point is supposed to pass through all

intermediate positions in its path. 'V^Tiether or not this view of motion

is correct, I do not now decide : at any rate it is irrelevant where a

fundamental point in the theory of continuous series is concerned, since

time and the path of motion must both be continuous series, and the

properties of such series must be decided before appealing to motion to

confirm our views. For my part, to return to Cohen, I must confess, it

seems evident that intensive magnitude is something wholly different

from infinitesimal extensive magnitude : for the latter must always be

smaller than finite extensive magnitudes, and must therefore be of the

same kind with them ; while intensive magnitudes seem never in any

sense smaller than any extensive magnitudes. Thus the metaphysical

theory by which infinitesimals are to be rescued seems, both mathe-

matically and philosophically, destitute of grounds in its favour.

324. We cannot, then, agree with the following summary of

Cohen's theory (p. 28) :
" That I may be able to posit an element in

and for itself, is the desideratum, to which corresponds the instrument of

thought reality. This instrument of thought must first be set up, in order

to be able to enter into that combination with intuition, with the con-

sciousness of being given, which is completed in the principle of intensive

magnitude. This presupposition of intensive reality is latent in all prin-

ciples, and must therefore be made independent. This presupposition is

the meaning of reality and the secret of the concept of' the differential.'"

"\ATiat we can agree to, and what, I believe, confusedly underlies the

above statement, is, that every continuiun must consist of elements

or terms ; but these, as we have just seen, will not fulfil the function of

the dx and dy which occur in old-fashioned accounts of the Calculus.

Nor can we agree that "this finite" {i.e. that which is the object of

physical science) "can be thought as a sum of those infinitesimal inten-

sive realities, as a definite integral'" (p. 144). The definite integral is

not a sum of elements of a continuum, although there are such elements

:

for example, the length of a curve, as obtained by integration, is not the

sum of its points, but strictly and only the limit of the lengths of



322-324] Philosophical arguments, etc. 345

inscribed polygons. The only sense which can be given to the sum of

the points of the curve is the logical class to which they all belong, i.e.

the curve itself, not its length. All lengths are magnitudes of divisi-

bility of stretches, and all stretches consist of an infinite number of

points ; and any two terminated stretches have a finite ratio to each

other. There is no such thing as an infinitesimal stretch ; if there

were, it would not be an element of the continuum ; the Calculus does

not require it, and to suppose its existence leads to contradictions. And
as for the notion that in every series there must be, consecutive terms,

that was shown, in the last Chapter of Part III, to involve an illegiti-

mate use of mathematical induction. Hence infinitesimals as explaining

continuity must be regarded as unnecessary, erroneous, and self-con-

tradictory.



CHAPTER XLII.

THE PHILOSOPHY OF THE CONTINUUM.

325. The word continuity has borne among philosophers, especially

since the time of Hegel, a meaning totally unlike that given to it by

Cantor. Thus Hegel says*: "Quantity, as we saw, has two sources:

the exclusive unit, and the identification or equalization of these units.

When we look, therefore, at its immediate relation to self, or at the

characteristic of selfsameness made explicit by abstraction, quantity is

Continuous magnitude ; but when we look at the other characteristic,

the One implied in it, it is Discrete magnitude." When we remember

that quantity and magnitude, in Hegel, both mean " cardinal number,"

we may conjecture that this assertion amounts to the following :
" Many

terms, considered as having a cardinal number, must all be members

of one class ; in so far as they are each merely an instance of the

class-concept, they are indistinguishable one from another, and in this

aspect the whole which they compose is called continuous ; but in order

to their maniness, they must be different instances of the class-concept,

and in this aspect the whole which they compose is called discrete.""

Now I am far from denying—indeed I strongly hold—that this opposi-

tion of identity and diversity in a collection constitutes a fundamental

problem of Logic—perhaps even the fundamental problem of philosophy.

And being fundamental, it is certainly relevant to the study of the

mathematical continuum as to everything else. But beyond this general

connection, it has no special relation to the mathematical meaning of

continuity, as may be seen at once from the fact that it has no reference

whatever to order. In this chapter, it is the mathematical meaning that

is to be discussed. I have quoted the philosophic meaning only in

order to state definitely that this is not here in question ; and since

disputes about words are futile, I must ask philosophers to divest

themselves, for the time, of their habitual associations with the word,

and allow it no signification but that obtained from Cantor's definition.

326. In confining ourselves to the arithmetical continuum, we conflict

in another way with common preconceptions. Of the arithmetical con-

* Smaller Logic, § 100, Wallace's Translation, p. 188.
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tinuum, M. Poincare justly remarks*: "The continuum thus conceived

is nothing but a collection of individuals arranged in a certain order,

infinite in number, it is true, but external to each other. This is not

the ordinary conception, in which there is supposed to be, between the

elements of the continuum, a sort of intimate bond which makes a whole

of them, in which the point is not prior to the line, but the line to the

point. Of the famous formula, the continuum is unity in multiplicity,

the multiplicity akme subsists, the unity has disaSppeared."

It has always been held to be an open question whether the

continuum is composed of elements ; and even when it has been allowed

to contain elements, it has been often alleged to be not composed of

these. This latter view was maintained even, by so stout a supporter

of elements in everything as Leibniz f. But all these views are only

possible in regard to such continua as those of space and time. The
arithmetical continuum is an object selected by definition, consisting of

elements in virtue of the definition, and known to be embodied in

at least one instance, namely the segments of the rational numbers.

I shall maintain in Part VI that spaces afford other instances of the

arithmetical continuum. The chief reason for the elaborate and para-

doxical theories of space and time and their continuity, which have

been constructed by philosophers, has been the supposed contradictions

in a continuum composed of elements. The thesis of the present

chapter is, that Cantor's continuum is free from contradictions. This

thesis, as is evident, must be firmly established, before we can allow

the possibility that spatio-temporal continuity may be of Cantor's kind.

In this argument, I shall assume as proved the thesis of the preceding

chapter, that the continuity to be discussed does not involve the

admission of actual infinitesimals.

327. In this capricious world, nothing is more capricious than

posthumous fame. One of the most notable victims of posterity's lack

of judgment is the Eleatic Zeno. Having invented four arguments,

all immeasurably subtle and profound, the grossness of subsequent

philosophers pronounced him to be a mere ingenious juggler, and his

arguments to be one and all sophisms. After two thousand years of

continual refutation, these sophisms were reinstated, and made the

foundation of a mathematical renaissance, by a German professor, who

probably never dreamed of any connection between himself and Zeno.

Weierstrass, by strictly banishing all infinitesimals, has at last shown

that we live in an unchanging world, and that the arrow, at every

moment of its flight, is truly at rest. The only point where Zeno

probably erred was in inferring (if he did infer) that, because there

is no change, therefore the world must be in the same state at one

time as at another. This consequence by no means follows, and in

* Revue de MHaphysique et de Morale, Vol. i^ p. 26.

t See The Philosophy of Leibniz, by the present author. Chap. ix.
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this point the German professor is more constructive than the ingenious

Greek. Weierstrass, being able to embody his opinions in mathematics,

where familiarity with truth eliminates the vulgar prejudices of common
sense, has been able to give to his propositions the respectable air of

platitudes ; and if the result is less delightful to the lover of reason

than Zeno's bold defiance, it is at any rate more calculated to appease

the mass of academic mankind.

Zeno's arguments are specially concerned with motion, and are not

therefore, as they stand, relevant to our present purpose. But it is

instructive to translate them, so far as possible, into arithmetical

language *.

328. The first argument, that of dichotomy, asserts :
" There is

no motion, for what moves must reach the middle of its course before

it reaches the end." That is to say, whatever motion we assume to

have taken place, this presupposes another motion, and this in turn

another, and so on ad infinitum. Hence there is an endless regress

in the mere idea of any assigned motion. This argument can be put

into an arithmetical form, but it appears then far less plausible.

Consider a variable x which is capable of all real (or rational) values

between two assigned limits, say and 1. The class of its values is

an infinite whole, whose parts are logically prior to it : for it has parts,

and it cannot subsist if any of the parts are lacking. Thus the numbers

from to 1 presuppose those from to 1/2, these presuppose the numbers

from to 1/4, and so on. Hence, it would seem, there is an infinite

regress in the notion of any infinite whole ; but without such infinite

wholes, real numbers cannot be defined, and arithmetical continuity,

which applies to an infinite series, breaks down.

This argument may be met in two ways, either of which, at first

sight, might seem sufficient, but both of which are really necessary.

First, we may distinguish two kinds of infinite regresses, of which one

is harmless. Secondly, we may distinguish two kinds of whole, the

,

collective and the distributive, and assert that, in the latter kind,

parts of equal complexity with the whole are not logically prior to

it. These two points must be separately explained.

329. An infinite regress may be of two kinds. In the objectionable

kind, two or more propositions join to constitute the meaning of some

proposition ; of these constituents, there is one at least whose meaning

is similarly compounded ; and so on ad infinitum.. This form of regress

commonly results from circular definitions. Such definitions may be

* Not being a Greek scholar, I pretend to no first-hand authority as to what Zeno

really did say or mean. ITie form of his four arguments which I shall employ is

derived from the interesting article of M. Noel, "Le mouvement et les arguments de

Ze'non d'Elee," Bevue de Metaphysique et de Morale, Vol. i, pp. 107-125. These

arguments are in any case well worthy of consideration, and as they are, to me,

merely a text for discussion, their historical correctness is of little importance.
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expanded in a manner analogous to that in which continued fractions

are developed from quadratic equations. But at every stage the term

to be defined will reappear, and no definition will result. Take for

example the following :
" Two people are said to have the same idea

when they have ideas which are similar ; and ideas are similar when

they contain an identical part." If an idea may have a part which

is not an idea, such a definition is not logically objectionable ; but if

part of an idea is an idea, then, in the second place where identity

of ideas occurs, the definition must be substituted ; and so on. Thus
wherever the meaning of a proposition is in question, an infinite regress

is objectionable, since we never reach a proposition which has a definite

meaning. But many infinite regresses are not of this form. If A be

a proposition whose meaning is perfectly definite, and A implies B,

B implies C, and so on, we have an infinite regress of a quite un-

objectionable kind. This depends upon the fact that implication is

a synthetic relation, and that, although, if A be an aggregate of

propositions, A implies any proposition which is part oi A, it by no

means follows that any proposition which A implies is part of A. Thus
there is no logical necessity, as there was in the previous case, to

complete the infinite regress before A acquires a meaning. If, then,

it can be shown that the implication of the parts in the whole, when
the whole is an infinite class of numbers, is of this latter kind, the

regress suggested by Zeno's argument of dichotomy will have lost

its sting.

330. In order to show that this is the case, we must distinguish

wholes which are defined extensionally, i.e. by enumerating their terms,

from such as are defined intensionally, i.e. as the class of terms having

some given relation to some given term, or, more simply, as a class

of terms. (For a class of terms, when it forms a whole, is merely all

terms having the class-relation to a class-concept*.) Now an extensional

whole—at least so far a^ human powers extend—is necessarily finite

:

we cannot enumerate more than a finite number of parts belonging

to a whole, and if the number of parts be infinite, this must be known
otherwise than by enumeration. But this is precisely what a class-

concept effects : a whole whose parts are the terms of a class is completely

defined when the class-concept is specified ; and any definite individual

either belongs, or does* not belong, to the class in question. An
individual of the class is part of the ^^'hole extension of the class, and

is logically prior to this extension taken collectively ; but the extension

itself is definable without any reference to any specified individual,

and subsists as a genuine entity even when the class contains no terms.

And to say, of such a class, that it is infinite, is to say that, though

it has terms, the number of these terms is not any finite number

—

a proposition which, again, may De established without the impossible

* For precise statements, v. supra, Part I^ Chaps, vi and x.



350 Infinity and Continuity [chap, xlii

process of enumerating all finite numbers. And this is precisely the

case of the real numbers between and 1. They form a definite class,

whose meaning is known as soon as we know what is meant by real

number, 0, 1, and between. The particular members of the class, and

the smaller classes contained in it, are not logically prior to the class.

Thus the infinite regress consists merely in the fact that every segment

of real or rational numbers has parts which are again segments; but

these parts are not logically prior to it, and the infinite regress is

perfectly harmless. Thus the solution of the difficulty lies in the

theory of denoting and the iritlensional definition of a class. With this

an answer is made to Zeno's first argument as it appears in Arithmetic.

331. The second of Zeno's arguments is the most famous : it is

the one which concerns AchiUes and the tortoise. "The slower," it

says, " will never be overtaken by the swifter, for the pursuer must

first reach the point whence the fugitive is departed, so that the

slower must always necessarily remain ahead." When this argument is

translated into arithmetical language, it is seen to be concerned with

the one-one correlation of two infinite classes. If Achilles were to

overtake the tortoise, then the course of the tortoise would be part

of that of Achilles ; but, since each is at each moment at some point

of his course, simultaneity establishes a one-one correlation between

the positions of Achilles and those of the tortoise. Now it follows

from this that the tortoise, in any given time, visits just as many
places as Achilles does ; hence—so it is hoped we shall conclude

—

it is impossible that the tortoise's path should be part of that of

Achilles. This point is purely ordinal, and may be illustrated by

Arithmetic. Consider, for example, \ +9,x and ^ + x, and let x lie

between and 1, both inclusive. For each value of 1 -)- Sa? there is

one and only one value of 2 + j; and vice versa. Hence as x grows

from to 1, the number of values assumed by 1-1-2.2? will be the same

as the number assumed by 2 -|- d\ But 1 + S,x started from 1 and ends

at 3, while 2 + x started from 2 and ends at 3. Thus there should be

half as many values of 2 -I- a? as of 1 -F 9,x. This very serious difficulty

has been resolved, as we have seen, by Cantor ; but as it belongs rather

to the philosophy of the infinite than to that of the continuum, I leave

its further discussion to the next chapter.

332. The third argument is concerned with the arrow. " If every-

thing is in rest or in motion in a space equal to itself, and if what moves

is always in the instant, the arrow in its flight is immovable." This

has usually been thought so monstrous a paradox as scarcely to

deserve serious discussion. To my mind, I must confess, it seems a very

plain statement of a "vePjf-elgmentary fact, and its neglect has, I think,

caused the quagmire in which the philosophy of change has long been

immersed. In Part VII, I shall set tortl^ a theory of change which may

be called static, since it allows the justice of -Reno's remark. For the
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present, I wish to divest the reir j,rk of all reference to change. We shall

then find that it is a very important and very widely applicable plati-

tude, namely :
" Every possible value of a variable is a constant." If a;

be a variable which can take all values from to 1, all the values it

can take are definite numbers, such as 1/2 or 1/3, which are all absolute

constants. And here a few words may be inserted concerning variables.

A variable is a fundamental concept of logic, as of daily life. Though
it is always connected with some class, it is not the class, nor a particular

member of the class, nor yet the whole class, but ant/ member of the

class. On the other hand, it is not the concept " any member of the

class," but it is that (or those) which this concept denotes. On the

logical difficulties of this conception, I need not now enlarge ; enough

has been said on this subject in Part I. The usual jc in Algebra,

for example, does not stand for a particular number, nor for all numbers,

nor yet for the class number. This may be easily seen by considering

some identity, say

(a7 + 1)2 = .?•- + 2* +1.

This certainly does not mean what it would become if, say, 391 were

substituted for x, though it implies that the result of such a substitution

would be a true proposition. Nor does it mean what results from

substituting for a; the class-concept number, for we cannot add 1 to this

concept. For the same reason, x does not denote the concept any
number: to this, too, 1 cannot be added. It denotes the disjunction

formed by the various numbers ; or at least this view may be taken as

roughly correct*. The values of .r are then the terms of the disjunction ;

and each of these is a constant. This simple logical fact seems to

constitute the essence of Zeno's contention that the arrow is always

at rest.

333. But Zeno's argument contains an element which is specially

applicable to continua. In the case of motion, it denies that there

is such a thing as a state of motion. In the general case of a continuous

variable, it may be taken as denying actual infinitesimals. For in-

finitesimals are an attempt to extend to the values of a variable the

variability which belongs to it alone. When once it is firmly realized

that all the values of a variable are constants, it becomes easy to see, by
taking ani/ two such values, that their diff^erence is always finite, and

hence that there are no infinitesimal differences. If « be a variable

which may take all real values from to 1, then, taking any two of

these values, we see that their difference is finite, although a7 is a con-

tinuous variable. It is true the difference might have been less than

the one we chose ; but if it had been, it would still have been finite.

The lower limit to possible differences is zero, but all possible differences

are finite ; and in this there is no shadow of contradiction. This static

* See Chap, vm, esp. § 93.
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theory of the variable is due to the lit^thematicians, and its absence

in Zeno's day led him to suppose that con'cinuous change was impossible

without a state of change, which involves infinitesimals and the contra-

diction of a body's being where it is not.

334. The last of Zeno's arguments is that of the measure. This is

closely analogous to one which I employed in the preceding chapter,

against those who regard dx and dy as distances of consecutive terms.

It is only applicable, as M. Noel points out {loc. cit. p. 116), against

those who hold to indivisibles among stretches, the previous arguments

being held to have sufficiently refuted the partisans of infinite divisi-

bility. We are now to suppose a set of discrete moments and discrete

places, motion consisting in the fact that at one moment a body is in

one of these discrete places, in another at another.

Imagine three parallel lines composed of the abed
points a, b, c, d; a', b', c', d'; a", b", c", d"

....
respectively. Suppose the second line, in one abed
instant, to move all its points to the left by one

^^ ,^

place, while the third moves them all one place '^. .. .

to the right. Then although the instant is

indivisible, c', which was over c", and is now n h r d
over a", must have passed b" during the in- ....
stant ; hence the instant is divisible, eontra gi y q' ^'

hyp. This argument is virtually that by which ....
I proved, in the preceding chapter, that, if there a" b" c" d"

are consecutive terms, then (i2//(Zir =+ 1 always; ....
or rather, it is this argument together with an

instance in which dyjdx = 2. It may be put thus : Let y, z be two

functions of x, and let dy/dx = 1, dz/dx = —1. Then -j- (y—z)=3,, which

contradicts the principle that the value of every derivative must be + 1.

To the argument in Zeno's form, M. Evellin, who is an advocate of

indivisible stretches, replies that a" and b' do not cross each other

at all*. For if instants are indivisible—and this is the hypothesis—all

we can say is, that at one instant a' is over a", in the next, c' is over a '.

Nothing has happened between the instants, and to suppose that a"

and b' have crossed is to beg the question by a covert appeal to the

continuity of motion. This reply is valid, I think, in the case of

motion ; both time and space may, without positive contradiction, be

held to be discrete, by adhering strictly to distances in addition to

stretches. Geometry, Kinematics, and Dynamics become false ; but

there is no very good reason to think them true. In the case of

Arithmetic, the matter is otherwise, since no empirical question of

existence 'is involved. And in this case, as we see from the above'*!

* Revue de M^taphysique et de Morale, Vol. i, p. 386.
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argument concerning derivatives, Zeno's argument is absolutely sound.

Numbers are entities whose nature can be established beyond question

;

and among numbers, the various forms of continuity which occur

cannot be denied without positive contradiction. For this reason the

problem of continuity is better discussed in connection with numbers
than in connection with space, time, or motion.

335. We have now seen that Zeno's arguments, though they prove

a very great deal, do not prove that the continuum, as we have become
acquainted with it, contains any contradictions whatever. Since his

day the attacks on the continuum have not, so far as I know, been

conducted with any new or more powerful weapons. It only remains,

therefore, to make a few general remarks.

The notion to which Cantor gives the name of continuum may, of

course, be called by any other name in or out of the dictionary, and it

is open to every one to assert that he himself means something quite

different by the continuum. But these verbal questions are purely

frivolous. Cantor's merit lies, not in meaning what other people mean,
but in telling us what he means Mmself—an almost unique merit, where
continuity is concerned. He has defined, accurately and generally, a
purely ordinal notion, free, as we now see, from contradictions, and
sufficient for all Analysis, Geometry, and Dynamics. This notion was

presupposed in existing mathematics, though it was not known exactly

what it was that was presupposed. And Cantor, by his almost un-

exampled lucidity, has successfully analyzed the extremely complex

nature of spatial series, by which, as we shall see in Part VI, he has

rendered possible a revolution in the philosophy of space and motion.

The salient points in the definition of the continuum are (1) the

connection with the doctrine of limits, (2) the denial of infinitesimal

segments. These two points being borne in mind, the whole philosophy

of the subject becomes illuminated.

336. The denial of infinitesimal segments resolves an antinomy
which had long been an open scandal, I mean the antinomy that the

continuum both does and does not consist of elements. We see now
that both may be said, though in different senses. Every continuum

is a series consisting of terms, and the terms, if not indivisible, at any

rate are not divisible into new terms of the continuum. In this sense

there are elements. But if we take consecutive terms together with

"'^their asymmetrical relation as constituting what may be called (though

i-liot in the sense of Part IV) an ordinal element, then, in this sense, our

«;ontinuum has no elements. If we take a stretch to be essentially

#serial, so that it must consist of at least two terms, then there are no

/ elementary stretches ; and if our continuum be one in which there is

distance, then likewise there are no elementary distances. But in neither

of these cases is there the slightest logical ground for elements. The
demand for consecutive terms springs, as we saw in Part III, from an

R. 23
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illegitimate use of mathematical induction. And as regards distance,

small distances are no simpler than large ones, but all, as we saw in

Part III, are alike simple. And large distances do not presuppose small

ones : being intensive magnitudes, they may exist where there are no

smaller ones at all. Thus the infinite regress from greater to smaller

distances or stretches is of the harmless kind, and the lack of elements

need not cause any logical inconvenience. Hence the antinomy is re-

solved, and the continuum, so far at least as I am able to discover, is

whoUy free from contradictions.

It only remains to inquire whether the same conclusion holds

concerning the infinite—an inquiry with which this Fifth Part wUl

come to a close.



CHAPTEE XLIII.

THE PHILOSOPHY OF THE INFINITE.

337. In our previous discussions of the infinite we have been

compelled to go into so many mathematical points that there has

been no adequate opportunity for purely philosophical treatment of

the question. In the present chapter, I wish, leaving mathematics

aside, to inquire whether any contradiction can be found in the notion

of the infinite.

Those who have objected to infinity have not, as a rule, thought

it worth while to exhibit precise contradictions in it. To have done

so is one of the great merits of Kant. Of the mathematical antinomies,

the second, which is concerned, essentially, with the question whether or

not the continuum has elements, was resolved in the preceding chapter,

on the supposition that there may be an actual infinite—that is, it was

reduced to the question of infinite number. The first antinomy is

concerned with the infinite, but in an essentially temporal form ; for

Arithmetic, therefore, this antinomy is irrelevant, except on the Kantian

view that numbei-s must be schematized in time. This view is supported

by the argument that it takes time to count, and therefore without

time we could not know the number of anything. By this argument
we can prove that battles always happen near telegraph wires, because

if they did not we should not hear of them. In fact, we can prove

generally that we know what we know. But it remains conceivable that

we don't know what we don't know ; and hence the necessity of time

remains unproved.

Of other philosophers, Zeno has ah-eady been examined in connection

with the continuum ; and the paradox which underlies Achilles and the

tortoise will be examined shortly. Plato's Parmenides—which is perhaps

the best collection of antinomies ever made— is scarcely relevant here,

being concerned with difficulties more fundamental than any that have

to do with infinity. And as for Hegel, he cries wolf so often that when
he gives the alarm of a contradiction we finally cease to be disturbed.

Leibniz, as we have seen, gives as a contradiction the one-one correlation

of whole and part, which underlies the Achilles. This is, in fact, the

23—2
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only point on which most arguments against infinity turn. In what

follows I shall put the arguments in a form adapted to our present

mathematical knowledge ; and" this will prevent me from quoting them

from any classic opponents of infinity.

338. Let us first recapitulate briefly the positive theory of the in-

finite to which we have been led. Accepting as indefinable the notion

proposition and the notion constituent of a proposition, we may denote

by <^(a) a proposition in which a is a constituent. We can then trans-

form a into a variable x, and consider (^{x), where ^{x) is any proposition

diiFering from ^(a), if at all, only by the fact that some other object

appears in the place of a ; ^{x) is what we called a propositionalJunction.

It will happen, in general, that ^{x) is true for some values of x and

false for others. All the values of x, for which <^{x) is true, form what

we called the class defined by (^{x) ; thus every propositional function

defines a class, and the actual enumeration of the members of a class

is not necessary for its definition. Again, without enumeration we can

define the similarity of two classes : two classes u, v are similar when

there is a one-one relation R such that " <r is aw" always implies " there

is a » to which x has the relation i?," and "«/ is a w" always implies

" there is a m which has the relation R to «/." Further, i? is a one-one

relation if xRi/, xRz together always imply that «/ is identical with z,

and xRz, yRz together always imply that x is identical with y ; and

"a; is identical with y"" is defined as meaning "every propositional

function which holds of x also holds of y."" We now define the cardinal

number of a class u as the class of aU classes which are similar to «;

and every class has a cardinal number, since "m is similar to w" is a

propositional function of v, if v be variable. Moreover u itself is

a member of its cardinal number, since every class is similar to itself.

The above definition of a cardinal number, it shoiold be observed, is

based upon the notion of propositional functions, and nowhere involves

enumeration ; consequently there is no reason to suppose that there

will be any difficulty as regards the numbers of classes whose terms

/cannot be counted in the usual elementary fashion. Classes can be

divided into two kinds, according as they are or are not similar to

proper parts of themselves. In the former case they are called infinite,

in the latter pmte. Again, the number of a class defined by a pro-

positional function which is always false is called ; 1 is defined as

the number of a class u such that there is a term x, belonging to u,

such that "
«/ is a M and y differs from x " is always false ; and if n

be any number, m -I- 1 is defined as the number of a class u which has

a member x such that the propositional function "z/ is a u and y
diflfers from a?" defines a class whose number is n. If w is finite,

71 -t- 1 difl^ers from n ; if not, not. In this way, starting from 0, we

obtain a progression of numbers, since any jiumber n leads to a new

number m + 1. It is easily proved that all the numbers belonging to
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the progression which starts from 1 and is generated in this way are

different; that is to say, if n belongs to this progression, and m be

any one of its predecessors, a class of n terms cannot have a one-one

correlation with one of m terms. The progression so defined is the

series of finite numbers. But there is no reason to think that all

numbers can be so obtained ; indeed it is capable of formal proof

that the number of the finite numbers themselves cannot be a term

in the progression of finite numbers. A number not belonging to

this progression is called infinite. The proof that n and n + 1 are

different numbers proceeds from the fact that and 1, or 1 and 2,

are different numbers, by means of mathematical induction ; if n and

« + l be not terms of this progression, the proof fails; and what is

more, there is direct proof of the contrary. But since the previous

proof depended upon mathematical induction, there is not the slightest

reason why the theorem should extend to infinite numbers. Infinite

numbers cannot be expressed, like finite ones, by the decimal system

of notation, but they can be distinguished by the classes to which they

apply. The finite numbers being all defined by the above progression,

if a class u has terms, but not any finite number of terms, then it has an

infinite number. This is the positive theory of infinity.

339. That there are infinite classes is so evident that it will scarcely

be denied. Since, however, it is capable of formal proof, it may be as

well to prove it. A very simple proof is that suggested in the Parmenides,

which is as follows. Let it be granted that there is a number 1. Then
1 is, or has Being, and therefore there is Being. But 1 and Being are

two : hence there is a number 2 ; and so on. Formally, we have proved

that 1 is not the number of numbers ; we prove that n is the number
of numbers from 1 to n, and that these numbers together with Being

form a class which has a new finite number, so that n is not the number
of finite numbers. Thus 1 is not the number of finite numbers ; and

if w — 1 is not the number of finite numbers, no more is n. Hence the

finite numbers, by mathematical induction, are all contained in the class

of things which are not the number of finite numbers. Since the relation

of similarity is reflexive for classes, every class has a number ; therefore

the class of finite numbers has a number which, not being finite, is

infinite. A better proof, analogous to the above, is derived from the

fact that/if n be any finite number, the number of numbers from up
to and including n is w+ 1, whence it follows that n is not the number
of numbers. Again, it may be proved directly, by the correlation of whole

and part, that the number of propositions or concepts is infinite*. For

of every term or concept there is an idea, different from that of which

it is the idea, but again a term or concept. On the other hand, not

every term or concept is an idea. There are tables, and ideas of tables

;

* Cf. Bolzano, Paradomien des Unendlichen, § 13 ; Dedekind, Was sind und was

sollen die Zahlen ? No. 66.
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numbers, and ideas of numbers ; and so on. Thus there is a one-one

relation between terms and ideas, but ideas are only some among terms.

Hence there is an infinite number of terms and of ideas*.

340. The possibility that whole and part may have the same

number of terms is, it must be confessed, shocking to common-sense.

Zeno's Achilles ingeniously shows that the opposite view also has

shocking consequences ; for if whole and part cannot be correlated

term for term, it does strictly follow that, if two material points

travel along the same path, the one following the other, the one

which is behind can never catch up : if it did, we should have, cor-

relating simultaneous positions, a unique and reciprocal correspondence

of all the terms of a whole with all the terms of a part. Common-
sense, therefore, is here in a very soiTy plight ; it must choose between

the paradox of Zeno and the paradox of Cantor. I do not propose to

help it, since I consider that, in the face of proofs, it ought to commit

suicide in despair. But I will give the paradox of Cantor a form re-

sembling that of Zeno. Tristram Shandy, as we know, took two years

writing the history of the first two days of his life, and lamented that,

at this rate, material would accumulate faster than he could deal with

it, so that he could never come to an end. Now I maintain that, if

he had lived for ever, and not wearied of his task, then, even if his

life had continued as eventfuUy as it began, no part of his biography

would have remained unwritten. This paradox, which, as I shall show,

is strictly correlative to the Achilles, may be called for convenience the

Tristram Shandy.

In cases of this kind, no care is superfluous in rendering our arguments

formal. I shall therefore set forth both the Achilles and the Tristram

Shandy in strict logical shape.

I. (1) For every position of the tortoise there is one and only one

of Achilles ; for every position of Achilles there is one and only one of

the tortoise.

(2) Hence the series of positions occupied by Achilles has the

same number of terms as the series of positions occupied by the tortoise.

(3) A part has fewer terms than a whole in which it is contained

and with which it is not coextensive.

(4i) Hence the series of positions occupied by the tortoise is not

a proper part of the series of positions occupied by Achilles.

II. (1) Tristram Shandy writes in a year the events of a day.

(2) The series of days and years has no last term.

(3) The events of the «th day are written in the nth year.

(4) Any assigned day is the nth, for a suitable value of n.

(5) Hence any assigned day will be written about.

* It is not necessary to suppose that the ideas of all terms exist, or form part of

some mind ; it is enough that they are entities.
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(6) Hence no part of the biography will remain unwritten.

(7) Since there is a one-one correlation between the times of

happening and the times of writing, and the former are part of the

latter, the whole and the part have the same number of terms.

Let us express both these paradoxes as abstractly as possible. For
this purpose, let m be a compact series of any kind, and let ^r be a

variable which can take all values in u after a certain value, which we
will call 0. 'Letf{x) be a one-valued function of x, and x a one-valued

function of f{^xi) ; also let all the values of f{x) belong to u. Then the

arguments are the following.

I. Let./(0) be a term preceding ; \eif{x) grow as x grows, i.e. if

xP x' (where P is the generating relation), lety(a7) Pf{x'). Further

lety(a?) take all values in u intermediate between any two values oif{x).

If, then, for some value a of x, such that OP a, we havey(a) = «, then

the series of values oi f{x) will be all terms from_/"(0) to a, while that

of X will be only the terms from to a, which are a part of those from

y(0) to a. Thus to supposey(a) = a is to suppose a one-one correlation,

term for term, of whole and part, which Zeno and common-sense pro-

nounce impossible.

II. Let fix) be a function which is when x is 0, and which grows

uniformly as x grows, our series being one in which there is measurement.

Then if x takes all values after 0, so does y(a?); and \i f{x) takes all

such values, so does x. The class of values of the one is therefore

identical with that of the other. But if at any time the value of x
is greater than that of f{x), since f{x) grows at a uniform rate, x will

always be greater than f{x). Hence for any assigned value of x, the

class of values oi f{x) from to f{x) is a proper part of the values

of X from to x. Hence we might infer that all the values oi f{x)
were a proper part of all the values of x ; but this, as we have seen, is

fallacious.

These two paradoxes are correlative. Both, by reference to segments,

may be stated in terms of limits. The Achilles proves that two variables

in a continuous series, which approach equality from the same side,

cannot ever have a common limit; the Tristram Shandy proves that

two variables which start from a common term, and proceed in the

same direction, but diverge more and more, may yet determine the same

limiting class (which, however, is not necessarily a segment, because

segments were defined as having terms beyond them). The Achilles

assumes that whole and part cannot be similar, and deduces a paradox

;

the other, starting from a platitude, deduces that whole and part may
be similar. For common-sense, it must be confessed, this is a most

unfortunate state of things.

341. There is no doubt which is the correct course. The Achilles

must be rejected, being directly contradicted by Arithmetic. The
Tristram Shandy must be accepted, since it does not involve the axiom
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that the whole cannot be similar to the part. This axiom, as we

have seen, is essential to the proof of the Achilles ; and it is an axiom

doubtless very agreeable to common-sense. But there is no evidence

for the axiom except supposed self-evidence, and its admission leads to

perfectly precise contradictions. The axiom is not only useless, but

positively destructive, in mathematics, and against its rejection there

is nothing to be set except prejudice. It is one of the chief merits of

proofs that they instil a certain scepticism as to .-'the result proved. As

soon as it was found that the similarity of whole and part could be

proved to be impossible for ewevyfinite whole*, it became not unplausible

to suppose that for infinite wholes, where the impossibility could not be

proved, there was in fact no such impossibility. In fact, as regards

the numbers dealt with in daily life—in engineering, astronomy, or

accounts, even those of Rockefeller and the Chancellor of the Exchequer

—

the similarity of whole and part w impossible ; and hence the supposition

that it is always impossible is easily explained. But the supposition rests

on no better foundation than that formerly entertained by the inductive

philosophers of Central Africa, that all men are black.

342. It may be worth while, as helping to explain the difference

between finite and infinite wholes, to point out that whole and part

are terms capable of two definitions where the whole is finite, but of

only one of these, at least practically, where the whole is infinite f.

A finite whole may be taken collectively, as such and such individuals,

A, B, C, D, E say. A part of this whole may be obtained by

enumerating some, but not all, of the terms composing the whole;

and in this way a single individual is part of the whole. Neither the

whole nor its parts need be taken as classes, but each may be defined

by extension, i.e. by enumeration of individuals. On the other hand,

the whole and the parts may be both defined by intension, i.e. by

class-concepts. Thus we know without enumeration that Englishmen

are part of Europeans ; for whoever is an Englishman is a European,

but not vice versa. Though this might be established by enumeration,

it need not be so established. When we come to infinite wholes, this

twofold definition disappears, and we have only the definition by in-

tension. The whole and the part must both be classes, and the definition

of whole and part is effected by means of the notions of a variable

and of logical implication. If a be a class-concept, an individual of a

is a term having to a that specific relation which we call the class-

relation. If now b be another class such that, for all values of x, "x

is an a " implies " a? is a S," then the extension of a (i.e. the variable x)

is said to be part of the extension of 6j. Here no enumeration of

individuals is required, and the relation of whole and part has no longer

* The finite being here defined by mathematical induction, to avoid tautology.

t Cf. § 330.

X See Peano, Rivista di Matematica, vii, or Formulaire, Vol. ii, Part I.



341-343] The Philosophy of the Infinite 361

that simple meaning which it had where finite parts were concerned.

To say now that a and i are similar, is to say that there exists some
one-one relation R fulfilling the following conditions : if a; be an a,

there is a term y of the class h such that xRy ; if y' be a J, there is

a term x of the class a such that x'Ry . Although a is part of h,

such a state of things cannot be proved impossible, for the impossibility

could only be proved by enumeration, and there is no reason to sup-

pose enumeration possible. The definition of whole and part without

enumeration is the key to the whole mystery. The above definition,

which is due to Professor Peano, is that which is naturally and necessarily

applied to infinite wholes. For example, the primes are a proper part

of the integers, but this cannot be proved by enumeration. It is de-

duced from " if a? be a prime, a? is a number," and " if a? be a number,

it does not follow that a? is a prime." That the class of primes should

be similar to the class of numbers only seems impossible because we
imagine whole and part defined by enumeration. As soon as we rid

ourselves of this idea the supposed contradiction vanishes.

343. It is very important to realize, as regards to or «„, that neither

has a number immediately preceding it. This characteristic they share

with all limits, for the limit of a series is never immediately preceded by
any term of the series which it limits. But &> is in some sense logically

prior to other limits, for the finite ordinal numbers together with w
present the formal type of a progression together with its limit. When
it is forgotten that w has no immediate predecessor, all sorts of contra-

dictions emerge. For suppose n to be the last number before m ; then

M is a finite number, and the number of finite numbers is w -f- 1. In fact,

to say that w has no predecessor is merely to say that the finite numbers
have no last term. Though a is preceded by all finite numbers, it is

not preceded immediately by any of them : there is none next to a.

Cantor's transfinite numbers have the peculiarity that, although there

is one next after any assigned number, there is not always one next

before. Thus there seem to be gaps in the series. We have the series

1, 2, 3, ... J/, ... , which is infinite and has no last term. We have

another series w, w -I- 1, w -1- 2, ... a + v, ... which equally is infinite and
has no last term. This second series comes wholly after the first, though
there is no one term of the first which a> immediately succeeds. This

state of things may, however, be paralleled by very elementary series,

such as the series whose general terms are 1 — Ijv and 2 — l/i^, where

V may be any finite integer. The second series comes wholly after the

first, and has a definite first term, namely 1. But there is no term
of the first series which immediately precedes 1. What is necessary,

in order that the second series should come after the first, is that there

should be some series in which both are contained. If we call an ordinal

part of a series any series which can be obtained by omitting some of

the terms of our series without changing the order of the remaining
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terms, then the finite and transfinite ordinals all form one series, whose

generating relation is that of ordinal whole and part among the series

to which the various ordinals apply. If v be any finite ordinal, series of

the type v are ordinal parts of progressions ; similarly every series of the

type to + 1 contains a progression as an ordinal part. The relation

ordinal part is transitive and asymmetrical, and thus the finite and

transfinite ordinals all belong to one series. The existence of o) (in

the mathematical sense of existence) is not open to question, since w
is the type of order presented by the natural numbers themselves. To
deny &j would be to affirm that there is a last finite number—a view

which, as we have seen, leads at once to definite contradictions. And
when this is admitted, to + 1 is the type of the series of ordinals in-

cluding Q), I.e. of the series whose terms are all series of integers from 1

up to any finite number together with the whole' series of integers.

Hence all the infinite hierarchy of transfinite numbers easily follows.

344. The usual objections to infinite numbers, and classes, and

series, and the notion that the infinite as such is self-contradictory,

may thus be dismissed as groundless. There remains, however, a very

grave difficulty, connected with the contradiction discussed in Chapter x.

This difficulty does not concern the infinite as such, but only certain

very large infinite classes. Briefly, the difficulty may be stated as

follows. Cantor has given a proof* that there can be no greatest

cardinal number, and when this proof is examined, it is found to state

that, if M be a class, the number of classes contained in u is greater than

the number of terms of m, or (what is equivalent), if a be any number,

2" is greater than a. But there are certain classes concerning which it

is easy to give an apparently valid proof that they have as many terms

as possible. Such are the class of all terms, the class of all classes, or

the class of all propositions. Thus it would seem as though Cantor's

proof must contain some assumption which is not verified in the case

of such classes. But when we apply the reasoning of his proof to the

cases in question, we find ourselves met by definite contradictions, of

which the one discussed in Chapter x is an example f. The difficulty

arises whenever we try to deal with the class of all entities absolutely,

or with any equally numerous class; but for the difficulty of such a

view, one would be tempted to say that the conception of the totahty

of things, or of the whole universe of entities and existents, is in some

way illegitimate and inherently contrary to logic. But it is undesirable

to adopt so desperate a measure as long as hope remains of some less

heroic solution.

It may be observed, to begin with,-that the class of numbers is not,

* He has, as a matter of fact, offered two proofs, but we shall find that one of

them is not cogent.

t It was in this way that I discovered this contradiction ; a similar one i^ given

at the end of Appendix B.
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as might be supposed, one of those in regard to which difficulties occur.

Among finite numbers, if n were the number of numbers, we should

have to infer that w — 1 was the greatest of numbers, so that there

would be no number n at all. But this is a peculiarity of finite numbers.

The number of numbers up to and including «„ is a,,, but this is also

the number of numbers up to and including a^, where /3 is any finite

ordinal or any ordinal applicable to a denumerable well-ordered series.

Thus the number of numbers up to and including a, where a is infinite,

is usually less than a, and there is no reason to suppose that the number

of aU numbers is the greatest number. The number of numbers may be

less than the greatest number, and no contradiction arises from the fact

(if it be a fact) that the number of individuals is greater than the number

of numbers.

But although the class of numbers causes no difficulty, there are

other classes with which it is very hard to deal. Let us first examine

Cantor's proofs that there is no greatest cardinal number, and then

discuss the cases in which contradictions arise.

345. In the first of Cantor's proofs*, the argument depends upon

the supposed fact that there is a one-one correspondence between the

ordinals and the cardinals f. We saw that, when we consider the car-

dinal number of the series of the type represented by any ordinal, an

infinite number of ordinals correspond to one cardinal—for example, aU

ordinals of the second class, which form a non-denumerable collection,

correspond to the single cardinal a,,. But there is another method of

correlation, in which only one ordinal corresponds to each cardinal.

This method results from considering the series of cardinals itself. In

this series, a„ corresponds to a>, ttj to « -f 1, and so on : there is always

one and only one ordinal to describe the type of series presented by the

cardinals from up to any one of them. It seems to be assumed that

there is a cardinal for every ordinal, and that no class can have so

many terms that no well-ordered series can have a greater number of

terms. For my part I do not see any grounds for either supposition,

and I do see definite grounds against the latter. For every term of

a series must be an individual, and must be a different individual (a

point often overlooked) from every other term of the series. It must

be different, because there are no instances of an individual : each

individual is absolutely unique, and in the nature of the case only

one. But two terms in a series are two, and are therefore not one

and the same individual. This most important point is obscured by

the fact that we do not, as a rule, fully describe the terms of our series.

When we say : Consider a series a, b, c, d, b, d, e, a, . . . , where terms

are repeated at intervals—such a series, for example, as is presented by

the digits in a decimal—we forget the theorem that where there is

repetition our series is only obtainable by correlation; that is, the

* Mannichfaltigkeitslehre, p. 44.

+ Cf. supra, Chap, xxxviii, § 300.
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terms do not themselves have an order, but they have a one-many

(not one-one) relation to terms which have an order*. Hence if we
wish for a genuine series we must either go back to the series with

which our terms are correlated, or we must form the complex terms

compounded of those of the original series and those of the correlated

series in pairs. But in either of these series there is no repetition.

Hence every ordinal number must correspond to a series of individuals,

each of which differs from each other. Now it may be doubted whether

all individuals form a series at aU : for my part I cannot discover any

transitive asymmetrical relation which holds between every pair of terms.

Cantor, it is true, regards it as a law of thought that every definite

aggregate can be well-ordered ; but I see no ground for this opinion.

But allowing this view, the ordinals will have a perfectly definite

maximum, namely that ordinal which represents the type of series

formed by all terms without exception f. If the collection of all

terms does not form a series it is impossible to prove that there

must be a maximum ordinal, which in any case there are reasons for

denying:}:. But in this case we may legitimately doubt whether there

are as many ordinals as there are cardinals. Of course, if all cardinals

form a well-ordered series, then there must be an ordinal for each cardinal.

But although Cantor professes that he has a proof that of two different

cardinals one must be the greater {Math. Annakn, xlvi, § 2), I cannot

persuade myself that he does more than prove that there is a series,

whose terms are cardinals of which any one is greater or less than any

other. That all cardinals are in this series I see no reason to think.

There may be two classes such that it is not possible to correlate either

with a part of the other ; in this case the cardinal number of the one

will be neither equal to, greater than, nor less than, that of the other.

If all terms belong to a single well-ordered series, this is impossible;

but if not, I cannot see any way of showing that such a case cannot

arise. Thus the first proof that there is no cardinal which cannot be

increased seems to break down.

346. The second of the proofs above referred to§ is quite different,

and is far more definite. The proof is interesting and important on its

own account, and will be produced in outline. The article in which

it occurs consists of three points : (1) a simple proof that there are

powers higher than the first, (2) the remark that this method of proof

can be applied to any power, (3) the application of the method to prove

that there are powers higher than that of the continuum ||.
Let us

* See Chap, xxxii, supra.

t On the maximum ordinal, see Burali-Forti, "Una questione sui numeri

transfiniti," Rendiconti dd circolo matematico di Palermo, 1897. Also my article in

RdM, Vol. vTii, p. 43 note.

I Cf. Chap. XXXVIII, § 301.

§ Jahresbericht der deutschen Mathematiker-Vereinigung, i. (1892), p. 77.

II
Power is synonymous with cardinal number: the first power is that of the finite

integers, i.e. oq.
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examine the first of the above points, and then see whether the method
is really general.

Let m and w, Cantor says, be two mutually exclusive characters, and
consider a collection M of elements E, where each element £ is a
denumerable collection, Xi,x^,...Xn,..., and each x is either an tk ora w.

(The two characters m and w may be considered respectively as greater

and less than some fixed term. Thus the ,r's may be rational numbers,

each of which is an m when it is greater than 1, and a w when it is less

than 1. These remarks are logically irrelevant, but they make the

argument easier to follow.) The collection M is to consist of all possible

elements E of the above description. Then M is not denumerable, i.e.

is of a power higher than the first. For let us take any denumerable

collection of £'s, which are defined as follows

:

£/2 — (^21, ^22, •
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the same power as u. To prove that K has a greater power, consider

any class contained in K and having a one-one correlation with u.

Then any relation of this class may be called Rx, where x is some u—the

suffix X denoting correlation with x. Let us now define a relation R
by the following conditions : For every terra x of u for which x has

the relation R^ to 0, let x have the relation i?' to 1 ; and for every term

y of u for which y has the relation Ry to 1, let y have the relation

R' to 0. Then -ff' is defined for all terms of u, and is a relation of the

class K ; but it is not any one of the relations Rx- Hence, whatever

class contained in K and of the same power as u we may take, there

is always a term of K not Belonging to this class ; and therefore K has

a higher power than u.

347. We may, to begin with, somewhat simplify this argument,

by eliminating the mention of and 1 and relations to them. Each

of the relations of the class K is defined when we know which of the

terms of u have this relation to 0, that is, it is defined by means of

a class contained in u (including the null-class and u itself). Thus

there is one relation of the class K for every class contained in u,

and the number of K is the same as that of classes contained in u.

Thus if ^ be any class whatever, the logical product ku is a class

contained in u, and the number of K is that of ku, where k is a variable

which may be any class. Thus the argument is reduced to this : that

the number of classes contained in any class' exceeds the number of terms

belonging to the class*.

Another form of the same argument is the following. Take any

relation R which has the two properties (1) that its domain, which we

will call p, is equal to its converse domain, (2) that no two terms of the

domain have exactly the same set of relata. Then by means of R, any

term of p is correlated with a class contained in p, namely the class

of relata to which the said term is referent; and this correlation is

one-one. We have to show that at least one class contained in p

is omitted in this correlation. The class omitted is the class w which

consists of all terms of the domain which do not have the relation R
to themselves, i.e. the class w which is the domain of the logical product

of -ff and diversity. For, if y be any term of the domain, and therefore

of the converse domain, y belongs to w if it does not belong to the class

correlated with y, and does not belong to w in the contrary case. Hence

w is not the same class as the correlate of y ; and this applies to what-

ever term y we select. Hence the class w is necessarily omitted in the

correlation.

348. The above argument, it must be confessed, appears to contain

no dubitable assumption. Yet there are certain cases in which the

conclusion seems plainly false. To begin with the class of all terms.

If we assume, as was done in § 47, that every constituent of every

* ITie number of classes contained in a class which has a members is 2« ; thus

the argument shows that 2" is always greater than a.
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proposition is a term, then classes will be only some among terms. And
conversely, since there is, for every term, a class consisting of that

term only, there is a one-one correlation of all terms with some classes.

Hence the number of classes should be the same as the number of

terms*. This case is adequately met by the doctrine of types f, and

so is the exactly analogous case of classes and classes of classes. But

if we admit the notion of all objects;]: of every kind, it becomes evident

that classes of objects must be only some among objects, while yet

Cantor's argument would show that there are more of them than there

are objects. Or again, take the class of propositions. Every object

can occur in some proposition, and it seems indubitable that there are

at least as many propositions as there are objects. For, if m be a fixed

class, " X is aw " will be a different proposition for every different value

of X ; if, according to the doctrine of types, we hold that, for a given u,

X has a restricted range if " a? is a w " is to remain significant, we only

have to vary u suitably in order to obtain propositions of this form for

every possible x, and thus the number of propositions must be at least

as great as that of objects. But classes of propositions are only some

among objects, yet Cantor's argument shows that there are more of

them than there are propositions. Again, we can easily prove that

there are more prepositional functions than objects. For suppose a

correlation of all objects and some propositional functions to have been

affected, and let <\>x be the correlate of x. Then " not-i^Jijc)^ i-^- " 4'x

does not hold of a?," is a propositional funcbion not contained in the

correlation ; for it is true or false of x according as
(f)^

is false or true

of X, and therefore it differs from
<f>ai

for every value of x. But this

case may perhaps be more or less met by the doctrine of types.

349. It is instructive to examine in detail the application of Cantor's

argument to such cases by means of an actual attempted correlation.

In the case of terms and classes, for example, if x be not a class, let us

correlate it with ix, i.e. the class whose only member is x, but if a; be a

class, let us correlate it with itself. (This is not a one-one, but a

many-one correlation, for x and ix are both correlated with ix ; but

it will serve to illustrate the point in question.) Then the class which,

according to Cantor's argument, should be omitted from the correlation,

is the class w of those classes which are not members of themselves

;

yet this, being a class, should be correlated with itself. But w, as we
saw in Chapter x, is a self-contradictory class, which both is and is not

a member of itself. The contradiction, in this case, can be solved by
the doctrine of types; but the case of propositions is more difficult.

In this case, let us correlate every class of propositions with the

* This results from the theorem of Schroder and Bernstein, according to which,

if u be similar to a part of v, and d to a part of u, then u and v must be similar.

See Borel, Lemons sur la Thiorie des Fonctions (Paris, 1898), p. 102 S.

t See Chapter x. and Appendix B.

+ For the use of the word object see p. 55, note.
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proposition which is its logical product ; by this means we appear to have

a one-one relation of all classes of propositions to some propositions.

But applying Cantor's argument, we find that we have omitted the

class w of those propositions which are logical products, but are not

members of the classes of propositions whose logical products they

are. This class, according to the definition of our con-elation, should

be correlated with its own logical product, but on examining this

logical product, we find that it both is and is not a member of the

class w whose logical product it is.

Thus the application of Cantor's argument to the doubtful cases

yields contradictions, though I have been unable to find any point in

which the argument appears faulty. The only solution I can suggest

is, to accept the conclusion that there is no greatest number and the

doctrine of types, and to deny that there are any true propositions

concerning all objects or all propositions. Yet the latter, at least,

seems plainly false, since all propositions are at any rate true or false,

even if they had no other common properties. In this unsatisfactory

state, I reluctantly leave the problem to the ingenuity of the reader.

350. To sum up the discussions of this Part : We saw, to begin

with, that irrationals are to be defined as those segments of rationals

which have no limit, and that in this way analysis is able to dispense

with any special axiom of continuity. We saw that it is possible to

define, in a purely ordinal manner, the kind of continuity which belongs

to real numbers, and that continuity so defined is not self-contradictory.

We found that the differential and integral calculus has no need of the

infinitesimal, and that, though some forms of infinitesimal are admissible,

the most usual form, that of infinitesimal segments in a compact series,

is not implied by either compactness or continuity, and is in fact

self-contradictory. Finally we discussed the philosophical questions

concerning continuity and infinity, and found that the arguments of

Zeno, though largely valid, raise no sort of serious difficulty. Having

grasped clearly the twofold definition of the infinite, as that which

cannot be reached by mathematical induction starting from 1, and as

that which has parts which have the same number of terms as itself

—

definitions which may be distinguished as ordinal and cardinal re-

spectively—we found that all the usual arguments, both as to infinity

and as to continuity, are fallacious, and that no definite contradiction

can be proved concerning either, although certain special infinite classes

do give rise to hitherto unsolved contradictions.

It remains to apply to space, time, and motion, the three chief re-

sults of this discussion, which are (1) the impossibility of infinitesimal

segments, (2) the definition of continuity, and (3) the definition and

the consistent doctrine of the infinite. These applications will, I

hope, persuade the reader that the above somewhat lengthy discussions

have not been superfluous.
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CHAPTER XLIV.

DIMENSIONS AND COMPLEX NUMBERS.

351. The discussions of the preceding Parts iiave been concerned

with two main themes, the logical theory of numbers and the theory

of one-dimensional series. In the first two Parts, it was shown how,

from the indispensable apparatus of general logical notions, the theory

of finite integers and of rational numbers without sign could be de-

velpped. In the third Part, a particular case of order, namely the

order of magnitude, was examined on its own account, and it was found

that most of the problems arising in the theory of quantity are purely

ordinal. In the fourth Part, the general nature of one-dimensional

series was set forth, and it was shown that all the arithmetical propo-

sitions obtained by means of the logical theory of finite numbers could

also be proved by assuming that the finite integers form a series of the

kind which we called a progression. In the fifth Part, we examined

the problems raised by endless series and by compact series—^problems

which, under the names of infinity and continuity, have defied philo-

sophers ever since the dawn of abstract thought. The discussion of

these problems led to a combination of the logical and ordinal theories

of Arithmetic, and to the rejection, as uni\ersally valid, of two connected

principles which, following Cantor, we regarded as definitions of the

finite, not as applicable to all collections or series. These two principles

were : (1) If one class be wholly contained in, but not coextensive with,

another, then the one has not the same number of terms as the other

;

(2) mathematical induction, which is purely ordinal, and may be stated

as follows : A series generated by a one-one relation, and having a

first term, is such that any property, belonging to the first term and

to the successor of any possessor of the property, belongs to every term

of the series. These two principles we regarded as definitions of finite

classes and of progressions or finite series respectively, but as inapplicable

to some classes and some series. This view, we found, resolves all the

difficulties of infinity and continuity, except a purely logical difficulty

as to the notion of all classes. With this result, we completed the

philosophical theory of one-dimensional series.

24—2
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352. But in all our previous discussions, large branches of mathe-

matics have remained unmentioned. One of the generalizations of

number, namely complex numbers, has been excluded completely, and

no mention has been made of the imaginary. The whole of Geometry,

also, has been hitherto foreign to our thoughts. These two omissions

were connected. Not that we are to accept a geometrical, i.e. spatial,

theory of complex numbers : this would be as much out of place as

a geometrical theory of irrationals. Although this Part is called Space,

we are to remain in the region of pure mathematics : the mathematical

entities discussed will have certain affinities to the space of the actual

world, but they will be discussed without any logical dependence upon

these affinities. Geometry may be considered as a pure a priori science,

or as the study of actual space. In the latter sense, I hold it to be

an experimental science, to be conducted by means of careful measure-

ments. But it is not in this latter sense that I wish to discuss it.

As a branch of pure mathematics. Geometry is strictly deductive,

indifferent to the choice of its premisses and to the question whether

there exist (in the strict sense) such entities as its premisses define.

Many diiferent and even inconsistent sets of premisses lead to propo-

sitions which would be called geometrical, but all such sets have a

common element. This element is wholly summed up by the statement

that Geometry deals with series of more than one dimension. The

question what may be the actual terms of such series is indifferent

to Geometry, which examines only the consequences of the relations

which it postulates among the terms. These relations are always such

as to generate a series of more than one dimension, but have, so far

as I can see, no other general point of agreement. Series of more than

one dimension I shall call multiple series : those of one dimension will

be called simple. What is meant by dimensions I shall endeavour to

explain in the course of the present chapter. At present, I shall set

up, by anticipation, the following definition : Geometry is the study of
series of two or more dimensions. This definition, it will be seen, causes

complex numbers to form part of the subject-matter of Geometry, since

they constitute a two-dimensional series; but it does not show that

complex numbers have any logical dependence upon actual space.

The above definition of Geometry is, no doubt, somewhat unusual,

and will produce, especially upon Kantian philosophers, an appearance

of wilful misuse of words. I believe, however, that it represents

correctly the present usage of mathematicians, though it is not necessary

for them to give an explicit definition of their subject. How it has

come to bear this meaning, may be explained by a brief historical

retrospect, which will illustrate also the difference between pure and

applied mathematics.

353. Until the nineteenth century. Geometry meant EucHdean
Geometry, i.e. a certain system of propositions deduced from premisses
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which were supposed to describe the space in which we live. The
subject was pursued very largely because (what is no doubt important

to the engineer) its results were practically applicable in the existent

world, and embodied in themselves scientific truths. But in order to

be sure that this was so, one of two things was necessary. Either

we must be certain of the truth of the premisses on their own account,

or we must be able to show that no other set of premisses would give

results consistent with experience. The first of these alternatives was

adopted by the idealists and was especially ad\ocated by Kant. The
second alternative represents, roughly, the position of empiricists before

the non-Euclidean period (among whom we must include Mill). But
objections were raised to both alternatives. For the Kantian view,

it was necessary to maintain that all the axioms are self-evident—a view

which honest people found it hard to extend to the axiom of parallels.

Hence arose a search for more plausible axioms, which might be de-

clared a priori truths. But, though many such axioms were suggested,

all could sanely be doubted, and the search only led to scepticism.

The second alternative—the view that no other axioms would give

results consistent with experience—could only be tested by a greater

mathematical ability than falls to the lot of most philosophers. Accord-

ingly the test was wanting until Lobatchewsky and Bolyai developed

their non-Euclidean system. It was then proved, with all the cogency

of mathematical demonstration, that premisses other than Euclid's

could give results empirically indistinguishable, within the limits of

observation, from those of the orthodox system. Hence the empirical

argument for Euclid was also destroyed. But the investigation produced

a new spirit among Geometers. Having found that the denial of

Euclid's axiom of parallels led to a different system, which was self-

consistent, and possibly true of the actual world, mathematicians became

interested in the development of the consequences flowing from other

sets of axioms more or less resembling Euclid's. Hence arose a large

number of Geometries, inconsistent, as a rule, with each other, but

each internally self-consistent. The resemblance to Euclid required in

a suggested set of axioms has gradually grown less, and possible

deductive systems have been more and more investigated on their

own account. In this way. Geometry has become (what it was formerly

mistakenly called) a branch of pure mathematics, that is to say, a subject

in which the assertions are that such and such consequences follow from

such and such premisses, not that entities such as the premisses describe

actually exist. That is to say, if Euclid's axioms be called A, and P be

any proposition implied by J, then, in the Geometry which preceded

Lobatchewsky, P itself would be asserted, since J was asserted. But

now-a-days, the geometer would only assert that A implies P, leaving

A and P themselves doubtful. And he would have other sets of axioms,

Ai, A„_... implying Pi, P^... respectively: the implications would belong
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to Geometry, but not A-^ or Pj or any of the other actual axioms and

propositions. Thus Geometry no longer throws any direct light on

the nature of actual space. But indirectly, the increased analysis and

knowledge of possibilities, resulting from modem Geometry, has thrown

immense light upon our actual space. Moreover it is now proved (what

is fatal to the Kantian philosophy) that every Geometry is rigidly

deductive, and does not employ any forms of reasoning but such as

apply to Arithmetic and all other deductive sciences. My aim, in what

follows, will be to set forth first, in brief outlines, what is philosophically

important in the deductions which constitute modem Geometry, and

then to proceed to those questions, in the philosophy of space, upon which

mathematics throws light. In the first section of this Part, though

I shall be discussing Geometries as branches of pure mathematics, I

shall select for discussion only those which throw the most light either

upon actual space, or upon the nature of mathematical reasoning. A
treatise on non-Euclidean Geometry is neither necessary nor desirable in

a general work such as the present, and will therefore not be found in

the following chapters.

354. Geometry, we said, is the study of series which have more

than one dimension. It is now time to define dimensions, and to

explain what is meant by a multiple series. The relevance of our

definition to Geometry will appear from the fact that the mere defini-

tion of dimensions leads to a duality closely analogous to that of

projective Geometry.

Let us begin with two dimensions. A series of two dimensions

arises as follows. I^t there be some asymmetrical transitive relation P,

which generates a series Wj. Let every term of u^ be itself an asym-

metrical transitive relation, which generates a series. Let all the field

of P form a simple series of asymmetrical relations, and let each of these

have a simple series of terms for its field. Then the class u^ of terras

forming the fields of all the relations in the series generated by P

is a two-dimensional series. In other words, the total field of a class

of asymmetrical transitive relations forming a simple series is a double

series. But instead of starting from the asymmetrical relation P, we

may start from the terms. Let ther° be a class of terms u^, of which

any given one (with possibly one exception) belongs to the field of one

and only one of a certain class u-^ of serial relations. That is if .r be a

term of u^, x is also a term of the field of some relation of the class Ui.

Now further let /^i be a series. Then u^ will be a double series. This

seems to constitute the definition of two-dimensional series.

To obtain three dimensions, we have only to suppose that u^ itself

consists of series, or of asymmetrical transitive relations. Or, starting

with the terms of the three-dimensional series, let any term of a certain

class M3 belong to one and only one series (again with one possible

exception, which may belong to many series) of a certain class 11.2. Let
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every term of Ma be a term of some series belonging to a class Mj of series,

and let z«i itself be a simple series. Then u^ is a triple series, or a series

of three dimensions. Proceeding in this way, we obtain the definition

of n dimensions, which may be given as follows : Let there be some
series u^ whose terms are all themselves serial relations. If x-y be any

term of Ui, and x^ any term of the field of x-^, let x^ be again a serial

relation, and so on. Proceeding to x^, x^, etc., let Xn_i, however

obtained, be always a relation generating a simple series. Then all the

terms a?„ belonging to the field of any serial relation x„,-i, form an

ra-dimensional series. Or, to give the definition which starts from the

terms : Let u„ be a class of terms, any one of which, Xn say, belongs to

the field of some serial relation, x^-i say, which itself belongs to a

definite class rin-i of serial relations. Let each term Xn in general

belong to the field of only one serial relation vr„_i (with exceptions

which need not be discussed at present). Let m,i_i lead to a new

class M„_2 of serial relations, in exactly the way in which m„ led to m,i_i.

Let this proceed until we reach a class «^, and let u^ be a simple series.

Then ?<„ is a series of n dimensions.

355. Before proceeding further, some observations on the above

definitions may be useful. In the first place, we have just seen that

alternative definitions of dimensions suggest themselves, which have a

relation analogous to what is called duality in projective Geometry.

How far this analogy extends, is a question which we cannot discuss

until we have examined projective Geometry. In the second place,

every series of n dimensions involves series of all smaller numbers of

dimensions, but a series of (?i — 1) dimensions does not in general

imply one of n dimensions. In the second form of the definition of n
dimensions, the class m„_i is a series of (n — 1) dimensions, and generally,

if m be less than n, the class M„_m is a series of (n — m) dimensions.

And in the other method, all possible terms Xn-i together form a series

of (n — 1) dimensions, and so on. In the third place, if n be finite, a

class which is an w-dimensional series is also a one-dimensional series.

This may be established by the foUpwing rules: In the class Mj, which

is a simple series, presei've the order unchanged. In u^, keep the in-

ternal order of each series unchanged, and place that series before which

comes before in u^, and that after which comes after in u^. Thus Mj is

converted into a simple series. Apply now the same process to u^, and

so on. Then by mathematical induction, if n be finite, or be any infinite

ordinal number, m„ can be converted into a simple series. This remark-

able fact, which was discovered, for finite numbers and to, by Cantor*,

* Cantor has proved, not only that a simple series can be so formed, but that,

if n be not greater than m, and the constituent series all have the same cardinal

number, this is also the cardinal number of the resultant series : i.e. an K-dimensional

space has the same cardinal number of points as a finite portion of a line. See
Acta Math, n, p. 314 ff.
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has a very important bearing on the foundations of Geometry. In

the fourth place, the definition of n dimensions can be extended to

the case where n is to, the first of the transfinite ordinals. For this

purpose, it is only necessary to suppose that, whatever finite number m
we may take, any Um will belong to some simple series of series m^+i ;

and that the sequence of classes of series so obtained obeys mathematical

induction, and is therefoi'e a progression. Then the number of dimen-

sions is o). This case brings out, what does not appear so clearly from

the case of a finite number of dimensions, that the number of dimensions

is an ordinal number.

356. There are very many ways of generating multiple series, as

there are of generating simple series. The discussion of these various

ways is not, however, of great importance, since it would follow closely

the discussion of Part IV, Chapter xxiv. Instances will meet us in the

course of our examination of the various Geometries ; and this exam-

ination will give opportunities of testing our definition of dimensions.

For the present, it is only important to observe that dimensions, like

order and continuity, are defined in purely abstract terms, without any

reference to actual space. Thus when we say that space has three

dimensions, we are not merely attributing to it an idea which can

only be obtained from space, but we are effecting part of the actual

logical analysis of space. This will appear more clearly from the

applicability of dimensions to complex numbers, to which we must

now turn our attention.

357. The theory of imaginaries was formerly considered a very

important branch of mathematical philosophy, but it has lost its

philosophical importance by ceasing to be controversial. The ex-

amination of imaginaries led, on the Continent, to the Theory of

Functions—a subject which, in spite of its overwhelming mathematical

importance, appears to have little interest for the philosopher. But

among ourselves the same examination took a more abstract direction

:

it led to an examination of the principles of symbolism, the formal

laws of addition and multiplication, and the general nature of a

Calculus. Hence arose a freer spirit towards ordinary Algebra, and

the possibility of regarding it (like ordinary Geometry) as one species

of a genus. This was the guiding spirit of Sir William Hamilton,

De Morgan, Jevons and Peirce—to whom, as regards the result,

though not as regards the motive, we must add Boole and Grassraann.

Hence the philosophy of imaginaries became merged in the far

wider and more interesting problems of Universal Algebra*. These

problems cannot, in my opinion, be dealt with by starting with

the genus, and asking ourselves : what are the essential principles of

any Calculus ? It is necessary to adopt a more inductive method, and

* See Whitehead, Unmrsnl Algebra, Cambridge, 1898 ; especially Book I.
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examine the various species one by one. The mathematical portion of

this task has been admirably performed by Mr Whitehead : the philo-

sophical portion is attempted in the present work. The possibility ojf a

deductive Universal Algebra is often based upon a supposed principle of

the Permanence of Form. Thus it is said, for example, that complex

numbers must, in virtue of this principle, obey the same laws of addition

and multiplication as real numbers obey. But as a matter of fact there

is no such principle. In Universal Algebra, our symbols of operation,

such as + and x , are variables, the hypothesis of any one Algebra being

that these symbols obey certain prescribed rules. In order that such an

Algebra should be important, it is necessary that there should be at

least one instance in which the suggested rules of operation are verified.

But even this restriction does not enable us to make any general formal

statement as to all possible rules of operation. The principle of the

Permanence of Form, therefore, must be regarded as simply a mistake

:

other operations than arithmetical addition may have some or all of its

formal properties, but operations can easily be suggested which lack some
or all of these properties.

358. Complex numbers first appeared in mathematics through the

algebraical generalization of number. The principle of this generaliza-

tion is the following : Given some class of numbers, it is required that

numbers should be discovered or invented which will render soluble any

equation in one variable, whose coefficients are chosen from the said

class of numbers. Starting with positive integers, this method leads

at once, by means of simple equations alone, to all rational numbers

positive and negative. Equations of finite degrees will give all the

so-called algebraic numbers, but to obtain transcendent numbers, such

as e and tt, we need equations which are not of any finite degree. In

this respect the algebraical generalization is very inferior to the arith-

metical, since the latter gives all irrationals by a uniform method,

whereas the former, strictly speaking, will give only the algebraic

numbers. But with regard to complex numbers, the matter is other-

wise. No arithmetical problem leads to these, and they are wholly

incapable of arithmetical definition. But the attempt to solve such

equations as of -\-\ = 0, or .t- + x +\ =0, at once demands a new class

of numbers, since, in the whole domain of real numbers, none can be

found to satisfy these equations. To meet such cases, the algebraical

generalization defined new numbers by means of the equations whose

roots they were. It showed that, assuming these new numbers to obey

the usual laws of multiplication, each of them fell into two parts, one

real, the other the product of some real number and a fixed number of

the new kind. This fixed number could be chosen arbitrarily, and was

always taken to be one of the square roots of — 1. Numbers thus

composed of two parts were called complex numbers, and it was shown

that no algebraic operation upon them could lead to any new class of
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numbers. \Vhat is still more remarkable, it was proved that any further

generalization must lead to numbers disobeying some of the formal laws

of Arithmetic*. But the algebraical generalization was wholly unable

(as it was, in truth, at every previous stage) to prove that there are

such entities as those which it postulated. If the said equations have

roots, then the roots have such and such properties ; this is all that

the algebraical method allows u.s to infer. There is, however, no law

of nature to the effect that every equation must have a root ; on

the contrary, it is quite essential to be able to point out actual

entities which do have the properties demanded by the algebraical

generalization.

359. The discovery of such entities is only to be obtained by

means of the theory of dimensions. (3rdinary complex numbers form

a series of two dimensions of a certain type, which happen to occur as

roots of equations in which the coefficients are real. Complex numbers

of a higher order represent a certain type of n-dimensional series, but

here there is no algebraical problem concerning real numbers which they

are required to solve. As a matter of fact, however, the algebraical

generalization, as we have seen, does not tell us what our new entities

are, nor whether they are entities at all : moreover it encoiu-ages the

erroneous view that complex numbers whose imaginary part vanishes

are real numbers. This error is analogous to that of supposing that

some real numbers are rational, some rationals integral, and positive

integers identical with signless integers. All the above errors having

been exposed at length, the reader will probably be willing to admit

the corresponding error in the present case. No complex number, then,

is a real number, but each is a term in some multiple series. It is not

worth while to examine specially the usual two-dimensional complex

numbers, whose claims, as we have seen, are purely technical. I shall

therefore proceed at once to systems with n units. I shall give first the

usual purely formal definition t, then the logical objections to this

definition, and then the definition which I propose to substitute.

Let n different entities, 61,62, fa, which we may call elements

or units, be given ; and let each be capable of association with any real

number, or, in special cases, with any rational or any integer. In this

way let entities a,^,. arise, where a^ is a number, and a,e^ differs from a/g

unless ?- = *and a^ = ag. That is, if either the numerical or the non-

numerical parts of a^y and a^g be different, then the wholes are different.

Further, let there be a way of combining a-fi^, 0L^2t • > °'nen, for each

set of values 01^, a^, ... a„, to form a new entity. (The class whose

members are 1.161, a^^, 0Ln6n will be such an entity.) Then the com-

bination, which may be written as

a = a-,ei + 0^2 + 0.^% 4- . . . + a„e„,

* See Stolz, Allgemeine Arithmetik, 11, Section 1, § 10.

t See Stolz, ibid. 11, Section 1, § 9.
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is a complex number of the »th order. The arrangement of the

component terms a^ei, a^^, ... a„e„ may or may not be essential to

the definition ; but the only thing always essential is, that the com-
bination should be such that a difference in any one or more of the

numbers «!, Ha, ... a„ insures a difference in the resulting complex

number.

360. The above definition suffers from the defect that it does not

point out any one entity which is the complex number defined by a set

of real numbers. Given two real numbers, a, h, the two complex numbers

a + ib,b + ia are determinate ; and it is desirable that such determinate-

ness should appear in the general definition of complex numbers of any

order. But the e's in the above definition are variables, and the

suggested complex number is only determinate when the e's are specified

as well as the a's. Where, as in metrical Geometry or in the Dynamics

of a finite system of particles, there are important meanings for the e's,

we may find that complex numbers in the above sense are important.

But no special interpretation can give us the complex number associated

with a given set of real numbers. We might take as the complex

number the class of all such entities as the above for all possible values

of the e's ; but such a class would be too general to serve our purposes.

A better method seems to be the following.

We wish a complex number of the wth order to be specified by the

enumeration of n real numbers in a certain order, i.e. by the numbers Hi,

02, • «», where the order is indicated by the suffix. But we cannot

define a complex number as a series of n real numbers, because the same

real number may recur, i.e. a^ and a^ need not be different whenever r

and s are different. Thus what defines a real number is a one-many

relation whose domain consists of real numbers and whose converse

domain consists of the first ii. integers (or, in the case of a complex

number of infinite order, of all the integers) ; for the suffix in a,, indicates

correlation with the integer ?•. Such one-many relations may be defined

to be the complex numbers, and in this way a purely arithmetical defi-

nition is obtained. The n-dimensional series of complex numbers of

order n results from arranging all complex numbers which differ only

as to (say) Or in the order of the real numbers which are o^ in the

various cases.

In order that complex numbers in the sense defined by Stolz should

have any importance, there must be some motive for considering

assemblages of terms selected out of continua. Such a motive exists

in a metrical space of n dimensions, owing to a circumstance which is

essential to the utility, though not to the definition, of complex

numbers. Let a collection of entities (points) be given, each of which

has to each of the entities ej, e^, ... en a numerically measurable relation

(distance), and let each be uniquely defined by the n relations which it

has to e-i,, e„, ... Bn. Then the complex number a will represent one of
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this collection of entities, and the elements ex, e^, ... e„ will themselves

be terms of the collection*. Thus there is a motive for considering the

numbers a, which in the general case is practically absent f. But what

is essential to observe, and what applies equally to the usual complex

numbers of Algebra, is this : our numbers are not purely arithmetical,

but involve essential reference to a plurality of dimensions. Thus we

have definitely passed beyond the domain of Arithmetic, and this was

my reason for postponing the consideration of complex numbers to this

late stage.

* «! is not identical with 1 x gj+ O x 62+ ••• The former is a point, the latter a

complex number.

t In geometrical applications, it is usual to consider only the ratios aj .-02 :...:<»„

as relevant. In this case, our series has only (n — 1).dimensions.



CHAPTER XLV.

PROJECTIVE GEOMETRY.

361. The foundations of Geometry have been subjected, in recent

times, to a threefold scrutiny. First came the work of the. non-

Euclideans, which showed that various axioms, long known to be

sufficient for certain results, were also necessary, i.e. that results in-

consistent with the usual results but consistent with each other followed

from the denial of those axioms. Next came the work of Dedekind

and Cantor on the nature of continuity, which showed the necessity

of investigating carefully the prerequisites of analytical Geometry.

Lastly, a great change has been introduced by the Italian work on

closed series, mentioned in Part IV., in virtue of which we are able,

given a certain type of relation between Jhur points of a line, to

introduce an order of all the points of a line. The work of the

non-Euclideans has, by this time, produced probably almost all the

modifications that it is likely to produce in the foundations, while

the work of Dedekind and Cantor only becomes relevant at a fairly

advanced stage of Geometry. The work on closed series, on the contrary,

being very recent, has not yet been universally recognized, although, as

we shall see in the present chapter, it has enormously increased the

range of pure projective Geometry.

362. In the discussions of the present Part, I shall not divide

Geometries, as a rule, into Euclidean, hyperbolic, elliptic, and so on,

though I shall of course recognize this division and mention it whenever

it is relevant. But this is not so fundamental a division as another,

which applies, generally speaking, within each of the above kinds of

Geometry, and corresponds to a greater logical difference. The above

kinds differ, not in respect of the indefinables with which we start,

nor yet in respect of the majority of the axioms, but only in respect

of comparatively few and late axioms. The three kinds which I wish

to discuss differ both in respect of the indefinables and in respect of the

axioms, but unlike the three previous kinds, they are, roughly speaking,

mutually compatible. That is to say, given a certain body of geo-

metrical propositions concerning a certain number of entities, it is more
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or less arbitrary which of the entities we take as indefinable ^nd which

of the propositions as indemonstrable. But the logical differences which

result from different selections are very great, and the systems of de-

ductions to which different selections lead must be separ'ately discussed.

All Geometries, as commonly developed, agree in starting with

points as indefinables. That is, there is a certain class-concept point

(which need not be the same in different Geometries), of which we

assume that there are at least two, or three, or four instances, according

to circi^istances. Further instances, i.e. further points, result from

sjieciaiaS^umptions in the various cases. Where the three great t3rpes

jdi Geomeftfy begin to diverge is as regards the straight line. Projective

Geometry begins with the whole straight line, i.e. it asserts that any

two points determine a certain class of points which is also determined

by any two other members of the class. If this class be regarded as

determined in virtue of a relation between the two points, then this

relation is symmetrical. What I shall call Descriptive Geometry, on

the contrary, begins with an asymmetrical relation, or a line with sense,

which may be called a ray ; or again it may begin by regarding two

points as determining the stretch of points between them. Metrical

Geometry, finally, takes the straight line in either of the above senses,

and adds either a second relation between any two points, namely

distance, which is a roagnitude, or else the consideration of stretches

as magnitudes. Thus in regard to the relations of two points, the

three kinds of Geometry take different indefinables, and have cor-

responding differences of axioms. Any one of the three, by a suitable

choice of axioms, will lead to any required Euclidean or non-Euclidean

space ; but the first, as we shall see, is not capable of yielding as many

propositions as result from the second or the third. In the present

chapter, I am going to assume that set of axioms which gives the

simplest form of projective Geometry ; and I shall call any collection

of entities satisfying these axioms a projective space. We shall see in

the next chapter how to obtain a set of entities forming a projective

space from a set forming a Euclidean or hyperbolic space ;
projective

space itself is, so far as it goes, indistinguishable from the polar form

of elliptic space. It is defined, like all mathematical entities, solely by

the formal nature of the relations between its constituents, not by what

those constituents are in themselves. Thus we shall see in the following

chapter that the " points " of a projective space may each be an infinite

class of straight lines in a non-projective space. So long as the

" points " have the requisite type of mutual relations, the definition

is satisfied.

363. Projective Geometry assumes a class of entities, called jjomfe,

to which it assigns certain properties*; In the first place, there are to

* In what follows, I am mainly indebted to Fieri, / Principii detta Geometria di

Podzione. Turin, 1898. This is, in my opinion, the best work on the present

subject.
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be at least two different points, a and b say. These two points are

to determine a certain class of points, their straight line, which we

will call ah. This class is determined by b and a, as well as by a and b,

i.e. there is no order of a and b involved ; moreover a (and therefore b)

is itself a member of the qjass. Further, the class contains at least

one point other than a and b ; if c be any such point, then b belongs to

the class ac, and every point of ac belongs to ah. With these assump-

tions it follows* that, if c, d be any points of ab, then cd and ab

coincide

—

i.e. any two points of a line determine that line, or two lines

coincide if they have two points in common.
Before proceeding further, let us consider for a moment what is

meant by saying that two points determine a class of points. This

expression is often thought to require no explanation, but as a matter

of fact it is not a perfectly precise statement. The precise statement

of what is meant is this : There is a certain definite relation {K say)

which holds between any couple of points and one and only one cor-

responding class of points. Without some such definite relation, there

could be no question of two points determining a class. The relation K
may be ultimate and indefinable, in which case we need the above

properties of the class ab. We may obtain, however, a derivative

• relation between two points, b and c say, namely that of being both

collinear with a given point a. This relation will be transitive and

symmetrical, but will always involve reference to a term other than

those (6 and c) which are its terms. This suggests, as a simplification,

that instead of a relation K between a couple of points and a class

of points, we might have a relation R between the two points a and b.

If J? be a symmetrical aliorelative, transitive so far as its being an

aliorelative will permit {i.-e. if aRb and bRc imply aRc, unless a and c

are identical), the above properties of the straight line will belong

to the class of terms having to a the relation R together with a itself.

This view seems simpler than the former, and leads to the same results.

Since the view that the straight line is derived from a relation of two

points is the simpler, I shall in general adopt it. Any two points a,

b have, then, a relation Raj, ; a, c have a relation Rac- If Rob and R^c

are identical, while b and c differ, J?jc is identical with both Rab and

Rnc ; if not, not. It is to be observed that the formal properties of any

such relation R are those belonging to the disjunction of an asym-

metrical transitive relation and its converse— e.g-. greater or less, before

or after, etc. These are all symmetrical aliorelatives, and are transitive so

far as their being aliorelatives will permit. But not all relations of the

type in question are analyzable into a transitive asymmetrical relation

or its converse ; for diversity, which is of the above type, is not so

analyzable. Hence to assume that the straight line can be generated

* Fieri, op. cit. § 1, prop. 25.
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by an asymmetrical relation and its converse is a new assumption,

characteristic of what I shall call Descriptive Geometry. For the

present, such an assumption would be out of place. We have, then,

two indefinables, namely point, and the relation R or K*. No others

are required in projective space.

364. The next point is the definition of the plane. It is one of

the merits of projective space that, unlike other spaces, it allows a very

simple and easy definition of the plane. For this purpose, we need

a new axiom, namely : li a, b be two distinct points, there is at least

one point not belonging to ab. Let this be c. Then the plane is the

class of points lying on any line determined by c and any point x of ah.

That is, if x be any point of ab, and y any point of ex, then 3/ is a point

of the plane cab ; and if «/ be a point of the plane cab, then there is

some point x in ab such that y is a. point of ex. It is to be observed

that this definition will not apply to the Euclidean or hyperbolic plane,

since in these two lines may fail to intersect. The exclusion of Euclidean

and hyperbolic space results from the following axiom f : "If a, 6, c be

three non-collinear points, and a' be a point of be other than b and c,

b' a point of ac other than a and c, then there is a point common to aa'

and 66'." By means of this axiom we can prove that the plane eab is

the same as the plane abe or bae, and generally that, if d, e,f be any

three non-collinear points of abe, the plane def coincides with the plane

ahe ; we can also show that any two lines in a plane intersect.

365. We can now proceed to the harmonic range and von Staudt's

quadrilateral construction. Given three collinear points a, b, c take any

two points u, V collinear with r but not on ab. Construct the points of

intersection au.bv and av.bu; join these points, and let the line

joining them meet ab in d. This construction is called the quadrilateral

construction. If we now assume that outside the plane abu there is at

least one point, we can prove that the point d is independent of u and v,

and is uniquely determined by a, b, c. The point d is called the

harmonic of c with respect to a and b, and the four points are said to

form a harmonic range. The uniqueness J of the above construction

—

the proof of which, it should be observed, requires a point not in the

plane of the construction ||—is the fundamental proposition of projective

Geometry. It gives a relation which may hold between four points of a

line, and which, when two are given, is one-one as regards the other

* We shall see in Chap, xlix that these notions, which are here provisionally

undefined, are themselves variable members of definable classes.

t Fieri, op. cit, § 3, p. 9.

+ The proof of the uniqueness of the quadrilateral construction will be found in

any text-book of Projective Geometry, e.g. in Cremona's (Oxford 1893), Chap. viii.

II
A proof that this proposition requires three dimensions is easily derivable from

a theorem given by Hilbert, G')-undlagen der Geometrie, p. 51 (Gauss-Weber Fest-

schrift, Leipzig, 1899).
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two. Denoting "c and d are harmonic with respect to a and ft" by

cHabd, the following properties of the relation are important : (1) cHaid
implies dHai^, ie. H„b is symmetrical; (2) cHabd implies aHcob, i.e.

the relation of the pairs ab, cd is symmetrical ; (3) cHatd implies that

c and d are different points, i.e. Hai is an aliorelative. This last

property is independent of the others, and has to be introduced by an

axiom *-

Having obtained the harmonic range, we may proceed in two

different directions. We may regard the harmonic relation as a re-

lation of two pairs of points : hence, bv keeping one of the pairs fixed,

We obtain what is called an involution. Or we may regard the harmonic

relation, as in the symbol cHaid, as a relation between two points,

wliich involves a reference to two others. In this way, regarding a, b, c,

as fixed, we obtain three new points d, e, f on the line ab by the

relations cHahd, aJHice, bH„cJ^. Each of these may be used, with two
of the previous points, to determine a fourth point, and so on. This

leads to what Mobius-j- calls a net, and forms the method by which

KleinJ introduces projective coordinates. This construction gives also

the method of defining an harmonic ratio. These two directions in

which projective Geometry may be developed must be separately pursued

to begin with. I shall take the former first.

366. By means of the harmonic relation, we define an involution.

This consists of all pairs of points which are harmonic conjugates with

respect to two fixed points|]. That is to say, if a, b be the two fixed

points, an involution is composed of all pairs of points .r, i/ such that

a'Haby. If four points .r, y, x', y' be given, it may or may not happen
that there exist two points a, b such that .vHaby and x Haby The
possibility of finding such points «, b constitutes a certain relation of

.r, y to iT'', y . It is plain that this relation sometimes holds, foi- it

holds when x, y are respectively identical with x\ y . It is plain also

that it sometimes does not hold ; for if x and y be identical, but not x'

and y\ then the relation is impossible. Fieri § has shown how, by means
of certain axioms, this relation of four terms may be used to divide the

straight line into two segments w^ith respect to any two of its points,

and to generate an order of all the points on a line. (It must be borne

* See Fano, Giomale di Matiimitifhe, \o\. 30 ; Fieri, op. cit. § 4, p. 17 and
Appendix. Fano has proved the necessity of the above axiom in the only conclusive

manner, by constructing a system satisfying all the previous axioms, but not this

one. The discovery of its necessity is due to him. A simpler but equivalent axiom is

that our space contains at least one line on which there are more than three points.

t Baryceiitri.icher Calcul, Section ii. Chap. vi.

X Math. Aiinalen, i, 6, 7, 37 ; Vorlesiingen iiber nicM-Euk/idische Geometrie,

Gottingen, 1893, Vol. i, p. 308 ff.

II
In what follows, only involutions with real double points are in question.

§ Op. dt. §§ 5, 6, 7. Pieri's method was presumably suggested by von Staudt
Cf. Geometrie der Lage, § 16: especially No. 2U!.

R. 25
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in mind that, in projective Geometry, the points of a line do not

have an order to begin with.) This projective order is obtained a.s

follows.

367. Given any three different points a, b, c on a line, consider the

class of points a.' such that a and c, b and j? are each harmonic conjugates

with respect to some pair of points z/, y'—in other words, a and c,

b and x are pairs in an involution whose double points are y, y . Here

y, y are supposed variable : that is, if any such points can be found,

X is to belong to the class considered. This class contains the point 5,

but not a or c. Let us call it the segment {abc). Let us denote the

relation of b to x' (a and c being fixed) by bQa^r. Then Qa^ is sym-

metrical, and also bQacX implies aQh^f;. We have here a relation of

four points, from which, as we saw in Part IV, Chapter xxiv, an order

wiU result if certain further axioms are fulfilled. Three such axioms are

required, and are given by Fieri as follows.

(1) If d is on the line ab, but does not belong to the segment {abc),

and does not coincide with a or with c, then d must belong to the

segment {bca). (If d coincides with c, we know already that d belongs

to the segment (bca). This case is therefore excluded from the axiom

to avoid a superfluity of assumptions.) In virtue of this axiom, if a,

b, c, d be distinct points on a line, we must have either bQa<A or cQahd.

It follows that we must have either bQacd or aQfud. Thus at least two

Q-relations hold between any four distinct coUinear points. (2) If

a, b, c be distinct collinear points, and d he a, point belonging to both

the segments (bca) and (cab), then d cannot belong to the segment (abc).

That is, of the three segments to which d may belong, it never belongs

to more than two. From this and the previous axiom it results that, if

d be distinct from a, b and c, then d belongs to two and only two of

the three segments defined by a, b and c. (3) If a, b, c be distinct

collinear points, and d a point, other than b, of the segment (abc), and

e a point of the segment (adc), then e is a point of the segment (abc).

(Here again, the condition that d is to be other than b is required only

to avoid superfluity, not for the truth of the axiom.) In terms of Q,

this axiom states that bQacd and dQai£ implv bQa^e ; that is, Qac is

transitive. We saw already that Qac is symmetrical. We can now

prove that, by means of this relation, all points of the line except a

and c are divided into two classes, which we may call {ac)i and (ac),-

Any two points in the same class have the relation Qac, any two in

different classes have not. TTie division into two classes results from

the fact that, if we do not have bQacd, nor yet dQacS (b, d, e being points

other than a and c), then we do have bQacC. That is to say, Qac has

the formal properties of sameness of sign, and divides the line into

two classes, just a.s sameness of sign divides numbers into positive and

negative.

The opposite of Qac, which I shall denote by Tac, corresponds in like
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manner to difference of sign. Tae is not to denote the mere negation

of Qac, but the fact of belonging to different segments. That is, bTcufl

means that d does not coincide with a or c, that d lies in the line ac,

but not in the segment {abc). Then bTacd may be taken as meaning
that h and d are separated by a and c. It is a relation which has the

formal properties of separation of couples, as enumerated in Part IV,

Chapter xxiv. If a, b, c, d, e be five distinct points in one straight line,

we have the following properties of the 7^-relation. (1) bTa^ is

equivalent to dTgJ), aTi^c, cT^aa, cTnia, etc. (2) We have one and
only one of the three relations aTi^d, aT^aC, aT^i). (3) dTJa implies

dT^ or eTJ)*.
By comparing the above properties of T with those of separation

of couples, it will be seen that T leads to a closed series (in the sense of

Part IV), i.e. to a series in which there is a first terra, but this first

term is arbitrary. The definition of the generating relation of the

series (which involves, as in the general case, three fixed points) is

given by Pieri as follows. With regard to the natural order abc, a
precedes every other point of the line ; c precedes every point d not

belonging to (ahc) and not coinciding with a or c, i.e. every point d
such that dT^b ; a general point d precedes a general point e if dQaJ)
and eQadC, or if dTaJ) and eT^dC, i.e. if d belongs to the segment {abc)

and e to the segment (acd), or if b and d are separated by a and c, and
likewise c and e by a and d. It is then shown, that of any two points

of the line, one precedes the other, and that the relation is transitive

and asymmetrical ; hence all the points of the line acquire an order.

Having now obtained an order among our points, we can introduce

an axiom of continuity, to which Pieri f gives a form analogous to that

of Dedekind's axiom, namely : If any segment (abc) be divided into

two parts h and 1c, such that, with regard to the order ahc, every

point of h precedes every point of k, while h and k each contain at

least one point, then there must be in (abc) at least one point <v such

that every point of (abc) which precedes cc belongs to h, and every point

of (abc) which follows x belongs to k. It follows from this axiom that

every infinite class contained in (abc) and having no last (or first) term

has a limit, which is either a point of (abc) or c (or a) ; and it is easy to

prove that, when h and k are given, there can be only one such point as

jc in the axiom.

By means of the projective segment, it is easy to define triangles and

tetrahedra. Three points determine four triangles, which between them

* This last property affords an instance (almost the only one known to me)
where Peirce's relative addition occurs outside the Algebra of Relatives. "dTacB or

eTJb" is the relative sum of Tac and Tac, if d, e, and b be variable. This property

results formally from regarding T^c as the negation of the transitive relation Q^c-

t Op. cit. § 9, p. 7.

25-2
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contain all the points of the plane, and have no common points except

the angles. Also we can define harmonic transformations, and prove

their properties without any further axiom*. Only one other axiom

is required to complete our Geometry, namely : A plane and a line not

in the plane always have a common point. This amounts to the axiom

of three dimensions. Nothing is altered, in what precedes, by denying

it, and proceeding to a space of n dimensions or of an infinite number

of dimensions. This last, in fact, requires fewer axioms than a space of

three dimensions f.

368. Let us now resume the other direction in which projective

Geometry may be developed, in which we start from three fixed points

on a line, and examine aU the points obtainable from these three by

successive quadrilateral constructions. We do not here, as in the

development we have been examining, require ,any new axiom ; but

there is a corresponding restriction in the results obtainable. In order

to give projective Geometry its fullest possible development we must

combine the results of both directions.

Confining ourselves, to begin with, to one straight line, let us see

how to construct a net and introduce projective coordinates. Denoting

by aHi,id, as before, the proposition " a and d are harmonic conjugates

with respect to b and c," we can, by the quadrilateral construction, when

a, b, c are given, determine the only point d satisfying this proposition.

We next construct the point e for which bHcae, theny for which dHcef,

g for which eHcfg, and so on. In this way we obtain a progression of

points on our line, such that any three consecutive points, together with

c, form a harmonic range. With our former definition of a segment,

all these points will belong to the segments (abc) and {bca). We may

number these points, beginning with a, 0, 1, 2, ..., n, .... Since c

does not belong to the progression, we may assign to it the number oo \.

Consider next the points obtained as follows. Let d' be such that

d'HaiC, let e'Had;b,f'Hae.d', and so on. We have thus a new progression

of points, such that any three consecutive points together with a form

a harmonic range, and all belonging to the segments {abc), {cab). To
these points let us assign the numbers 1/n in order. Similarly we can

construct a progression belonging to the two segments {cab\ (bca), and

assign to them the negative integers. By proceeding in a similar

manner with any triad of points so obtained, we can obtain more and

more points. The principle adopted in assigning numbers to points

(a principle which, from our present standpoint, has no motive save

* These developments will be found in Fieri, loc. cit. §§ 8, 10.

t Fieri, § 12.

X We must not assign to c the definite number a>, since we cannot assume, without

further axioms, that c is the limit of our progression. Indeed, so long as we exclude

Pieri's three axioms above mentioned, we do not know, to begin with, that c has any

ordinal relation to the terms of our progression.
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convenience) is the following : if p, q, r be the numbers assigned to

three points already constructed, and s be the number to be assigned

to the harmonic conjugate (supposed not previously constructed) of the

g-point with respect to the p-pomt and the r-point, then we are to

have -—i- £- = — 1. In this manner, we can find one and only one
r — ql r — s •'

point of our line for each rational number, positive or negative*.

Thus we obtain a denumerable endless compact series of points on

our line. Whether these are all the points of our line or not, we
cannot decide without a further axiom. If our line is to be a con-

tinuous series, or a collection of the power of the continuum, we must
of course assume points not obtainable by quadrilateral constructions,

however often repeated, which start with three given elements. But
as the definition of our space is optional, we may, if we like, content

ourselves with a rational space, and introduce an axiom to the effect

that all points of our line can be obtained from three given points.

369. Before proceeding further, it may be well to point out a

logical error, which is very apt to be committed, and has been com-

mitted, I think, even by Kleinf. So long as Pieri''s three axioms above

enumerated are not assumed, our points have no order but that which

results from the net, whose construction has just been explained. Hence
only rational points {i.e. such as, starting from three given points, have

rational coordinates) can have an order at all. If there be any other

points, there can be no sense in which these can be limits of series of

rational points, nor any reason for assigning irrational coordinates to

them. For a limit and the series which it limits must both belong

to some one series ; but in this case, the rational points form the whole

of the series. Hence other points (if there be any) cannot be assigned

as limits of series of rational points. The notion that this can be done

springs merely from the habit of assuming that all the points of a line

form a series, without explicitly stating this or its equivalent as an

axiom. Indeed, just as we found that series of rationals properly have

no limit except when they happen to have a rational limit, so series

of points obtainable by the quadrilateral construction will not have

limits, qua terms of the series obtained from the quadrilateral con-

struction, except where they happen to have a limit within this series,

i.e. when their coordinates have a rational limit. At this point, there-

fore, it is highly desirable to introduce Pieri's three axioms, in virtue of

which all the points of a line have an order. We shall find that, in

the natural order cab, the order of the rational points, resulting from

Pieri's axioms, is the same as that of their coordinates assigned on the

* On this subject, see Klein, Vm-lesungen iiber nicht-Euklidische Geometrie,

p. 338 ff., where proofs will be found.

+ e.g. Op. cit. p. 344.
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above principle*. Thus we have only to assume that all infinite series

of rational points have limits, as pari;s of Pieri's series, and that all

points are either rational or limits of rational series, in order to show-

that our straight line has continuity in Cantor's sense. In this case we

shall assign to non-rational points the irrational numbers corresponding

to the series which such points limit.

370. Returning now to the quadrilateral construction, we define as

the anharmonic ratio of four points whose coordinates are p, q, r, s

the number -—i/i-
. It can be shown that this number is in-

r — q I
r - s

dependent of the choice of our three original points «, b, c. It expresses

the series of quadrilateral constructions required to obtain * when p,

q, r are given, and thus expresses a purely projective relation of the four

points. By the introduction of irrational points, in the manner just

explained, it follows that any four points on a line have an anharmonic

ratio. (This cannot possibly be proved without Pieri's three axioms or

some equivalent to them.) The anharmonic ratio is unaltered by any

linear transformation, i.e. by substituting for every point x the point

whose coordinate is {our + ^)/{'ya; + S), where a, B, y, B are any fixed

numbers such that aB — Bl is not zero. From this point we can at

last advance to what was formerly the beginning of projective Geometry,

namely the operation of projection, to which it owes its name.

It can be shown that, if p, r be harmonic conjugates with respect to

q, s, and p, q, r, s be joined to some point o, and if op, oq, or, os meet

any line in p', q', r , ,*', then p , r are harmonic conjugates with respect

to q, s. Hence we can show that all anharmonic ratios are unaltered

by the above operation. Similarly if / be any straight line not coplanar

with pqrs, and the planes Ip, Iq, Ir, Is meet any line not coplanar with

/ in p, q', r', s, these four points will have the same anharmonic ratio

as p, q, r, s. These facts are expressed by saying that anharmonic
ratio is unaltered by projection. From this point we can proceed to

the assignment of coordinates to any point in space f.

371. To begin with a plane, take three points a, b, c not in one

straight line, and assign coordinates in the above manner to the points

of ab, ac. Let p be any point of the plane abc, but not on the hne be.

Then if cp meets ab. in p^, and bp meets ac in ^jj and x, y are the

coordinates of p-^ , p^ respectively, let (x, y) be the two coordinates of p.

In this way all points of the plane not on be acquire coordinates. To
avoid this restriction, let us introduce three homogeneous coordinates,

as follows. Take any four points a, b, c, e in a plane, no three of

which are collinear; let ae meet be in e^, be meet ca in e^, ce meet ab

* This has the one exception that c came last in ' the order of the quadrilateral

constructions, and comes first in Pieri's order. This may be remedied by the simple
device of giving c the coordinate - as instead of 03 .

t See Pasch, Neuere Geometrie, § 22 ; Klein, Math. Annalen, 37.
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in 63. Assign coordinates to the points of be, ra, ab as before, giving

the coordinate 1 to e^, e^, 63, and in ab giving to a, and x to b, and

similarly for the other sides. In place of the single coordinate as of any

point of be, let us introduce the homogeneous coordinates x^, x^, where

x = XijX3. If now JO be any point of the plane abe, let ap meet be in j9],

bp meet ca in p^, and cp meet ab in JO3. Let x.^,, x^ be the homogeneous

coordinates of p^, x^, a-j those of ^2; then x-^, x^ will be those of p^*.

Hence we may assign x-i,x^, x^ as homogeneous coordinates of p. In

like manner we can assign four homogeneous coordinates to any point

of space. We can also assign coordinates to the lines through a point,

or the planes through a line, or all the planes of space, by means of the

anharmonic ratios of lines and planesf. It is easy to show that, in

point-coordinates, a plane has a linear equation, and a linear equation

represents a plane ; and that, in plane-coordinates, a point has a linear

equation, and a linear equation represents a point. Thus we secure all

the advantages of analytical Geometry. From this point onwards, the

subject is purely technical, and ceases to have philosophic interest.

372. It is now time to ask. ourselves what portions of the Geometry

to which we are accustomed are not included in projective Geometry. In

the first place, the series of points on a line, being obtained from a

four-term relation, is closed in the sense of Part IV. That is, the order

of points requires three fixed points to be given before it can be defined.

The practical effect of this is, that given only three points on a line,

no one of them is between the other two. This is a definite difference

between projective space and Euclidean or hyperbolic space. But it is

easy to exaggerate this difference. We saw in Part IV that, wherever

a series is generated by a two-term relation, there is also the four-term

relation of separation of couples, by which we can generate a closed

series consisting of the same terms. Hence in this respect the difference

does not amount to an inconsistency. Euclidean and hyperbolic spaces

contain what projective space contains, and something more besides.

We saw that the relation by which the projective straight line is defined

has the formal properties of " P or P," where P is transitive and asym-

metrical. If the said relation be actually of this form, we shall have

an open series with respect to P, and of three collinear points one will

be between the other two. It is to be observed that, where the straight

line is taken to be essentially closed, as in elliptic space, between must be

excluded where three points only are given. Hence elliptic space, in

this respect, is not only consistent with the projective axioms, but

contains nothing more than they do.

It is when we come to the plane that actual inconsistencies arise

* See Pasch, loc. cit.

t The anharmonic ratio of four lines through a point or of four planes through a

line is that of the four points in which they meet any line.
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between projective Geometry and Euclidean or hyperbolic Geometry.

In projective space, any two lines in a plane intersect; in the Euclidean

and hyperbolic Geometries, this does not occur. In elliptic Geometry,

any two lines in a plane intersect ; but in the antipodal form they

intersect twice. Thus only the polar form wholly satisfies the projective

axioms. Analogous considerations apply to the intersection of two

planes, or of a line and a plane. These differences render the projective

definition of a plane inapplicable to Euclidean and hyperbolic spaces,

and render the theory of these spaces far more complicated than that of

projective space.

Finally, in metrical Geometry it is assumed either that two points

have a quantitative relation called distance, which is determined when

the points are given, or that stretches satisfy axioms in virtue of which

their divisibilities become numerically measurable. In this point, even

elliptic space differs from projective space, though the difference is of

the nature of an addition, not an inconsistency. But this matter cannot

be discussed until we have examined metrical Geometry, when we shall

be in a position to examine also the projective theory of distance to

more advantage than is at present possible. -'

373. A few words may be added concerning the principle of duality.

This principle states, in three dimensions, that the class of planes is also

a projective space, the intersection of two planes being, as before, the

straight line, and the intersection of three non-collinear planes taking

the place of the point. In n dimensions, similarly, a projective space

results from all sub-classes of (w — 1) dimensions. Such a duality, as we

saw in Chapter xliv, belongs always to ?i -dimensional series as such. It

would seem (though this is only a conjecture) that projective Geometry

employs the smallest number of axioms from which it is possible to

generate a series of more than two dimensions, and that projective

duality therefore flows from that of dimensions in general. Other

spaces have properties additional to those required to make them

7(-dimensional series, and in other spaces, accordingly, duality is liable

to various limitations.



CHAPTER XLVI.

DESCRIPTIVE GEOMETRY.

374. The subject which I have called descriptive Geometry is not,

as a rule, sharply distinguished from projective Geometry. These two

terms, and the term " Geometry of Position," are commonly used as

synonyms. But it seems improper to include in projective Geometry

any property which is not unaltered by projection, and it is by the

introduction of one such property that I wish to define the subject of

the present chapter. We have seen that, in projective space, three

points on a line are not such that a definite one of them is between the

other two. The simplest possible proposition involving between, in

projective Geometry, requires four points, and is as follows: "If a,

b, c be distinct coUinear points, and d is on ac, but does not belong

to the segment {abc), nor yet coincide with a or c, then, with regard to

the order abc, c is between b and d.'''' When we reflect that the definition

of the segment {abc) involves the quadrilateral construction— which

demands, for its proof, a point outside its own plane, and four pairs

of triangles in perspective—we shall admit that the projective method

of generating order is somewhat complicated. But at any rate the

ordinal propositions which result are unaltered by projection. The
elementary sense of between, on the contrary, which is to be introduced

in the present chapter, is in general not unaltered by projection*.

In descriptive Geometry, we start, as before, with points, and as

before, any two points determine a class of points. But this class now
consists only of the points between the two given points. What is to

* The present subject is admirably set forth by Pasch, Neuere Geometrie, Leipzig,

1882, with whose empirical pseudo-philosophical reasons for preferring it to pro-

jective Geometry, however, 1 by no means agree (see Einleitung and § 1). It is

carried further, especially as regards the definition of the plane, by Peano,

/ PrincipH di Geometria logicamente esposti, Turin, 1889. For the definition of the

whole line by means of its various segments, see Peano's note in Rivista di

Matematica, n, pp. 58-62. See also his article " Sui fondamenti della Geometria,"

ib. IV, p. 51 ff., and Vailati, "Sui Principi fondamentali della Geometria della retta,''

ir^Mi. d. Mat, u, pp. 71-75. Whatever, in the following pages, is not controversial,

will be found in the above sources.
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be understood by between is not explained by any writer on this subject

except Vailati, in terms of a transitive asymmetrical relation of two

points ; and Vailati's explanation is condemned by Peano *, on the

ground that between is a relation of three points, not of two only.

This ground, as we know from Part IV, is inadequate and even ir-

relevant. But on the subject of relations, even the best mathematicians

go astray, for want, I think, of familiarity with the Logic of Relations.

In the present case, as in that of projective Geometry, we may start

either with a relation of two points, or with a relation between a pair

and a class of points : either method is equally legitimate, and leads to

the same results, but the former is far simpler. Let us examine first

the method of Pasch and Peano, then that of Vailati.

375. We start, in the former method, with two indefinables, point,

and between. If a, b, c be three points, and c is between a and b, we

say that c is an ab, or belongs to the class of points ab. Professor

Peano has enumerated, with his usual care, the postulates required as

regards the class ab'f. In the first place, the points a and b must be

distinct, and when they are so, there- always is a point between them.

If c is between a and b, it is also between b and a : a itself (and there-

fore b) is not between a and b. We now introduce a new definition.

If a, b be any two distinct points, then ab is the class of all points c

such that b is between a and c. Similarly b'a will be the class of

points d such that a is between b and d. We then proceed to new

postulates. If a and b be distinct points, db must contain at least one

point. If a, b, c, d be points, and c is between a and d, b between a

and c, then b is between a and d. If b and c be between a and d, b is

between a and c, or identical with c, or between c and d. If c, d belong

to a'b, then either c and d are identical, or c is between b and d, or d

is between b and c. If b is between a and c, and c is between b and d, then

f is between a and d. This makes in all nine postulates with regard to

between. Peano confesses^ that he is unable to prove that all of them

are independent : hence they are only shown to be sufficient, not necessary.

The complete straight line {ab) is defined as b'a and a and ab and h

and a'b; that is, (1) points between which and b the point a lies;

(2) the point a ; (3) points between a and b ; (4) the point b ; (5) points

between which and a the point b lies.

Concerning this method, we may observe to begin with that it is

very complicated. In the second place, we must remark, as before, that

the phrase "two points determine a class of points" must be expanded

as follows :
" There is a certain specific relation K, to whose domain

belongs every couple of distinct points. ^ is a many-one relation, and

the relatum, corresponding to a couple of points as referent, is a class of

points." In the third place, we may observe that the points of the

* Riv. di Mat. iv, p. 62. t lb. iv, p. 55 ff. % Ih. p. 62.
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line only acquire order by relation to the segments which they terminate,

and that these acquire order by the relation of whole and part, or

logical inclusion. Let a, b be any two points, and consider the class

of points ab or b or a'b. Let c, d be any two distinct points of this

class. Then either ac is a proper part of ad, or ad is a. proper part

of ac. Here ac and ad may be called segments, and we see that segments

whose origin is a and whose limits belong to ab or b or a'b form a series

in virtue of the transitive asymmetrical relation of whole and part. By
correlation with these segments, their extremities also acquire an order

;

and it is easy to prove that this order is unchanged when we substitute

for a any point of ab'. But the order still results, as it always must,

from a transitive asymmetrical relation of two terms, and nothing is

gained by not admitting such a relation immediately between points.

376. Passing now to what I have called Vailati's theory, we find

a very great simplification. We may state the present theory (which

is not in every detail identical with that of Vailati) as follows. There is

a certain class, which we will call K, of transitive asymmetrical relations.

Between any two points there is one and only one relation of the class K.

If J? be a relation of the class K, R is also a relation of this class.

Every such relaition R defines a straight line ; that is, if a, b be two

points such that aRb, then a belongs to the straight line p. (I use the

corresponding Greek letter to denote the domain of a relation ; thus

if jS be a relation, a is the class of terms having the relation S to some

term or other.) If aRb, then there is some point c such that aRc and

cRb ; also there is a point d such that bRd. Further, if a, b be any two

distinct points belonging to p, then either aRb or bRa. With this

apparatus we have all that we require.

We may do well to enumerate formally the above definition of the

class K, or rather the postulates concerning its members—for K itself

is not defined. I may remark to begin with that I define the field of a

class of relations as the logical sum of the fields of the constituent

relations ; and that, if K be the class, I denote its field by k. Then the

axioms we require are as follows.

(1) There is a class of relations K, whose field is defined to be the

class point.

(2) There is at least one point.

If R be any term ofK we have,

(3) R is an aliorelative.

(4) .R is a term of K.

(5) m = R.

(6) p (the domain of R) is contained in p.

(7) Between any two points there is one and only one relation

of the class K.

(8) If a, b be points of p, then either aRb or bRa.
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The mutual independence of these axioms is easy to see. But let

us first briefly sketch the proof that they give all the required results.

Since there is, by (2), at least one point, and since by (1) this point

has some relation of the class K, and since by (3) all relations of the

class K are aliorelatives, it follows that there is some term, other than

the one point, to which this one point has a relation R of the class K.

But since R, by (4), is a relation of the class K, it follows that the term

to which the one point is so related is also a point. Hence there are

at least two distinct points. Let a, h be two distinct points, and let

R be the one relation of the class K between a and b. Thus we have

aRb. But we do not have bRa, for if we did, since R' = R, by (5),

we should have aRa, which contradicts (3). Thus R and R are always

different, i.e. each is asymmetrical. Since R^ = R, aRb and bRc imply

aRc, i.e. R is transitive. Hence the points which have to a the relation

R or R, together with a itself, form a series. Since R = R\ aRb implies

that there is some point c such that aRc, cRb ; i.e. the series generated

by R is compact. Since, by (6), p is contained in p, aRb implies that

there is some point c such that bRc. Applying the same argument

to R, there is a point d such that dRa. Thus we have p = p, and the

field of .ff has no beginning or end. By (8), the field of R is

what, in Part IV, we called a connected series, that is, it does not

fall apart into two or more detached portions, but of any two of its

terms one is before and the other after. By (7), if there be more than

one relation of the class K, the fields of two such relations cannot,

unless one is the converse of the other, have more than one point

in common. The field of one relation of the class K is called a

straight line ; and thus (7) assures us that two straight lines have at

most one common point, while (8) assures us that, if ab, cd be the same

line, so are ac and bd. Thus it is proved that our axioms are sufficient

for the geometry of a line, while (7) goes beyond a single line, but is

inserted here because it does not imply the existence of points outside

a single line, or of more than one relation of the class K. It is most

important to observe that, in the above enumeration of fundamentals,

there is only one indefinable, namely K, not two as in Peano's system.

377. With regard to the mutual independence of the axioms, it

is to be observed that (1) is not properly an axiom, but the assumption

of our indefinable K. (2) may obviously be denied while all the others

are maintained. If (3) be denied, and R be taken to be the symmetrical

relation of projective Geometry, together with identity with some term

of p, we obtain projective Geometry, which is different from the present

system, but self-consistent. If (4) be denied, all the rest can be main-

tained ; the only difficulty is as regards (7), for if aRb, and R is not

a term of K, b will not have to a any relation of the class K, unless

indeed it has one which is not R, which seems to be not contradictory.
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As regards (5), we may deny either that R is contained in R^, or that R"
is contained in R. To deny the former makes our series not compact, to

which there is no logical objection. The latter, but not the former, is

false as regards angles*, which can be made to satisfy all the other axioms

here laid down. (6) will become false if our lines have last terms : thus

the space on the left of a plane, together with this plane, will satisfy

all the axioms except (6). As regards (7), it is plainly independent

of all the rest ; it consists of two parts, («) the assertion that between any
two points there is at least one relation of the class K, (b) the assertion

that there is not more than one such relation between two given points.

If we consider a Euclidean and a hyperbolic space together, all the

axioms will be true except (a). If we combine two different classes A'l , K^
of relations of the above kind, such that ^1 = ^25 (b) alone will be false.

Nevertheless it seems plain that (6) cannot be deduced from the other

axioms. As regards (8), it alone is false if we take for K the class of

directions in Euclidean space, in which a set of parallel lines all have

the same direction. Thus the necessity of all except one of our axioms

is strictly proved, and that of this one is highly probable.

378. We saw that the above method enabled us to content ourselves

with one indefinable, namely the class of relations K. But we may go
further, and dispense altogether with indefinables. The axioms con-

cerning the class K were all capable of statement in terms of the logic

of relations. Hence we can define a class C of classes of relations, such

that every member of C is a class of relations satisfying our axioms.

The axioms then become parts of a definition, and we have neither

indefinables nor axioms. If K be any member of the class C, and

k be the field of X, then A; is a descriptive space, and every term of

A; is a descriptive point. Here every concept is defined in terms of general

logical concepts. The same method can be applied to projective space,

or to any other mathematical entity except the indefinables of logic.

This is, indeed, though grammatically inconvenient, the true way,

philosophically speaking, to define mathematical notions. Outside logic,

indefinables and primitive propositions are not required by pure mathe-

matics, and should therefore, strictly speaking, not be introduced. This

subject will be resumed in Chapter xlix.

379. The two ways of defining the straight line—that of Pasch and

Peano, and that which I have just explained—seem equally legitimate,

and lead to the same consequences. The choice between them is

therefore of no mathematical importance. The two methods agree in

enabling us, in terms of two points only, to define three parts of a

straight line, namely the part before a (b'a), the part between a and b

(ab), and the part after b (a'b). This is a point in which descriptive

Geometry differs from projective Geometry : there we had, with respect

* See Part IV, chap. xxiv.
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to a and b, only two segments of the straight line ah, and these could

not be defined without reference to another point c of the line, and

to the quadrilateral construction.

The straight line may be regarded either as the class of points

forming the field of a relation R, or as this relation itself. For

the sake of distinction, it will be well to call the relation R a ray, since

this word suggests a sense ; R will then be the opposite ray. In

considering a number of lines all passing through one point 0, it will

be well to give the name of ray also to the class of points to which

O has some relation R, i.e. to those points of a line through which

lie on one side of O. Those on the other side of O will then be the

•opposite ray. The context will show in which sense the word is used.

380. I come now to the plane. Easy as it is to define the plane

in projective space, its definition when the line is not a closed series,

•or rather, when we wish to call coplanar some pairs of lines which

•do not intersect, is a matter of some difficulty. Pasch* takes the plane,

or rather a finite portion of the plane, as a new indefinable. It is,

however, capable of definition, as, following Peano, I shall now show.

We need, to begin with, some new axioms. First, if p be any

straight line, there is at least one point not belonging to p. Next,

if a, b, c be three points not in one straight line, and d he a point

•of be between b and c, e a, point of ad between a and d, then be will meet

flc in a pointy and e will be between b andy,y between a and c. Again,

a, b, c, d being as before, ify be a point between a and c, then ad and bf

will intersect in a point e between a and d and between b andyf. We
now define what may be regarded as the product (in a geometrical sense)

•of a point and a figure. If a be any point, and k any figure, aJc is to

denote the points which lie on the various segments between a and the

points of k. That is, if p be any point of A;, and .r any point of the

segment ap, then /r belongs to the class ak. This definition may be

applied even when a is a point of A;, and A; is a straight line or part

•of one. The figure ak will then be the whole line or some continuous

portion of it. Peano now proves, by purely logical transformations,

that, if a, b, c be distinct non-collinear points, a(bc) = b(ac). This

figure is called the triangle abc, and is thus wholly determined by its

three defining points. It is also shown that, if p, q be points of the

segments ab, ac respectively, the segment pq is wholly contained in

the triangle abc. After some more theorems, we come to a new defini-

tion. If a be a point, and k any figure {i.e. class of points), a'k is

to denote all the points between which and a lies some point of k, that

is, as Peano remarks, the whole shadow of A; if a be an illuminated

point. Thus if a, b, c be non-collinear points, a' (be) will represent the

•class of points beyond be and bounded by ab, ae produced. This

* Op. cit. § 2. t Riv. di Mat. iv, p. 64.
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enables us to define the plane {abc) as consisting of the straight lines

be, ca, ah, the triangle abc, and the figures a'bc, b'ca, cab, b'c'a, r'a'b,

a'b'c*. It is then easy to show that any other three points of the plane

define the same plane, and that the line joining two points of a plane

lies wholly in the plane. But in place of the proposition that any two

lines in a plane intersect, we have a more complicated proposition,

namely : If a, b, c, d be coplanar points, no three of which are

collinear, then either the lines ab, cd intersect, or ac, bd do so, or

ad, be do so.

381. Having successfully defined the plane, we can now advance

to solid Geometry. For this we need, to begin with, the axiom

:

Given any plane, there is at least one point outside the plane. We
can then define a tetrahedron exactly as we defined a triangle. But
in order to know that two planes, which have a point in common,
have a line in common, we need a new axiom, which shows that the

space we are dealing with has three dimensions. In projective space,

this axiom was simply that a line and a plane always have at least one

point in common. But here, no such simple axiom holds. The following

is given by Peano {loc. cit. p. 74<) : If p be a plane, and a a point

not on p, and b a point of a'p {i.e. a point such that the segment ab

contains a point of p, or, in common language, a point on the other

side of the plane from a), then if x be any point, either x lies on the

plane, or the segment ax contains a point of the plane, or else the

segment bx contains a point of the plane. By adding to this, finally,

an axiom of continuity, we have all the apparatus of three-dimensional

descriptive Geometry
-f-.

382. Descriptive Geometry, as above defined, applies equally to

Euclidean and to hyperbolic space : none of the axioms mentioned

discriminate between these two. Elliptic space, on the contrary, which

was included in projective Geometry, is here excluded. It is impossible,

or rather, it has hitherto proved so, to set up a general set of axioms

which will lead to a general Geometry applying to all three spaces,

for at some point our axioms must lead to either an open or a closed

series of points on a line. Such a general Geometry can be constructed

symbolically, but this results from giving different interpretations to

our symbols, the indefinables in one interpretation being definable in

another, and vice versa. This will become plain by examining the method

* The figure b' (c'a), or b'c'a, represents the angle between ba and ca both

produced, as may be seen from the definition.

t I confine myself as a rule to three dimensions, since a further extension has

little theoretic interest. Three dimensions are far more interesting than two,

b^ause, as we have seen, the greater part of projective Geometry

—

i.e. everything

dependent upon the quadrilateral construction—is impossible with less than three

dimensions, unless the uniqueness of the quadrilateral construction be taken as an
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in which projective Geometry is made apphcable to the space above

defined, which, for want of a better name, I shall call descriptive space.

383. When we try to apply projective Geometry to descriptive space,

we are met by the difficulty that some of the points required in a construc-

tion may not exist. Thus in the quadrilateral construction, given three

points a, b, c, the fourth point d may not exist at all. We can prove as

before that, if it exists, it is unique, and so with other projective proposi-

tions : they become hypothetical, since the construction indicated is not

always possible. This has led to the introduction of what are called

ideal plements (points, lines and planes), by means of which it becomes

possible to state our projective theorems generally. These ideal elements

have a certain analogy to complex numbers in Algebra—an analogy

which in analytical Geometry becomes very close. Before explaining

in detail how these elements are introduced, it may be well to state the

logical nature of the process. By means of the points, lines and planes

of descriptive Geometry, we define a new set of entities, some of which

correspond {i.e. have a one-one relation) to our points, lines and planes

respectively, while others do not. These new entities we call ideal

points, lines and planes ; and we find that they have all the properties

of projective points, lines and planes. Hence they constitute a projec-

tive space, and all projective propositions apply to them. Since our

ideal elements are defined by means of the elements of descriptive space,

projective propositions concerning these ideal elements are theorems

concerning descriptive space, though not concerning its actual points,

lines and planes. Pa^ch, who has given the best account of the way in

which ideal elements are to be defined*, has not perceived (or, at any

rate, does not state) that no ideal point is an actual point, even where

it ha.s a one-one relation to an actual point, and that the same holds of

lines and planes. This is exactly the same remark as we have had to

make concerning rationals, positive numbers, real numbers, and complex

numbers, all of which are supposed, by the mathematician, to contain

the cardinals or the ordinals, whereas no one of them can ever be

one of the cardinals or ordinals. So here, an ideal element is never

identical with an actual point, line or plane. If this be borne in mind,

the air of magic which surrounds the usual expositions disappears.

384. An ideal point is defined as follows. Consider first the class of

all the lines passing through some point, called the vertex. This class

of lines is called a sheaf of lines {Strahlenbundel). A sheaf so defined

has certain properties which can be stated without reference to the

vertex [. Such are, for example, the following : Through any point

(other than the vertex) there is one and only one line of the sheaf; and

any two lines of the sheaf are coplanar. All the properties of a sheaf,

* Op. cit. §§ 6-8.

t These are enumerated by Kilfing^ Grundlagen der Geometrie, Vol. ii (Paderborn,

1898), p. 82.
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which can be stated without reference to the vertex, are found to belong

to certain classes of lines having no vertex, and such that no two of

the class intersect. For these a simple construction can be given, as

follows*- Let I, m be any two lines in one plane, A any point not in

this plane. Then the planes Al, Am have a line in common. The class of

such lines, for all possible points A outside the plane Im, hfis the properties

above alluded to, and the word sheaf is extended to all classes of lines

so defined. It is plain that if /, m intersect, the sheaf has a vertex;

if not, it has none. Thus, in Euclidean space, all the lines parallel to

a given line form a sheaf which has no vertex. When our sheaf has no

vertex, we define an ideal point by means of the sheaf. But this must

not be supposed to be really a point : it is merely another name for the

sheaf itself, and so, when our sheaf has a vertex, if we are to make
propositions in which ideal points occur, we must substitute the sheaf

for its vertex. That is, an ideal point is simply a sheaf, and no sheaf if:

an actual point.

Concerning sheaves of lines we may observe the following points.

Any two straight lines in one plane uniquely determine a sheaf. Two
sheaves both having a vertex always determine a line, namely that

joining the vertices, which is common to both sheaves. Three sheaves,

of which one at least has a vertex, determine a plane, unless they are

collinear. A line and a plane always have a common sheaf, and so have

three planes of which two at least have a common point.

385. Thus sheaves of lines have some projective properties, in

relation to lines and planes, which are lacking to points. In order to

obtain entities with further projective properties, we must, to begin

with, replace our lines by ideal lines. For this purpose we must first

define pencils of planes (axial pencils, Ebenenbiischel). An axial pencil

consists, in the first instance, of all the planes through a gi^'en

straight line, called the axis. But as in the case of sheaves, it is

found that such a figure has many properties independent of the

axis, and that these properties all belong to certain other classes of

planes, to which the name of pencil is therefore extended. These

figures are defined as follows f. Let A, B he. two sheaves of lines.

Let Z) be a point not on the line (if there be one) common to the two

sheaves A, B. Then A, B, t) determine uniquely a plane, which we
may call ABD, or P (say). This will be the plane containing those

lines of A and B that pass through D. Any other point E, not in the

plane P, will determine a different plane ABE, or Q. The class of

planes so obtained, by varying D or E, is a pencil of planes, and has all

the properties of a pencil having a real axis, except those in which the

axis is explicitly mentioned. Any two planes P and Q belonging to the

pencil completely determine it. Moreover, in place of A and B above,

* Pasch, op. cit. § 5. t Pasch, op. cit. § 7.

E. 26
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we may substitute any other sheaves of lines A', B', belonging to both
P and Q. (A sheaf belongs to a plane when one of its lines lies in the

plane.) Any two sheaves belonging to both P and Q will serve to

define the pencil of planes, and will belong to every plane of the pencil.

Hence if, in place of actual points, we substitute ideal points, i.e. sheaves

of lines, every pencil of planes has an axis, consisting of a certain

collection of sheaves of lines, any two of which define the pencil. This

collection of sheaves is called an ideal line*.

386. Substituting ideal points and lines for actual ones, we find

that we have now made a further advance towards projective space.

Two ideal points determine one and only one ideal line ; a given plane

is determined by any three of its ideal points which do not belong to

one ideal line, but three ideal points do not always determine a plane.

Two ideal lines in a plane always have a common ideal point, and so

have a plane and an ideal line. Also two planes always have a common
ideal line, and three planes always have either a common ideal point or

a common ideal line. The only point where our space is not strictly

projective is in regard to planes. There is a plane through any two

ideal points and one actual point, or through an ideal point and an

actual line. If there is a plane at all through three non-collinear ideal

points, or through an ideal line and an ideal point not on the line, then

there is only one such plane ; but in some cases there is no such plane.

To remedy this, we must introduce one more new class of entities,

namely ideal planes.

The definition of ideal planes f is comparatively simple. If A, B, C
be any three ideal points, D an ideal point on the ideal line AB, and

E on AC, then the ideal line DE has an ideal point in common with

BC, whether there be an actual plane determined by A, B, C or not.

Thus if B, C, D be any three ideal points, and E any other ideal point

such that BD, CE intersect, then BC, DE intersect, and so do BE, CD.

Hence, if B, C, D be not collinear, we define the ideal plane BCD as

that class of ideal points E which are such that the ideal lines BD, CE
intersect.

For the sake of clearness, let us repeat this definition in terms of

our original points, lines 'and planes, without the use of the word ideal.

Given three sheaves of lines B, C, D, which are not all contained in

a common pencil of planes, let E be another sheaf of lines such that

there is a sheaf of lines common to the two pencils of planes BD, CE.

Then the class of aU sheaves E satisfying this condition is called the

ideal plane BCD.

* For logical purposes, it is better to define the ideal line as the class of ideal

points associated with a sheaf of planes, than as the sheaf itself, for we wish a line to

be, as in projective Geometry, a class of points.

t Pasch, op. cit. § 8.
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The usual properties of planes are easily proved concerning our new
ideal planes, as that any three of their points determine them, that

the ideal line joining two of their ideal points is wholly contained in

them, and so forth. In fact, we find now that the new points, lines

and planes constitute a projective space, with all the properties described

in the preceding chapter. The elementary order of points on a line,

with which we began, has disappeared, and a new order has to be

generated by means of the separation of couples*. Thus all projective

Geometry becomes available ; and wherever our ideal points, lines and
planes correspond to actual ones, we have a corresponding projective

proposition concerning the latter.

387. I have explained this development at length, partly because

it shows the very wide applicability of projective Geometry, partly

because it affords a good instance of the emphasis which mathematics

lavs upon relations. To the mathematician, it is wholly irrelevant what
his entities are, so long as they have relations of a specified type. It is

plain, for example, that an instant is a very different thing from a point

;

but to the mathematician as such there is no relevant distinction between

the instants of time and the points on a line. So in our present in-

stance, the highly complex notion of a sheaf of lines—an infinite class

of infinite classes—is philosophically very widely dissimilar to the simple

notion of a point. But since classes of sheaves can be formed, having

the same relations to their constituent sheaves that projective lines and

planes have to projective points, a sheaf of lines in descriptive space is,

for mathematical purposes, a projective point. It is not, however, even

for mathematical purposes, a point of descriptive space, and the above

transformation clearly shows that descriptive space is not a species of

projective space, but a radically distinct entity. And this is, for philo-

sophy, the principal result of the present chapter.

It is a remarkable fact, which the above generation of a projective

space demonstrates, that if we remove from a projective space all the

points of a plane, or all the points on one side of a closed quadric-j-,

the remaining points form a descriptive space, Euclidean in the first

case, hyperbolic in the second. Yet, in ordinary metrical language, the

projective space is finite, while the part of it which is descriptive is

infinite. This illustrates the comparatively superficial nature of metrical

notions.

* See Pasch, op. cit. § 9.

t For the projective definition of a surface of the second order (quadric) in a

projective space cf. Reye, Geometrie der Lage (Hanover, 1868), Part ii. Lecture v.

A quadric is closed if there are points not on it such that all straight lines through

them cut the quadric. Such points are within the quadric.

26—2



CHAPTEE XLVII.

METRICAL GEOMETRY.

388. The subject of the present chapter is elementary Geometry, as

treated by Euchd or by any other author prior to the nineteenth century.

This subject includes the usual analytical Geometry, whether Euclidean

or non-Euclidean ; it is distinguished from projective and descriptive

Geometry, not by any opposition corresponding to that of Euclid and

non-Euclid, but by its method and its indefinables. The question

whether its indefinables can, or cannot, be defined in terms of those

of projective and descriptive Geometry, is a very difficult one, which

I postpone to the following chapter. For the present, I shall develop

the subject straightforwardly, in a manner as similar to Euclid's as

is consistent with the requisite generality and with the avoidance of

fallacies. Metrical Geometry is logically subsequent to the two kinds

which we have examined, for it necessarily assumes one or other of

these two kinds, to which it merely adds further specifications. I shall,

as a rule, assume descriptive Geometry, mentioning projective Geometry

only in connection with points in which it shows important metrical

differences from descriptive Geometry. In the former case, all the first

twenty-six propositions of Euclid will hold. In the latter, the first,

seventh, sixteenth, and seventeenth require modification ; for these pro-

positions assume, in one form or another, that the straight line is not

a closed series. Propositions after the twenty-sixth—or, with a suitable

definition of parallels, after the twenty-eighth—depend, with few ex-

ceptions, upon the postulate of parallels, and are therefore not to be

assumed generally.

389. Since Euclid still has popularly, and even with mathematicians,

a reputation for rigour, in virtue of which his circumlocution and long-

windedness are condoned, it may be worth while to point out, to begin

with, a few of the errors in his first twenty -six propositions*. To

begin with the first proposition. There is no evidence whatever that

the circles which we are told to construct intersect, and if they do not,

the whole proposition fails. Euclid's problems are often regarded as

* Cf. Killing, op. cit. Vol. ii, Section 5.
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existence-theorems, and from this point of view, it is plain, the as-

sumption that the circles in question intersect is precisely the same

as the assumption that there is an equilateral triangle on a given base.

And in elliptic space, where the straight line is a closed series, the

construction fails when the length of the base exceeds half the length

of the whole straight line. As regards the second and third propositions,

there is nothing to be said, except that they are not existence-theorems.

The corresponding existence-theorem

—

i.e. on any straight line, in either

direction from a given point on the line, there is a point whose distance

from the given point is equal to a given distance—is equivalent to the

postulate concerning the circle, and is thus prior to the second and

third propositions. With regard to the fourth, there is a great deal

to be said ; indeed Euclid's proof is so bad that he would have done

bfetter to assume this proposition as an axiom* As the issues raised

by this proof are of great importance, both to mathematics and to

philosophy, I shall set forth its fallacies at some length.

390. The fourth proposition is the first in which Euclid employs

the method of superposition—a method which, since he will make any

detour to avoid itf , he evidently dislikes, and rightly, since it has no

logical validity, and strikes every intelligent child as a juggle. In the

first place, to speak of motion implies that our triangles are not spatial,

but material. For a point of space is a position, and can no more

change its position than the leopard can change his spots. The motion

of a point of space is a phantom directly contradictory to the law of

identity : it is the supposition that a given point can be now one point

and now another. Hence motion, in the ordinary sense, is only possible

to matter, not to space. But in this case superposition proves no

geometrical property. Suppose that the triangle ABC is by the

window, and the side AB consists of the column of mercury in a

thermometer; suppose also that DEF is by the fire. Let us apply

ABC to DEF as Euclid directs, and let AB just cover DE. Then

we are to conclude that ABC and DEF, before the motion, were equal

in all respects. But if we had brought DEF to ABC, no such result

would have followed. But how foolish! I shall be told; of course

ABC and DEF are to be both rigid bodies. Well and good. But

two little difficulties remain. In the first place—and for my opponent,

who is an empirical philosopher, this point is serious—it is as certain as

anything can be that there are no rigid bodies in the universe. In the

second place—and if my opponent were not an empiricist, he would

find this objection far more fatal—the meaning of rigidity presupposes

a purely spatial metrical equality, logically independent of matter. For

* This course is actually adopted, as regards the equality of the remaining angles,

by Hilbert, Grundlagm der Geometne (Festschrift zur Feier der Enthullung des

Gauss-Weber Denkmals, Leipzig, 1899), p. 12.

t Cf. Killing, loc. cit. § 2.
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what is meant by a rigid body ? It is one which, throughout a con-

tinuous portion of time, preserves all its metrical properties unchanged.

Hence we incur a most fatally vicious circle if we attempt to define

metrical properties by rigidity. If ayS^ be a material triangle, which

occupies at one time the space ABC, at another the space A'B'C, to

say that alB>y is rigid means that, however the two times be chosen

(within some assigned period), the triangles ABC, A'B'C are equal in

all respects. If we are to avoid this conclusion, we must define rigidity

in some wholly non-geometrical manner. We may say, for example,

that a rigid body means one which is made of steel, or of brass. But

then it becomes a logical error to regard brass eternal as slave to mortal

rage ; and if we define equal spaces as those which can be occupied by

one and the same rigid body, the propositions of metrical Geometry

will be one and all false.

The fact is that motion, as the word is used by geometers, has a

meaning entirely diflferent from that which it has in daily life, just as

a variable, in mathematics, is not something which changes, but is

usually, on the contrary, something incapable of change. So it is with

motion. Motion is a certain class of one-one relations, each of which

has every point of space for its extension, and each of which has a

converse also belonging to the class. That is, a motion is a one-one

relation, in which the referent and the relatum are both points, and

in which every point may appear as referent and again as relatum.

A motion is not this only : on the contrary, it has this further charac-

teristic, that the metrical properties of any class of referents are identical

with those of the corresponding class of relata. This characteristic,

together with the other, defines a motion as used in Geometry, or

rather, it defines a motion or a reflexion ; but this point need not be

elucidated at present. What is clear is, that a motion presupposes the

existence, in difi^erent parts of space, of figures having the same metrical

properties, and cannot be used to define those properties. And it is

this sense of the word motion, not the usual material sense, which is

relevant to Euclid's use of superposition.

391. Returning now to Euclid's fourth proposition, we see that

the superposition of ABC on DEF involves the following assumptions.

(1) On the line DE there is a point E, on either side of D, such that

DE = AB. This is provided for by the postulate about the circle.

(2) On either side of the ray DE, there is a ray DF such that the

angle EDF is equal to the angle BAC. This is required for the pos-

sibility of a triangle DEF such as the enunciation demands, but no

axiom from which this follows can be found in Euclid. The problem,

to construct an angle EDF equal to BAC, does not occur till I. 23,

and there I. 4 is used in the proof. Hence the present assumption

must be added to Euclid's axioms. It now follows that on DF there

is a point F such that DF=AC. Hence the possibility of two such
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triangles as the enunciation demands is established. But in order to

prove that DEF is equal in all respects to ABC, we need a further

axiom, namely : ^^' ith one angle at D, one side along the ray DE, and

the other side to the right (or left) of DE, there exists a triangle which

is equal in all respects to the triangle ABC*. This is, in fact, the

exact assumption which is concealed in the method of superposition.

W\\h this assumption, it finally becomes possible to prove that DEF
is the triangle satisfying the above conditions and equal in all respects

to ABC.
The next remark concerns I. 6. Here Euclid first employs an axiom

of which he is «'holly unconscious, though it is very essential to his

system, namely : If OA, OB, OC be three rays which meet a straight

line not passing through O in A, B, C respectively, and if B be between

A and C, then the angle AOB is less than the angle AOC. This axiom, it

will be seen, is not applicable in projecti\e space, since it presupposes

that the line is not a closed series. In I. 7, if this proposition is to

apply to hyperbolic space, we require further the axiom : If three non-

intersecting lines in one plane meet two lines in A, B, C; A', B', C,
respectively; and if B be between A and C ; then B' is between A'

and C. Also it mav be observed that Euclid gives no definition of the

two sides of a line, a notion which again presupposes that the straight

line is not a closed series. And with regard to angles, I. 7 requires

sufficient axioms to show that they are a series of the kind explained

in Part IV, Chapter xxiv ; or else we must assume the descriptive axiom

of the last chapter, to the effect that, if A, B, C, D be coplanar points,

no three of which are coUinear, there is a point common to the stretches

AB, CD, or to AC, BD, or to AD, BC. All these assumptions will be

found implicit in I. 7, as may be seen by attempting a symbolic proof

in w hich no figure is used.

Similar remarks apply to I. 16. In I. 12 it is assumed that a circle

must meet a line in two points, if at all. But enough hfis been said to

show that Euclid is not faultless, and that his explicit axioms are very

insufficient. Let us, then, make an independent examination of metrical

Geometry.

392. Metrical Geometry is usually said to be distinguished by the

introduction of quantity. It is sufficient for the characterization of

metrical Geometry to observe that it introduces, between every pair of

points, a relation having certain properties in virtue of which it is

numerically measurable

—

i.e. such that numbers can be given a one-one

correspondence with the various relations of the class in question. The
class of relations is called distance, and will be regarded, though this is

not strictly necessary, as a class of magnitudes. Some of the properties

of distance are as follows.

* See Pasch, op. cit. § 13, Grundsatz ix. The whole § is excellent.
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(1) Every pair of points has one and only one distance.

(2) Distances are symmetrical relations.

(3) On a given straight line through a given point, there are two

and only two points at a given distance from the given point.

(4) There is no maximum distance.

(5) The distance of a point from itself is zero*.

(6) There is no minimum to the distance between distinct poiats.

(7) If d, S be two given distances, and A^, A^, A^, An, ... be

distinct points on a straight line, whpse distances one from the next are

all 8, then for some value of n, A„An is greater than d.

(8) If A^, An be any two points, there exist n —\ distinct points

(whatever integer n may be) on the straight line A^An, such that the

distances of each from the next, of A^ from the first, and of An from

the last, are all equalf.

393. It may be observed that, if we admit the axiom that the whole

is greater than the part, the properties (1), (4), (5) and (6) belong to

stretches, while (2) becomes admissible by abstracting from the sense of

a stretch. With regard to the remaining properties, (3), (7) and (8),

there is nothing in descriptive Geometry to show whether or not they

belong to stretches. Hence we may, if we choose, regard these three

properties as axioms regarding stretches, and drop the word distance

altogether. I believe that this represents the simplest course, and, as

regards actual space, the most correct. At the same time, there is no

contradiction in regarding distances as new relations distinct from

stretches;]:. If we identify distance and stretch, what distinguishes

metrical from descriptive Geometry is primarily the three additional

axioms (3), (7) and (8), applied to a new indefinable, namely, the

magnitude of divisibility of a stretch. This is not properly a notion of

pure mathematics, since it cannot be derived from our original apparatus

of logical notions. On the other hand, distance is not indefinable, being

a class of one-one relations with certain assignable properties. On this

point either course is logically permissible, but only distance can be

introduced into pure mathematics in the strict sense in which the word

is used in this work.

The above axioms are required for showing that all distances are

numerically measurable in terms of any standard distance |. It is not

necessary that distances should be magnitudes, or even relations; all

that is essential is that distances should form a series with certain

properties. If the points of a line form a continuous series, then

* See Part III, Chap. xxii.

+ Further properties of distance will be added later on.

X Stretches are, of course, not properly relations ; but this point is irrelevant in

the present discussion.

§ See Part IV, Chap. xxxi.
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distances do so also, in virtue of (3) ; thus all signless real numbers will

be required for their measurement.

394. Assuming that distance and stretch are distinct, it may be

asked whether distances do not suffice for generating order on the

straight line, without the need of any asymmetrical transitive relation of

points. This represents, I think, the usual view of philosophers ; but
it is by no means easy to decide whether it represents a tenable view.

It might perhaps be thought that (2) might be dropped, and distance

regarded as an asymmetrical relation. So long as we confine our

attention to one line, this view seems unobjectionable. But as soon as

we consider the fact that distances on different lines may be equal, we
see that the difference of sense between AB and BA is not relevant to

distance, since there is no such diflf'erence between distances on different

lines. Thus if CD be a distance on another line, CD may be equal both

to AB and BA, and hence AB and BA must be equal, not opposite,

distances. And the same thing may be made evident by considering

a sphere. For this cei-tainly consists of points at a given distance from
the centre ; and thus points at opposite ends of a diameter must have

the same distance from the centre. Distance, then, is symmetrical ; but

it does not follow that the order on a line cannot be generated bv
distance. Let A,Bhe given points on a line, and let C, C be two points

on AB whose distances from A are equal, and less than AB. If we now
set up the axiom that either BC or BC is less than AB, while the other,

BC or BC, is greater than AB, we shall, I think, after some further

axioms, be able to generate order without any other relation than distance.

If ^, 5, C be three collinear points such that the distances AC, CB
are both less than AB, then we shall say that C is between A and B.

If A, B, C be points such that AC, AB are both less than BC, then

we shall say that A is between B and C. If, finally, A, B, C" be

points such that AB, BC" are both less than AC", we shall say that B
is between A and C". It remains to see whether, as the generation of a

series requires, one of these always happens. Let A, B, C he any three

collinear points. First suppose, if possible, that the distances AB, BC,
CA are all equal. This case is not excluded by anvthing hitherto

assumed ; we require, therefore, the further axiom that, if AB, BC be

equal, AC is not equal to either of them ; and I think it will be prudent

to assume that ^C is greater than either. Thus the case of two equal

distances and one less than either is excluded. Of the three distances

AB, BC, AC, therefore, one must be the greatest: let this be AC.
Then in virtue of the definition, B will be between A and C. But our

difficulties are not at an end. For we require further that any point

between A and B shall be between A and C ; and that, if A be between

D and C, B shall be between D and C. With regard to the first

point, if E be between A and B, AE and EB are less than AB, and
therefore less than AC. But nothing assures us that EC is less than
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AC. For this purpose we need a new axiom, which will be just what we

set out to prove, namely : If AE, EB be both less than AB, and AB,
BC be both less than AC, then EC is less than AC. Finally, to prove

that, if A be between D and C, and B between A and C, then B is

between D and C. Here DA, AC are less than DC, and AB, BC axe

less than A C. Hence BC is less than DC ; but nothing proves BD less

than DC. For this we shall need a new axiom, and then at last our order

will be definite. But the process, as is evident, is extremely complicated.

395. Moreover we still need a method of defining the straight line.

Fieri has shown, in an admirable memoir*, how to deduce metrical

geometry by tsiking point and motion as the only indefinables. In § 390,

we objected to the introduction of motion, as usually effected, on the

ground that its definition presupposes metrical properties ; but Fieri

escapes this objection by not defining motion at all, except through the

postulates assumed concerning it. The straight line joining two points

is the class of points that are unchanged by a motion which leaves the

two points fixed. The sphere, the plane, perpendicularity, the order of

points on a line, etc. are easily defined. This procedure is logically

unimpeachable, and is probably the simplest possible for elementary

geometry. But we must now return to the consideration of other

suggested systems.

There is a method, invented by Leibnizt and revived by Frischauf *

and Peano§, in which distance alone is fundamental, and the straight

line is defined by its means. In this method distances are given

to begin with as a class of relations which are the field of a certain

transiti\'e asymmetrical relation (greater and smaller) ; if we assume this

relation to be continuous, distances will be measurable ; all distances

have the same domain and the same converse domain, namely all the

points of the space in question ; the locus of points equidistant from two

fixed points is called a plane, and the intersection of two non-coincident

planes, when it is not null, is called a straight line. (The definition of

the straight line given by Feano|j is as follows : The straight line ab is

the class of points j" such that anv point y, whose distances from a and b

are respecti\ely equal to the distances of x from a and b, must be coinci-

dent with jr.) Leibniz, who invented this method, failed, according to

Couturat, to prove that there are straight lines, or that a straight line is

determined by any two of its points. Feano has not, so far as I am

aware, succeeded in proving either of these propositions, but it is of

course possible to introduce them by means of axioms. Frischauf

professes to demonstrate them, but his proofs are very informal, and it

* Delia geometria elementare como sistema ipoteiico deduttivo, Turin, 1899.

+ Cf. Couturat, La Logique de Leibniz, Paris, 1901, Chap, ix, esp. p. 420.

X Absolute Geometrie nach Johanri Bolyai, Anhang.

§ Accademia Reale delle Scienze di Torino, 1902-.3, " La Geometria basata sulle

idee di punto e distanza."
||

loc. cit.
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is difficult to know what axioms he is assuming. In any case, however,

the definitions prove that, by a sufficient use of axioms, it is possible to

construct a geometry in which distance is fundamental, and the straight

line derivative. The method is so complicated as to be not practically

desirable ; but its logical possibility is nevertheless important.

396. It is thus plain that the straight line must be independent

of distance, while distance may be independent of the straight line.

Taking both as symmetrical relations, we can, by a very complicated

series of axioms, succeed in generating order on the straight line and

in explaining the addition and measurement of distances. But this

complication, in most spaces*, is logically unnecessary, and is wholly

avoided by deriving distances from stretches. We now start, as in

descriptive Geometry, with an asymmetrical transitive relation by which

the straight line is both defined and shown to be a series. We define as

the distance of two points A and B the magnitude of divisibility of the

stretch from ^ to 5 or i? to A—for divisibility is a signless magnitude.

Divisibility being a kind of magnitude, any two distances will be equal

or unequal. As with all divisibilities, the sum of the divisibilities of

AB and EF is the divisibility of the logical sum of the classes AB and

EF, provided these classes have no common part. If they have a common
part, we substitute for EF a stretch E'F' equal to it and having no

part in common with AB. The difference of the distances AB, EF
(supposing AB the greater) is the divisibility of a stretch CD which,

added logically to EF, and having no part in common with EF,
produces a stretch equal to AB. It follows at once that, \i A, B, C be

coUinear, and B be between A and C,AB +BC=AC and AC—AB = BC.
No further axiom is required for these propositions. For the proposition

that, if AB = A'B , and CD=C'D', then AB + CD = A'B' + CD', we
require only the general axiom, applicable to all divisibilities, that the

sums of equals are equal. Thus by the help of the axioms (3), (7), (8)

above, we have everything that is required for the numerical measure-

ment (theoretically speaking) of all distances in terms of any given

distance, and for the proof that change of unit involves multiplication

throughout by a common factor.

397. With regard to magnitude of divisibility, in the sense in

which this is relevant to metrical Geometry, it is important to ico-iize

that it is an ordinal notion, expressing a property of relations, not of

their fields. We wish to say that a stretch of two inches has twice as

much divisibility as a stretch of one inch, and that an area is infinitely

more divisible than a stretch. Now, if we are dealing (as will be

assumed in this discussion) with a continuous space, every stretch, area

or volume is a class of 2"" terms ; and considered as a class, it is the field

of an infinite number of relations beside that (or those) belonging to it

* The only exceptions known to me are finite spaces of two dimensions. See

Chap. xLix.
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in respect of the space we are considering. The habit of allowing the

imagination to dwell upon actual space has made the order of points

appear in some way intrinsic or essential, and not merely relative to

one of many possible ordering relations. But this point of view is not

logical : it arises, in regard to actual space, only from the fact that the

generating relations of actual space have a quite peculiar connection

with our perceptions, and, through the continuity of motion, with time.

From the standpoint of logic, no one of the relations having a given field

has any preeminence, and the points of actual space, like any other class

of S"" terms, form, with regard to other sets of generating relations,

other sorts of continuous spaces—indeed any other continuous space,

having any finite number of dimensions, or even u> dimensions, can be

formed of the points of a Euclidean space by attending to other

generating relations.

From this it follows that magnitude of divisibility, if it is to

distinguish a long stretch from a short one, or an area from a stretch,

must be a property of the relations involved, not of the class of points

composing the area or the stretch. It is not quite easy to define the exact

property which is required ; for any two stretches are ordinally similar.

We require some sense for the equality or inequality of the relations

whose fields are the given stretches. Where coordinates (i.e. a corre-

lation of the points of a line with the real numbers) have been already

introduced, we may define the magnitude of a stretch as the difference

of the coordinates of its end-points or its limits (according as the stretch

has ends or not) ; but if this is done, the magnitudes of stretches will

depend upon the necessarily more or less arbitrary plan upon which we

have introduced our coordinates. This is the course adopted in the

projective theory of distance-—a course which has the merit of making

metrical Geometry a logical development from projective axioms alone

(see next chapter). The other course that may be adopted is, to

assume that the generating relations of any two stretches have either a

symmetrical transitive relation (equality), or an asymmetrical transitive

relation or its con^'erse (greater or less). Certain axioms will be required,

as, for example, that if the points A, B, C, D are collinear, and ^C is

greater than AD, then BC is greater than BD* The relations of equal,

greater and less may be regarded as defined by these axioms, and the

common property of the generating relations of those stretches that are

equal to a given stretch may be defined as the magnitude of divisibility

of the said generating relations. The sense in which an area has

infinitely more divisibility than a stretch is that, if n be any finite

integer, and n stretches equal to a given stretch be removed from an

area, there always remains an area, however great n may be. AVhat is

important to observe, in the above discussion, is that the logical parity

* Stretches are here regarded as having sign, so that, if .-1 is greater than AD,
CA is less than DA.
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of all the orders of which a class of terms is capable makes it necessary

to regard the magnitudes with which metrical Geometry deals as

belonging to relations or classes of relations, not, as is commonly
supposed, to the class of points forming their fields.

398. In elliptic space, where the straight line is a closed series,

the attempt to make distance independent of stretch leads to still

further complications. We now no longer have the axiom that, if

A, B, C be collinear, we cannot have AB = BC=CA ; and we have to

recognize two distances between every pair of points, which, when

distance is taken as fundamental, becomes extremely awkward. We
may however avoid admitting two distances by refusing to regard the

greater of the two as properly a distance. This will then be only a

stretch. If two distances are admitted, one is always greater than the

other, except in a limiting case, when both are the lower limit of the

greater distances and the upper limit of the lesser distances. Further

if a, b, c, d be any four distinct points, the greater of the two distances

ah is always greater than the lesser of the two distances cd. Thus the

whole class of gi'eater distances may be banished, and only greater

stretches be admitted.

We must now proceed as follows. Distances are a class of sym-

metrical relations, which are magnitudes of one kind, having a maximum,
which is a one-one relation whose field is all points, and a minimum,

which is the distance of any point from itself. Every point on a given

line has a given distance other than the maximum or minimum from

two and only two other points on the line. If a, b, c, d be four distinct

points on one line, we shall say that a and c are separated by b and d in

the following four cases, of which (1) and (2) and also (3) and (4) are

not mutually exclusive

:

(1) li ab<ac .bc<ac . ad> ac.

(2) li ab<ac . be < ac . do ac.

(3) If ab> ac . ad < ac . dc<ac.

(4) If be > ac . ad<ac . dc < ac.

We then need Vailati's five axioms enumerated in Part TV, Chap, xxiv,

in order to generate a closed series from the separation of couples so

defined. Thus it is possible, though by a somewhat complicated process,

to generate a closed series of points on a line by means of the symmetrical

relation of distance.

I shall not work out in further detail the consequences of this

hypothesis in elliptic space, but proceed at once to the hypothesis

that distances are the magnitudes of stretches. When the number of

dimensions exceeds two, the polar form of elliptic space is merely

projective space together with the necessary metrical axioms ; the

antipodal form is a space in which two antipodal points together have

the properties of a single projective point. Neglecting the latter, to
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which similar remarks will apply, I shall confine myself to the polar

form. Since this is a projective space, every pair of points determines

two segments on the line joining the points. The sum of these two
segments, together with the two points, is the whole line, and therefore

constant. It is an axiom that all complete straight lines have the same

divisibility. The divisibility of either segment is a distance between

the two points : when the two distances are equal, either may be called

the distance ; when they are unequal, it will be convenient to call the

smaller the distance, except in special problems. The whole theory then

proceeds as in the case of descriptive space. But it is important to

observe that, in elliptic space, the quadrilateral construction and the

generation of order, being prior to stretches, are prior to distances, and

are presupposed in metrical Geometry.

399. So far, therefore, metrical Geometry introduces three new

axioms, and one new indefinable. The stretch in every series is

a quantity, and metrical Geometry merely introduces such axioms as

make all stretches of points measurable. A few words may be useful

as to the sense in \\ hich, in a theoretical discussion, the word measurement

is to be understood. The actual application of the foot-rule is here

not in question, but only those properties of pure space which are

presupposed in the use of the foot-rule. A set of magnitudes is theo-

retically measurable when there is a one-one relation between them and

some or all numbers ; it is practically measurable when, given any

magnitude, we can discover, with a certain margin of error, what the

number is to which our magnitude has the relation in, question. But

how we are to discover this is a subsequent question, presupposing that

there is such a proposition to be discovered, and soluble, if at all,

by empirical means to be invented in the laboratory. With practical

measurement, then, we are not at all concerned in the present dis-

cussion.

400. I come now to a more difficult question than distance, namely

the question as to the definition of angle. Here, to begin with, we

must deal with rays, not with whole straight lines. The ray may

be taken either as an asymmetrical relation, or as the half-line on

one side of a given point on a line. The latter usage is very convenient,

and I shall frequently employ it. Elementary Geometry assumes that

two rays starting from the same point determine a certain magnitude,

called the angle between them. This magnitude may, however, be

defined in various ways. In the first place, we must observe that,

-since the rays in a plane through a point form a closed series, every

pair of rays through a point defines two stretches of rays. Of these,

however, one stretch contains the opposites of both rays, while the other

stretch contains the opposites of neither—except, indeed, in the one

case where the two rays are each other's opposites. This case is met

by Euclids postulate that all right angles are equal—a postulate.
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however, which is now known to be demonstrable*. Omitting this

case, the angle between two rays may be defined as that stretch of rays

through their intersection which is bounded bv the two rays and does

not contain the opposite of either, i.e. if A, B be the rays, and A, B
their opposites, the angle is the class of rays C which are separated

from A or B by A and B. We might also, but for an objection to

be mentioned shortly, define the angle as all the points on such rays.

A definition equivalent to this last, but simpler in form, and avoiding

the mention of the opposite rays, is the followingi*. Let a, h be any

two points of the rays A, B, and let c be any point of the stretch ab.

Then the class of points c, for all possible positions of a and b on their

respective rays, is the angle between A and B. That is, every pair

of intersecting rays divides the plane of the rays into two parts : the

part defined as above is the angle. Or rather, the part so defined is the

angle as a quantitv : the angle as a magnitude is the divisibility of

this part. But to these latter definitions we shall find fatal objections,

and we shall find it necessary to adhere to the definition as a stretch

of rays.

401. Thus angle, like distance, is not a new indefinable, but like

distance, it requires some new axioms. The angle between a ray A
and its opposite A' cannot be defined as above, but may be defined

as the logical sum of the angles between A and B, B and A' respectively.

This limiting angle is greater than any other at the point, being in fact

the whole half of the plane on one side of the straight line AA'. If the

angles between, A and B, B and A' are equal, each is called a right

angle. (That there are such angles, can be proved if we assume

continuity.) Two intersecting straight lines make four angles, which

are equal in pairs. The order of a collection of rays through a point

in a plane may be obtained by correlation with the points where these

rays intersect a given straight line, provided there is any straight line

which all of them intersect. But since rays through a point in a plane

form a closed series, while the points on a line do not, we require a

four-term relation for the former order. The following definition seems

adequate. Given four rays OA, OB, OC, OD through a point and

in one plane, if these all meet a certain straight line in A, B, C, D
respectively, and A and C are separated by B and D, then OA and OC
are said to be separated by OB and OD. In projective space this

suffices. But in descriptive space we must provide for other cases.

Thus if OA, OB, OC meet the given line, and B is between OA and OC,

while OD does not meet the given line, then OA and OC are again

said to be separated by OB and OD. If, finally, OA' and OB' be the

* See e.g. Killing, op. cit. Vol. ii, p. 171. A strict proof will be found in

Hilbert, op. cit. p. 16.

t Killing, op. cit. u, p. 169.
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opposites of OA and OB, then OA and OA' are separated by OB
and O^'. In virtue of the descriptive axioms of the preceding chapter,

the order among the rays so obtained will be unambiguous, i.e. in-

dependent of our choice of the line ABC, and will cover all cases.

But now we need axioms analogous to those which, in the case

of distance, were numbered (3), (7) and (8). At any given point in

a given ray, there must be, in a given plane, two and only two rays,

on opposite sides of the given ray {i.e. separated from each other

by the given ray and its opposite), which make a given angle with

the given ray ; and angles must obey the axioms of Archimedes and
of linearity. But in addition to these axioms, which insure that angles

shall be numerically measurable, we must have some method of con-

necting the measure of angles with that of distances, such as is required

for the solution of triangles. Does this require a new axiom .'' Euclid

appears to obtain this, by means of I. 47, II. 12, and II. 13, without

any fresh axiom. For this result we depend upon the propositions on

the congruence of triangles (I. 4, 8, 26), which demand only, as we saw,

the axiom that, with one angle at a given point, and one side along

a given ray through that point, there exist two and only two triangles

in a given plane through the ray (one on each side of the given ray),

which are equal in all respects to a given triangle. Thus it would seem

that no fresh axioms are required for angles in a plane.

402. With regard to the definition of an angle as a portion of

a plane, it is necessary (as in many other cases), if we retain this

definition, somewhat to restrict the axiom that the whole is greater than

the part. If a whole A has two parts B, C, which together constitute

A, and if C be infinitesimal with respect to A, then B will be equal

to A. This case occurs in a plane under the following circumstances.

Let O, 0' be anj' two points, OP, O'P' lines in one plane and making

equal angles with the ray 00'*. Then in Euclidean or hyperbolic space

these lines OP, O'P' will not intersect ; thus the angle between 0& and

O'P' will be part of the angle O'OP. Hence the above restriction

is necessary as regards the axiom that the whole is greater than the part.

In Euclidean space this answer is sufficient, since, if OP makes

with 00' a less angle than O'P' does, OP and O'P' will intersect. But

in hyperbolic space, OP and O'P' may not intersect even then. Hence

if we adhere to the above definition of angle, we shall have to hold that

the whole may be less than the part. This, however, is intolerable, and

shows that the definition in question must be rejected. We may, how-

ever, still regard angle as the stretch of rays ; for the rays in the angle

at 0' are not part of the rays in the angle at 0. Hence it is only

as a stretch of rays, or as the magnitude of such a stretch, that an angle

can be properly defined.

* The angle between the rays Off, O'P' is what Euclid would call the angle

between 00' produced and ffF.
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As showing, in a curious manner, the increased power of deduction

which results from the above axioms concerning distances and angles,

we may remark that the uniqueness of the quadrilateral construction,

which before could not be proved without three dimensions, can now

be proved, as regards all constructions in one plane, without any

assumption of points outside that plane. Nothing is easier than to

prove this proposition by the methods of elementary coordinate Geometry.

Thus although projective Geometry, as an independent science, requires

three dimensions, any projective proposition concerning plane figure*

can be metrically proved, if the above axioms hold, for a two-dimensional

space.

403. As regards figures of three dimensions, angles between planes

and solid angles can be defined exactly as rectilinear angles were defined.

Moreover fresh axioms will not be required, for the measurement of such

angles can be deduced from the data we already possess.

With regard to areas and volumes some remarks seem necessary.

Areas and volumes, like angles, are classes of points when taken as

quantities, and divisibilities when taken as magnitudes. For areas

and volumes we do not require afresh the axioms of Archimedes and

of linearity, but we require one axiom apiece to give a criterion of

equal areas and volumes, i.e. to connect their equality with that of

distances and angles. Such an axiom is supplied, as regards areas, by

the axiom that two congruent triangles have the same area, and as

regards volumes, by the corresponding axiom concerning tetrahedra.

But the existence of congi-uent tetrahedra, like that of congruent

triangles, demands an axiom. For this purpose, Pasch* gives the

following general axiom : If two figures are congruent, and a new

point be added to one of them, a new point can be added to the other

so that the two new figures are congruent. This axiom allows us to

infer congruent tetrahedra from congruent triangles ; and hence the

measurement of volumes proceeds smoothly.

404. In three dimensions, a curious fact has to be taken account of,

namely, the disjunction of right and left-handedness, or of clockwise

and counter-clockwise. This fact is itself of a descriptive nature, and

may be defined as follows. Between two non-coplanar rays, or between

four non-coplanar points taken in an assigned order, there is always one

of two opposite relations, which may be called right and left. The

formal properties of these relations have been explained in Part IV (§ 222);

for the present I am concerned with their geometrical consequences.

In the first place, they cause volumes to become magnitudes with sign,

in exactly the way in which distances on a straight line have sign when

compounded with their sense. But in the case of distances, since not

all are on one straight line, we could not thus compound distance and

sense generally : we should require, for a compound, some more general

* Op. cit. p. 109.

R. 27
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notion than sense, such as vectors supply. Here, on the contrary, since,

in a three-dimensional space, all volumes have one or other of two

senses, the compound can be made for all volumes. Thus if the volume

of the tetrahedron abed has one sign, that of ha^d will have the opposite

sign. This is the familiar geometrical fact that the determinant giving

the volume of a tetrahedron abed has one or other sign according as the

sense of abed is the same as or different from that of OXYZ, where is

the origin and X, Y, Z any positive points on the axes. It is this fact,

also, which gives signs to angular momentum in Dynamics. The im-

portance of the fact (which itself seems to be an independent axiom)

is this, that it makes a distinction between two figures whose metrical

properties are all identical. It is this distinction which puzzled Kant,

who, like most of his contemporaries, supposed all geometrical facts to

be metrical. In itself, the fact would be no more puzzling than, the

distinction between the stretches AB and BA, which are metrically

indistinguishable. But it becomes puzzling when metrical equality is

supposed to result from motion and superposition. In our former

definition of motion (§ 390) we omitted (as was then observed) a con-

dition essential to its definition. Not only must two congruent figures be

metrically equal, but there must be a continuous series of equal figures

leading from the one to the other. Or, what amounts to the same

thing, if a, b, c, d and a', b' , c, d' be homologous non-coplanar points

in the two figures, the tetrahedra abed, a'b'e'd' must have the same sense.

In the case of equal and opposite tetrahedra, these conditions fail. For

there is no gradual transition from clockwise to counter-clockwise ; thus

at some point in the series a sudden jump would be necessary. No

motion will transform abed into a tetrahedron metrically equal in all

respects, but with the opposite sense. In this fact, however, there

seems, to my mind, to be nothing mysterious, but merely a result of

confining ourselves to three dimensions. In one dimension, the same

would hold of distances with opposite senses ; in two dimensions, of

areas. It is only to those who regard motion as essential to the notion

of metrical equality that right and left-handedness form a difficulty ; in

our theory, they are rather a confirmation than a stumbling-block.

With this we may end our brief review of metrical Geometry, leaving

it to the next chapter to discuss its relation to projective Geometry and

the projective theory of distance and angle.



CHAPTER XLVIII.

RELATION OF METRICAL TO PROJECTIVE AND
DESCRIPTIVE GEOMETRY.

405. In the present chapter I wish to discuss two questions. First,

can projective and descriptive Geometry be estabhshed without any

metrical presuppositions, or even without implying metrical properties ?

Secondly, can metrical Geometry be deduced from either of the others,

or, if not, what unavoidable novelties does it introduce .? The previous

exposition has already dogmatically assumed certain answers to these

C]ue-;tions, but we are now to examine critically the various possible

answers.

The distinction between projective and descriptive Geometry is very

recent, and is of an essentially ordinal nature. If we adopt the view

—

which, as we saw, is the simpler of two legitimate views—that the

straight line is defined by a certain relation between any two of its

points, then in projective Geometry this relation is symmetrical, while

in descriptive Geometry it is asymmetrical. Beyond this we have the

difference that, in projective Geometry, a line and a plane, two planes,

or two lines in a plane, always intersect, while in descriptive Geometry
the question whether this is the case or not is left open. But these

differences are not very important for our present purpose, and it will

therefore be convenient to speak of projective and descriptive Geometry

together as non-quantitative Geometry.

The logical independence of non-quantitative Geometry is now
scarcely open to question. We have seen, in Chapters xlv and xlvi,

how it may be built up without any reference whatever to quantitative

considerations. Quantity, in fact, though philosophers appear still to

regard it as very essential to mathematics, does not occur in pure

mathematics, and does occur in many cases not at present amenable

to mathematical treatment. The notion which does occupy the place

traditionally assigned to quantity is order ; and this notion, we saw, is

present in both kinds of non-quantitative Geometry. But the pmity
of the notion of order has been much obscured by the belief that all

order depends upon distance—a belief which, though it is entertained

by so excellent a writer as Meinong, we have seen to be false. Distance

27—2
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being essentially quantitative, to admit that series depend upon distance

is to admit that order depends upon quantity. But this view leads at

once to an endless regress, since distances have an order of magnitude,

which would have to be derived from new distances of distances, and

so on. And positively, an asymmetrical transitive relation suffices to

generate a series, but does not imply distance. Hence the fact that

the points of a line form a series does not show that Geometry must

have metrical presuppositions, and no such presuppositions appear in the

detail of projective or descriptive Geometry.

406. But although non-quantitative Geometry, as it now exists, is

plainly independent of everything metrical, the historical development

of the subject has tended greatly to obsciu-e this independence. A brief

historical review of the subject may be useful in showing the relation of

the more modem to the more traditional methods.

In Euclid, and in Greek geometers generally, hardly any descriptive

theorems are to be found. One of the earliest discoveries of an im-

portant descriptive theorem was the one named after Pascal* Gradually

it was found that propositions which a.ssert points to be coUinear or

lines to be concurrent, or propositions concerning tangents, poles and

polars, and similar matters, were unaltered by projection ; that is, any

such property belonging to a plane figure would belong also to the

projection or shadow of this figure from any point on to any plane.

All such properties (as, for instance, those common to all conies) were

called projective or descriptive. Among these properties was anharmonic

ratio, which was defined as follows. li A, B, C, D be four points on

AB IAD
one straight line, their anharmonic ratio is 7T^/-7Tr>' ^^ ^^> ^^'>

OC, OD be four lines thi'ough a point, their anharmonic ratio is

—.—
Y^Tyr, / ^-—

rTij\
• III Chasles's great work on descriptive Geometry,

and even in most recent works (such a^^ Cremona''s projective Geometry),

this definition will be found at a very early stage in the development of

the subject, together with a proof that anharmonic ratio is unaltered by

projection. But such a definition is itself metrical, and cannot therefore

be used to found a subject independent of metrical Geometry. With

other portions of what used to be called descriptive or projective

Geometry, the same lack of independence will be found. Consider,

for example, the definition of a conic. To define it as a curve of

the second degree would require projective coordinates, which there

was no known method of introducing. To define it as a cvurve meeting

any straight line in not more than two points would require the dis-

tinction of real and imaginary points, ror if we confine ourselves to

* If a hexagon be inscribed in a conic, the three pairs of opposite sides intersect

in coUinear points.
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real points there are innumerable curves other than conies which satisfy

the definition. But imaginary points are, in ordinary metrical Geometry,

imaginary coordinates, for which there is no purely geometrical inter-

pretation ; thus without projective coordinates, our definition again fails.

To define a conic as the locus of points P for which the anharmonic

ratio of PA, PB, PC, PD (where A, B, C, D are fixed points) is

constant, again involves metrical considerations, so long as we have

no projective definition of anharmonic ratio. And the same dependence

upon metrical Geometry appears as regards any other projective or

descriptive theorem, so long as the traditional order of ideas is

adhered to.

The true founder of non-quantitative Geometry is von Staudt*. It

was he who introduced the definition of a harmonic range by means

of the quadrilateral construction, and who rendered it possible, by
repetitions of this construction, to give projective definitions of all

rational anharmonic ratios f. These definitions indicate the succession

of quadrilateral constructions required in order to obtain a fourth point

from three given points ; thus, though they are essentially numerical,

they have no reference whatever to quantity. But there remained one

further step, before projective Geometry could be considered complete,

and this step was taken by Fieri. In Klein's account, it remains doubtful

whether all sets of four collinear points have an anharmonic ratio, and

whether any meaning can be assigned to irrational anharmonic ratios.

For this purpose, we require a method of generating order among all

the points of a line. For, if there be no order but that obtained from

Klein's method, there is no sense in which we can regard a point not

obtained by that method as the limit of a series of points which are so

obtained, since the limit and the series which it limits must always both

belong to some one series. Hence there will be no way of assigning

irrational, coordinates to the points which do not have rational co-

ordinates. There is, of course, no projective reason for supposing that

there are such points ; but there are metrical reasons, and in any case

it is well, if possible, to be able to deal projectively with a continuous

space. This is effected by Fieri, with the help of certain new axioms,

but without any new indefinables. Thus at last the long process by

which projective Geometry has purified itself from every metrical taint

is completed.

407. Frojective Geometry, having achieved its own independence,

has, however, embarked upon a career of foreign aggrandisement ; and

in this we shall, I think, though on the whole favourable, be obliged

to make some slight reservations. The so-called projective theory of

distance aims at proving that metrical is merely a branch of projective

* Geometne der Lage, Nurnberg, 1847 ; Beitriige ear Geometrie der Luge, ib. 18.56,

1857, 1860.

t This step, 1 believe, is due to Klein. See Math. Annalen, Vols, iv, vi, xxxvn.
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Geometry, and that distances are merely logarithms of certain an-

harmonic ratios. If this theory be correct, there is not a special

subject of metrical Geometry, and the axioms by which, in the pre-

ceding chapter, we distinguished this subject, must be consequences of

projective axioms. Let us examine the manner in which this result

is obtained*-

We have already seen how to assign coordinates to every point of

a line in projective space, and how to define the anharmonic ratio of

any four points. We have seen also how to obtain a projective from

a descriptive space. In a descriptive space, when an ideal point has a

real correlative {i.e. when it is a sheaf of lines which has a vertex), we

assign to the real point the coordinate which belongs to the ideal point

considered as belonging to a projective space. In this way, the coordinate

Geometry of the two spaces becomes very similar, the difference being

that, in projective space, every real set of coordinates gives a real point,

whereas, in descriptive space, this holds of each coordinate only within

certain limits (both of which limits are excluded). In what follows,

therefore, remarks concerning projective space will apply also to descrip-

tive space except when the contrary is expressly stated.

Let us consider the anharmonic ratios of all ranges axby, where a, h

are fixed points and x, y variable points on our line. Let a, ^, /3, ?; be

the coordinates of these points. Then 4

—

^ / _ will be the an-
?-^/ -n-p

harmonic ratio of the four points, which, since a, ^ are constants, may

be conveniently denoted by (^»;)- If now f be the coordinate of any

other point z, we have

Hence log (f'7) + log(r,f) = log(ff).

Thus the logarithm of the anharmonic ratio in question has one of the

essential properties of distance, namely additiveness. If xy, yz, xz be

the distances of x, y, z taken as having sign, we must have

xy -\-yz = xz.

We have also log (^^) = and log {^rj) = — log (???), which are two further

properties of distance. From these properties (of which the third follows

from the other two) it is easy to show that all properties of distances

which have no reference to the fixed points a, b belong to the logarithm

in question. Hence, if the distances of points from a and b can also be

made, by a suitable choice of a and h, to agree .with those derived from

the logarithm, we shall be able to identify distance with this logarithm.

In this way—so it is contended—metrical Geometry may be wholly

* The projective theory of distance and angle is due to Cayley (SLrth Memoir

upon Quantics, 1859) and to Klein (Math. Annalen, Vols, iv, vi, vii, xxxvii). A fuller

discussion than the following will be found in my Foundation.^ of Geometry, Cambridge,

1897, §§ 30-38.
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brought under the projective sway ; for a similar theory applies to

angles between lines or planes.

408. Let us consider first the case where our projective points are

the ideal points of a descriptive space. Let x be considered fixed, and
distinct from a and h. Let y be moved so that 77 becomes more and

more nearly equal to /S. Then as 7; approaches /3, \og{^r)) will be

always finite, but will assume values exceeding any that may be assigned.

This is mathematically expressed by saying that, if f be any number
other than a and /S, then log (^y8) is infinite. (If ^ be equal to a or /9,

log (fa) and log (|^jS) are indeterminate; this case will therefore be

supposed excluded in what follows.) Hence a and h must be at an

infinite distance from every point except each other ; and their distance

from each other is indeterminate. Again x and y must not be separated

by a and h, i.e. y must belong to the segment axb, if we wish the distance

to be real ; for if f — a and f — /3 have the same sign, ?? — a and rj — ^
must also have the same sign, but if f — a and f — /8 have different

signs, 7J
— a and r; - /8 must also have different signs ; and these con-

ditions amount to the same as the condition that y must belong to

the segment axb. Hence if we insist that any two real points (i.e. points

which are not merely ideal) are to have a real distance (i.e. a distance

measured by a number which is not complex or purely imaginary),

we shall require a and b to fulfil the following conditions : (1) they must

be ideal points to which no real ones correspond ; (2) they must be the

two limits of the series of those ideal points to which real points do

correspond. These two conditions include all that has been said. For,

in the first place, there is no real distance of any point from a or /8

;

hence a and /3 must not be coordinates of real points. In the second

place, on one of the two segments defined by a and b, there is a real

distance xy however near ^ or rj may approach to a ot jS \ hence a and b

are the limits of the ideal points to which real ones correspond. In the

third place, it follows from the last proposition that all ideal points

to which real ones correspond belong to one of the two segments ab,

and all ideal points to which no real ones correspond (except a and b

themselves) belong to the other of the two segments ab. When these

conditions are satisfied, the function log(f7?) will have all the properties

which are required for a measure of distance.

The above theory is only applicable to descriptive space, for it is

only there that we have a distinction between ideal and actual points.

And in descriptive space we begin with an asymmetrical transitive

relation by which oi-der is generated on the straight line. Before

developing a theory which is applicable to pure projective space, let

us examine a little further the above theory, which may be called the

descriptive theory of distance.

In the first place, the ideal points to which real ones correspond,

which for shortness I shall call proper points, form part of the whole
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series of ideal points, which is closed. The proper points are a semi-

continuous portion of this closed series, i.e. they have all the properties

of a continuum except that of having two ends. It may happen that

there is pnly one ideal point which is not proper, or it may happen

that there are many. In the former case, the one purely ideal point

will be the limit of the proper points in both directions. This is

the case of Euclidean space, for in Euclidean space there is only one

sheaf of lines to which a given line belongs and which has no vertex,

namely the sheaf of lines parallel to the given line. Hence in this

case the points a and h must be taken to be identical. The function

logd'i;) is then zero for all values of ^ and 77, and is therefore useless

as a measure of distance. But by a familiar process of proceeding

to the limit, we can, in this case, obtain the value ^— 1? for the

distance*. This is the usual measure of elementary Geometry ; and for

the distance of two points in a plane or in space we should similarly

obtain the usual formula in this case. We see here the exact meaning

of the common phrase that, in Euclidean space, + x is the same as — 00

,

or that the two ends of a line coincide. The fact is, of course, that the

line has no ends, but that it determines only one ideal point which is

not proper, and that this is the limit of proper ideal points in both

directions : when it is added to the proper ideal points, we obtain a

closed continuous series of sheaves to which the line in question belongs.

In this way, a somewhat cryptic expression is found to have a very

simple interpretation.

But it may happen also—and this is the case of hyperbolic space—

that there are many improper ideal points on a line. In this case,

the proper ideal ppints will have two different limits ; these will be the

sheaves of Lobatchewsky's parallels in the two directions. In this case,

our function log(f7;) I'equires no modification, but expresses distance as

it stands. The ideal points a and h are distinct, which is commonly
expressed by saying that our line has two real and distinct points at

infinity.

Thus in descriptive space, in which our coordinates are obtained

by correlation with those of the derived projective space, it is always

possible to define a certain function of our projective coordinates which

will fulfil the conditions required for a measure of distance. These

conditions may be enumerated as follows f. (1) Every pair of real

points is to have a distance whose measure is real and finite, and vanishes

only when the two points coincide. (2) If x, y, z are collinear, and y
lies between x and z, the sum of the measures of xy and yz is to be the

measure of xz. (3) As the ideal point corresponding to y approaches

* See e.g. Klein, Vonesungen iiber nicht Euklidische Oeometrie, Gottingen, 1893,

Vol. i, pp. 151 ff.

t Cf. Whitehead, Universal Algebra, Bk. vi, Chap. i. I confine myself in the

text to distances on one straight line.
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the ideal point which is the limit of proper ideal points, while x
remains fixed, the absolute value of the measure of ay is to grow without

limit.

It may well be asked, however, why we should desire to define a

function of two variable points possessing these properties. If the

mathematician replies that his only object is amusement, his procedure

will be logically irreproachable, but extremely frivolous. He will, how-

ever, scarcely make this reply. We have, as a matter of fact, the notion

of a stretch, and, in virtue of the general axiom that every class has

some magnitude of divisibility, we know that the stretch has magnitude.

But we do not know, without a special assumption to that effect, that

the stretch fulfils the axioms of Archimedes and of linearity. When
once these are assumed, the above properties of the measure of distance

become properties which must belong to the measure of stretch. But
if these two axioms are not assumed, there is no reason why there

.should be any magnitude having a measure possessing the above four

characteristics. Thus the descriptive theory of distance, unless we regard

it as purely frivolous, does not dispense with the need of the above

axioms. What it does show—and this fact is extremely remarkable—

is that, if stretches are numerically measurable, then they are measured

by a constant multiple of the logarithm of the anharmonic ratio of the

two ideal points associated with the ends of the stretch together with

the two ideal points which limit the series of proper ideal points ; or, in

case the latter pair are identical, the stretch is measured by a function

obtained as the limit of the above when the said pair approach to

identity and the constant factor increases without limit. This is a

most curious result, but it does not obviate the need for the axioms

which distinguish metrical Geometry. The same conclusion follows as

regards metrical Geometry in a plane or in three dimensions ; but here

new complications are introduced, which are irrelevant to the present

issue, and will therefore not be discussed.

It is important to realize that the reference to two fixed ideal points,

introduced by the descriptive theory of distance, has no analogue in the

nature of distance or stretch itself. This reference is, in fact, a con-

venient device, but nothing more. The stretch, in descriptive space, is

completely defined by its end-points, and in no way requires a reference

to two further ideal points. And as descriptive Geometry starts with

the stretch, it would be a needless complication to endeavour subsequently

to obtain a definition of stretch in terms of four points. In short, even

if we had a projective theory of distance in descriptive space, this would

still be not purely projective, since the whole projective space composed

of ideal elements is derived from axioms which do not hold in projective

space.

409. It remains to examine the projective theory of distance in

projective space. The theory we have hitherto examined, since it used
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the distinction of real and ideal elements, was descriptive, not projective;

we have now to examine the corresponding theory for pure projective

Geometry. Here there are no ideal elements of the above sort associated

with our line ; if, therefore, a and /3 be real and distinct numbers, they

will be the coordinates of real and distinct points. Hence there will he

real points a\ y which will be separated by a and 6, and will have an

imaginary measure of distance. To this there could be no objectionj

but for the fact that we wish our measure to be the measure of a stretch.

This is the reason why it is desired that any two real points should have

a real measure of distance. In order to insure this result in a pure

projective space, it is necessary that a and /S should not be the co-

ordinates of points at all, but should be conjugate complex numbers.

It is further necessary that the constant multiple of the logarithm should

be a pure imaginary. We then find that the distance of two real points-

always has a real measure, which is an inverse cosine*. In a projective

space, the condition (2) of p. 424 introduces complications, since between

has not, as in descriptive space, a simple meaning. The definition of

between in this case is dealt with fully by Mr Whitehead in his Universal

Algebra (§ 206).

410. But if such a function is to be properly geometrical, and to

give a truly projective theory of distance, it will be necessary to find

some geometrical entity to which our conjugate complex numbers a

and ^ correspond. This can be done by means of involutions. Although,,

in a projective space, there are no ideal points, yet there are what may
be called ideal point-pairs. In Chapter xlv we considered involutions-

with real double points : \i a,b be two points on a line, all point-pairs

J', x such that x, x are harmonic conjugates with respect to a, b form

an involution. In this case, x and x are said to be conjugate ; a and h

are each self-conjugate, and are called the double points of the invo-

lution. But there are also involutions without real double points. The

general definition of an involution may be given as follows (substituting

the relation of .r to x for the pair x, x') : An involution of points is

a symmetrical one-one relation, other than identity, whose domain and

converse domain are the same straight line, and which is such that any

class of referents is projectively similar to the coiTesponding class of

relata. Such a relation is either strictly an aliorelative, or is a self-

relative as regards two and only two points, namely the double points

of the involution. For every pair of distinct points on the line as

double points there will be one and only one involution : all point-

pairs (using this expression so as to exclude the identity of the two

points of the pair) have a one-one correlation with some involutions.

Thus involutions may be called ideal point-pairs : those that correspond

* This is the form originally given by Cayley in the Sixth Memoir upon

Qualities. The simpler logarithmic form is due to Klein.
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to an actual point-pair are called hyperbolic, the others elliptic. Thus
an ideal point-pair is one and indivisible, being in fact a one-one

relation. Two proper ideal point-pairs have an anharmonic ratio

defined by their respective double points : two improper ideal point-

pairs, or a proper and an improper ideal point-pair, have an analogous

projective relation, which is measured by the function obtained as

above from the supposition that a and ^ are conjugate complex

numbers. This function may be called the anharmonic ratio of the

two ideal point-pairs. If one be fixed and improper, the other variable

and proper, an imaginary multiple of the logarithm of the resulting

anharmonic ratio has the properties required for a measure of the

distance of the actual point-pair corresponding to the proper ideal

point-pair. This gives the pure projective theory of distance. But to

this theory, as anything more than a technical development, there are

the same objections as in the case of descriptive space ; i.e. unless there

be some magnitude determined by every actual point-pair, there is no

reason for the process by which we obtain the above measure of distance;

and if there is such a magnitude, then the above process gives merely

the measure, not the definition, of the magnitude in question. Thus
stretch or distance remains a fundamental entity, of which the pro-

perties are such that the above method gives a measure of it, but not a

definition*.

411. There is however another and a simpler way of introducing

metrical notions into a projective space, and in this way distance

becomes a natural accompaniment of the introduction of coordinates.

Let p, q, r be three fixed points, abc a line not passing through p ox q
or r but in the plane pqr. Let qr pass through «, rp through h, pq
through c. Let R^ be the relation which holds between x and y when

these are points on abc, and xr, yq meet on cvp ; and let R^, R^ be

similarly defined. Then* a Mobius net may be regarded as constructed

by repetitions of the relations R^, R^, R,. We shall have, if xR^y, yR^z,

then xHayZ. We can define the square root of i?i, or any power of R^

whose index is a positive or negative power of 2. Further, if s is any

point of qr, and xRly means that x and y are on a6f and xr, ys meet

on ap, then R^Ri = RiR\ From these propositions, which are proved

by pure projective methods, it follows that if a and B be numbers, we

may define R^"^^ to mean Ri^R/, provided i^i" and R/ have been already

defined ; whence, since R/' can be defined if « is a positive or negative

integer, all rational powers of i?i can be defined, and irrational powers

can be defined as limits. Hence, if x be any real number, positive or

negative, we can define R^", for we may identify Ri^" with Rf. We
may now take this relation R^^ as the distance of any two points between

* On the above method of introducing imaginaries in projective Geometry, see

von Staudt, Beitrdge zur Geometrie der Lags, i, § 7.
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which it holds, and regard x as the measure of the distance. We shall

find that distances so defined have the usual properties of Euclidean

distances, except that the distance of a from any other point is infinite.

Thus on a projective line any two points do actually have a relation

which may be called distance, and in this sense a projective theory of

metrical properties can be justified. But I do not know whether this

method can be extended to a plane or to space.

To sum up : Although the usual so-called projective theory of

distance, both in descriptive and in projective space, is purely technical,

yet such spaces do necessarily possess metrical properties, which can be

defined and deduced without new indefinables or indemonstrables. But

metrical Geometry, as an independent subject, requires the new idea

of the magnitude of divisibility of a series, which is indefinable, and does

not belong, properly speaking, to pure mathematics. This idea is applied

to stretches, angles, areas, etc., and it is assumed that all the magnitudes

dealt with obey the axioms of Archimedes and linearity. Without these

axioms, many of the usual metrical propositions cannot be proved in

the usual metrical manner ; with these axioms, the usual kind of

elementary Geometry becomes possible, and such results as the unique-

ness of the quadrilateral construction can be proved without three

dimensions. Thus there is a genuinely distinct science of metrical

Geometry, but, since it introduces a new indefinable, it does not belong

to pure mathematics in the sense in which we have used the word in

this Work. It does not, as is often supposed, require distances and

angles as new relations between points or lines or planes, but stretches

and magnitudes of divisibility suffice throughout. On the other hand,

projective and descriptive Geometry are both independent of all metrical

assumptions, and allow the development of metrical properties out of

themselves ; hence, since these subjects belong to pure mathematics, the

pure mathematician should adopt their theory of metrical matters.

There is, it is true, another metrical Geometry, which does work with

distances, defined as one-one relations having certain properties, and this

subject is part of pure mathematics ; but it is terribly complicated, and

requires a bewildering number of axioms. Hence the deduction of

metrical properties from the definition of a projective or descriptive

space has real importance, and, in spite of appearances to the contrary,

it affords, from the point of view of pure mathematics, a genuine simpli-

fication and unification of method.



CHAPTER XLIX.

DEFINITIONS OF VARIOUS SPACES.

412. In the preceding discussions of different Geometries, I have
usually, for the sake of convenience, adhered to the distinction between
definitions and indefinables on the one hand, and axioms or postulates

on the other. But this distinction, in pure mathematics, has no validity

except as regards the ideas and propositions of Logic. In pure mathe-
matics, all the propositions state logical implications containing a
variable. This is, in fact, the definition, or part of the definition, of
pure mathematics. The implications stated must flow wholly from the

propositions of Logic, which are prior to those of other branches of
mathematics. Logic and the rest of pure mathematics are distinguished

from applied mathematics by the fact that, in it, all the constants are

definable in terms of some eight fundamental notions, which we agreed
to call logical constants. What distinguishes other branches of mathe-
matics from Logic is merely complication, which usually takes the form
of a hypothesis that the variable belongs to some rather complicated

class. Such a class will usually be denoted by a single symbol ; and the

statement that the class in question is to be represented by such and
such a symbol is what mathematicians call a definition. That is to say,

a definition is no part of mathematics at all, and does not make any
statement concerning the entities dealt with by mathematics, but is

simply and solely a statement of a symbolic abbreviation : it is a pro-

position concerning symbols, not concerning what is symbolized. I do
not mean, of course, to affirm that the word definition has no other

meaning, but only that this is its true mathematical meaning. All

mathematics is built up by combinations of a certain number of primitive

ideas, and all its propositions can, but for the length of the resulting

formulae, be explicitly stated in terms of these primitive ideas ; hence

all definitions are theoretically superfluous. But further, when Logic is

extended, as it should be, so as to include the general theory of relations,

there are, I believe, no primitive ideas in mathematics except such as

belong to the domain of Logic. In the previous chapters of this Part,

I have spoken, as most authors do, of certain indefinables in Geometry.



430 Space [chap, xlix

But this was a concession, and must now be rectified. In mathematics,

two classes of entities which have internal relations of the same logical

type are equivalent. Hence we are never dealing with one particular

class of entities, but with a whole class of classes, namely, with all classes

having internal relations of some specified type. And by the type of

a relation I mean its purely logical properties, such as are denoted by

the words one-one, transitive, symmetrical, and so on. Thus for example

we defined the class of classes called progression by certain logical

characteristics of the internal relations of terms of any class which is

a progression, and we found that finite Arithmetic, in so far as it deals

with numbers, and not with the terms or classes of which numbers can

be asserted, applies equally to all progressions. And when it is realized

that all mathematical ideas, except those of Logic, can be defined, it

is seen also that there are no primitive propositions in mathematics

except those of Logic. The so-called axioms of Geometry, for example,

when Geometry is considered as a branch of pure mathematics, are

merely the protasis in the hypotheticals which constitute the science.

They would be primitive propositions if, as in applied mathematics,

they were themselves asserted ; but so long as we only assert hypo-

theticals {i.e. propositions of the form " A implies B ") in which the

supposed axioms appear as protasis, there is no reason to assert the

protasis, nor, consequently, to admit genuine axioms. My object in

the present chapter is to execute the purely formal task imposed by

these considerations, and to set forth the strict definitions of various

spaces, from which, without indefinables and without primitive pro-

positions, the various Geometries will follow. I shall content myself

with the definition of some of the more important spaces, since my object

is chiefly to show that such definitions are possible.

413. (1) Projective Space of three dimensions. A projective space of

three dimensions is any class of entities such that there are at least two

members of the class ; between any two distinct members there is one

and only one symmetrical aliorelative, which is connected, and is tran-

sitive so far as its being an aliorelative will permit, and has further

properties to be enumerated shortly ; whatever such aliorelative may be

taken, there is a term of the projective space not belonging to the

field of the said aliorelative, which field is wholly contained in the

projective space, and is called, for shortness, a straight line, and is

denoted by ab, if a, b be any two of its terms; every straight line

which contains two terms contains at least one other term ; if a, b, c be

any three terms of the projective space, such that c does not belong to

the class ab, then there is at least one term of the projective space not

belonging to any class ex, where x is any term of ab ; under the same

circumstances, if a be a term of be, b' a term of ac, the classes aa,

bb' have a common part; if d be any term, other than a and b,

of the class ab, and u, v any two terms such that d belongs to the
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class uv, but neither u nov v belongs to the class ah, and if y be the

only term of the common part of au and bv, z the only term of the

common part of av and bu, x the only term of the common part of

yz and ab, then x is not identical with d (under these circumstances

it may be proved that the term x is independent of u and v, and is

uniquely determined by a, b, d\ hence x and d have a symmetrical

one-one relation which may be denoted, for brevity, by xHatd ; if «/, e

be two further terms of the projective space, belonging to the class xd,

and such that there are two terms g, h of the class xd for which we have

gHxdh and gHyJi, then we write for shortness yQxdfi to express this

relation of the four terms x, d, y, e)\ a projective space is such that

the relation Q_xi,i whatever terms of the space x and d may be, is tran-

sitive ; also that, if a, h, c, d be any four distinct terms of one straight

line, two and only two of the propositions aQ^^l, aQt^c, aQcJ) will hold

;

from these properties of projective space it results that the terms of a

line form a series ; this series is continuous in the sense defined in § 277

;

finally, if a, b, c, d, e be any five terms of a projective space, there will

be in the class ae at least one term x, and in the class cd at least one

term y, such that x belongs to the class by.

This is a formal definition of a projective space of three dimensions.

^Vhatever class of entities fulfils this definition is a projective space.

1 have enclosed in brackets a passage in which no new properties of

projective space are introduced, which serves only the purpose of con-

venience of language. There is a whole class of projective spaces, and
this class has an infinite number of members. The existence-theorem

may be proved to begin with, by constructing a projective space out of

complex numbers in the purely arithmetical sense defined in § 360.

We then know that the class of projective spaces has at least four

members, since we know of four sub- classes contained under it, each

of which has at lejist one member. In the first place, we have t'le

above arithmetical space. In the second place, we have the projective

space of descriptive Geometry, in which the terms of the projective

space are sheaves of lines in the descriptive space. In the third

place, we have the polar form of elliptic space, which is distinguished

by the addition of certain metrical properties of stretches, consistent

with, but not implied by, the definition of projective space; in the

fourth place, we have the antipodal form of elliptic Geometry, in

which the terms of the projective space are pairs of terms of the said

elliptic space. And any number of varieties of projective space may be

obtained by adding properties not inconsistent with the definition—for

example, by insisting that all planes are to be red or blue. In fact,

every class of 2°° terms (i.e. of the number of terms in a continuous

series) is a projective space ; for when two classes are similar, if one is

the field of a certain relation, the other will be the field of a like relation.

Hence by correlation with a projective space, any class of ^"o terms
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becomes itself a projective space. The fact is, that the standpoint of

line-Geometry is more fundamental where definition is concerned : a

projective space would be best defined as a class K of relations whose

fields are straight lines satisfying the above conditions. This point is

strictly analogous to the substitution of serial relations for series which

we found desirable in Part IV. When a set of terms are to be regarded

as the field of a class of relations, it is convenient to drop the terms and

mention only the class of relations, since the latter involve the former,

but not the former the latter.

It is important to observe that the definition of a space, as of most

other entities of a certain complexity, is arbitrary within certain limits.

For if there be any property which implies and is implied by one or

more of the properties used in the definition, we may make a substitution

of the new property in place of the one or more in question. For ex-

ample, in place of defining the line by a relation between points, it is

possible to define the line as a class having a certain relation to a couple

of points. In such cases, we can only be guided by motives of simplicity.

It seems scarcely necessary to give a formal definition of descriptive

or metrical space, since the above model serves to show how such a

definition might be constructed. I shall instead give a definition of

Euclidean space. This I shall give in a form which is inappropriate

when Euclidean space is considered as the limit of certain non-Euclidean

spaces, but is very appropriate to quaternions and the vector Calculus.

This form has been adopted by Peano*, and leads to a very simple

account of the Euclidean axioms. I shall not strictly follow Peano, but

my account will be very similar to his.

414. (2) Euclidean space of three dimemtons. A Euclidean space of

three dimensions is a class of terms containing at least two members, and

such that any two of them have one and only one asymmetrical one-one

relation of a class, which will be called the class of vectors, defined by

the following characteristics
"f

: the converse of a vector, or the relative

product of two vectors, is a vector; if a given vector holds between a and b,

c and d, then the vector which holds between a and c is the same as that

which holds between h and d ; any term of the space has any assigned

relation of the class to at least one term of the space ; if the rath power

(where n is any integer) of any vector of the class is identity, then the

vector itself is identity ; there is a vector whose wth power is a given

vector ; any two vectors have one and only one symmetrical relation of

a certain class having the following properties : the relation of any two

vectors is measured by a real number, positive or negative, and is such

* " Analisi della Teoria dei vettori," Turin, 1898 {Accademia Reale delle Scienxe

di Torino).

t For the convenience of tlie reader, it may be well to observe that this relation

corresponds to that of having a given distance in a given direction—direction being

taken in the sense in which all parallel lines have the same direction.
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that the relation of a vector to itself is always measured by a positive

number, and that the measure of the relation of the relative product of

two vectors to a third vector is the sum of the measures of their several

relations to the third vector ; there is a vector satisfying the definition

of an irrational power of a vector given below ; there are vectors which
are not relative products of powers of two given vectors ; if i, J, k be
three vectors, no one of which is a relative product of powers of one

or both of the others, then all vectors are relative products of powers of

i, j, k.

The only points calling for explanation here are the notion of an
irrational power of a vector and the measurable relation of two vectors.

All rational powers are definite ; for every vector has an rath root, and
the nth root has an with power, which is the m/nth power of the original

vector. But it does not follow that real powers which are not rational

can be defined. The definition of limits of classes of vectors given by
Peano* is, when translated into relational language, the following. Let

ti be a class of real numbers, Xo a number belonging to the derivative

of u. Let some one-one relation subsist between all m's and some or all

vectors ; and let v be the class of vectors correlative to u. Then the

vector a is said to be the limit of the class v &s x approaches a:„ in

the class u, when the limit of the measure of the relation to itself of the

vector which, multiplied relatively into a, will give the correlate to x
in the class v, is zero. The point of this definition is the use of the

order obtained among vectors by means of the measurable relation which

each has to itself. Thus suppose we have a progression x^, x^, ... x^, ...

of rational numbers, and suppose these to be respectively the measures of

the relations to themselves of the vectors Oj, a2, ... an, Then if x be

the limit of Xi, x^, ... x„, ... , there is to be a vector whose relation to

itself is measured by x, and this is to be the limit of the vectors a,, Og, . .

.

a„,...; and thus irrational powers of a vector become definable. The
other point to be examined is the measurable relation between two
vectors. This relation measures, in terms of elementary Geometry, the

product of the two stretches represented by the vectors into the cosine

of the angle between them ; it is, in the language of the calculus of

extension, the internal product of the two vectors. To say that the

relation is measurable in terms of real numbers means, in the sense in

which this statement is employed, that all such relations have a one-one

relation to some or all of the real numbers ; hence, from the existence of

irrational powers, it follows that all such relations form a continuous

series ; to say that the relation of a vector to itself is always measured

by a positive number means that there exists a section (in Dedekind's

sense) of the continuous series of relations, such that all those relations

that vectors can have to themselves appear on one side of the section

;

* Op. cit. p. 22.

H. 28
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while it can be proved that the relation which defines the section is that

which the vector identity has to itself.

This definition is, of course, by no means the only one which can

be given of Euclidean space, but it is, I think, the simplest. For this

reason, and also because it belongs to an order of ideas which, being

essentially Euclidean, is foreign to the methods of previous chapters,

I have thought it worth while to insert it here.

" 415. As another example which may serve to enlarge our ideas,

I shall take the space invented by Clifford, or rather the space which is

formally analogous to his surface of zero curvature and finite extent*.

I shall first briefly explain the nature of this space, and then proceed

to a formal definition. Spaces of the type in question may have any

number of dimensions, but for the sake of simplicity I shall confine

myself to two dimensions. In this space, most of the usual Euclidean

properties hold as regards figm-es not exceeding a certain size ; that is

to say, the sum of the angles of a triangle is two right angles, and there

are motions, which may be called translations, in which all points travel

along straight lines. But in other respects, the space is very different

from Euclidean space. To begin with, the straight line is a closed

series, and the whole space has a finite area. In the second place, every

motion is a translation ; a circular transformation {i.e. one which pre-

serves distances from a certain fixed point unaltered) is never a motion,

i.e. never leaves every distance unaltered ; but all translations can, as

in Euclidean space, be compounded out of translations in two fixed

directions. In this space, as in Euclid, we have parallels, i.e. straight

lines which remain at a constant distance apart, and can be simul-

taneously described in a motion ; also straight lines can be represented

by linear equations. But the formula for distance is quite unlike the

Euclidean formula. Thus if ttA: be the length of the whole straight line,

and (<r, y), (x
,
y') be the coordinates of any two points (choosing a

system in which the straight line has a linear equation), then if to be

the angle between the lines x = Q, y=-0, the distance of the two points

in question is d, where

cos T = cos {x—x') cos («/ —y') — cos (o sin {x — w) sin {y—y),

and the formula for the angle between two lines is similarly complicated.

We may, in order to lead to these results, set up the following definition.

(3) ClifforoTs space of two dimensions. A Clifford's space of two

dimensions is a class of at least two terms, between any two of which

there are two relations of different classes, called respectively distance

* On the general subject of the spaces of which this is the simplest e.xample, see

Klein, Math. Annalen xxxvii, pp. .554^565, and Killing, Grundlagen der Geometrie,

Vol. I, Chap. IV.
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and direction, and possessing the following properties : a direction is a
symmetrical aliorelative, transitive so far as its being an aliorelative will

permit, but not connected ; a term of the space together with all the
terms to which the said term has a given relation of direction form what
is called a straight line ; no straight line contains all the terms of the
space ; every term of the space has- any assigned relation of direction to
some but not all other terms of the space ; no pair of terms has more
than one relation of direction ; distances are a class of symmetrical
relations forming a continuous series, having two ends, one of which
is identity ; all distances except identity are intransitive aliorelatives

;

every term of the space has any assigned relation of distance to some
but not all of the terms of the space ; any given term of the space has
any given distance and direction from two and only two other terms
of the space, unless the given distance be either end of the series of
distances ; in this case, if the given distance be identity, there is no term
having this distance and also the given direction from the given term,
but if the distance be the other end of the series, there is one and only
one term having the given distance and the given direction from the
gi\eii term; distances in one straight line have the properties, mentioned
in Chapter xlvii, required for generating an order among the terms of one
straight line ; the only motions, i.e. one-one relations whose domain and
converse domain are each the space in question and which leave all

distances among the relata the same as those among the corresponding

referents, are such as consist in combining a given distance, a given

direction, and one of the two senses of the series constituting a straight

line ; and every such combination is equivalent to the relative product
of some distance in one fixed direction with some distance in another
fixed direction, both taken with a suitable sense ; finally all possible

directions form a single closed continuous series in virtue of mutual
relations.

This completes, I think, the definition of a Clifford's space of two
dimensions. It is to be observed that, in this space, distance cannot be
identified with stretch, because (1) we have only two dimensions, so that

we cannot generate a closed series of terms on a line by means of pro-

jective methods*, (2) the line is to be closed, so that we cannot genei-ate

order on the straight line by the descriptive method. It is for similar

reasons that both directions and distances have to be taken as sym-
metrical relations ; thus it is only after an order has been generated on
a line that we can distinguish two senses, which may be associated with

direction to render it asymmetrical, and with distances in a given

direction to give them signs. It is important to observe that, when

* Mr W. E. Johnson lias pointed out to me that this difficulty might be over-

come by introducing- the uniqueness of the quadrilateral construction by a special

axiom—a method which would perhaps be simpler than the above.

28—2
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distance is taken as independent of the straight hne, it becomes necessary,

in order to distinguish different spaces, to assign some property or pro-

perties of the one-one relations or transformations which leave distances

imchanged. This method has been adopted by Lie in applying to

Geometry the theory of continuous groups*, and has produced, in his

hands and those of Klein, results of the greatest interest to non-

Euclidean Geometry. But since, in most spaces, it is unnecessary to

take distance as indefinable, I have been able, except in this instance

of Clifford's space f, to adopt a simpler method of specifying spaces.

For this reason, it was important to consider briefly some such space

as Clifford's, in order to give an instance of the use of distance, and of

what geometers call motion, in the definition of a space.

Enough has now been said, I hope, to show that the definition of a

kind of space is always possible in purely logical terms, and that new

indefinables are not required. Not only are the actual terms composing

a space irrelevant, and only their relations important, but even the

relatiims do not require individual determination, but only specification

as members of certain logical classes of relations. These logical classes

are the elements used in geometrical definitions, and these are definable

in terms of the small collection of indefinables out of which the logical

calculus (including that of relations) is built up. This result, which

holds throughout pure mathematics, was the principal object of the

present chapter.

* Leipziger Berichte, 1890.

t If 1 had defined an elliptic space of two dimensions^ I should have had to take

distance as distinct from stretch, because the projective generation of order fails in

two dimensions.



CHAPTER L.

THE CONTINUITY OF SPACE.

416. It has been commonly supposed by philosophers that the

continuity of space was something incapable of further analysis, to be

regarded as a mystery, not critically inspected by the profane intellect.

In Part V, I asserted that Cantor's continuity is all that we require in

dealing with space. In the present chapter, I wish to make good this

assertion, in so far as is possible without raising the question of absolute

and relative position, which I reserve for the next chapter.

Let us begin with the continuity of projective space. We have seen

that the points of descriptive space are ordinally similar to those of a

semi-continuous portion of a projective space, namely to the ideal points

which have real correlatives. Hence the continuity of descriptive space

is of the same kind as that of projective space, and need not, there-

fore, be separately considered. But metrical space will require a new
discussion.

It is to be observed that Geometries, as they are treated now-a-days,

do not begin by assuming spaces with an infinite number of points ; in

fact, space is, as Peano remarks*, a word with which Geometry can very

easily dispense. Geometries begin by assuming a class-concept point,

together with certain axioms from which conclusions can be drawn as

to the number of points. So, in projecti^'e Geometry, we begin with the

assumption that there are at least two points, and that any two points

determine a class of points, the straight line, to which they and at

least one other point belong. Hence we have three points. We now
introduce the new assumption that there is at least one point not on

any given straight line. This gives us a fourth point, and since there

must be points on the lines joining it to our pre\ious points, we obtain

three more points—seven in all. Hence we can obtain an infinite denu-

nierable- series of points and lines, but we cannot, >vithout a further

assumption, prove that there are more than three points on any one

line. Four points on a line result from the assumption that, if b and d

* Biv. (ii Mdt. \o\. IV, p. ^'l.
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be harmonic with respect to a and c, then b and d are distinct. But in

order to obtain an infinite number of points on a line, we need the

further assumptions from which the projective order results*. These

assumptions necessitate a denuraerable series of points on our line.

With these, if we chose, we might be content. Such a series of

points is obtained by successive quadrilateral constructions ; and if we

chose to define a space in which all points on a line could be obtained

by successive quadrilateral constructions starting with any three points

of the line, no contradiction would emerge. Such a space would have

the ordinal type of the positive rationals and zero : the points on a

line would form a compact denumerable series with one end. The
extension, introduced by assuming that the series of points is con-

tinuous, is only necessary if our projective space is to possess the usual

metrical properties— if, that is to say, there is to be a stretch, with

one end and its straight line given, which is to be equal to any given

stretch. With only rational points, this property (which is Euclid's

postulate of the existence of the circle) cannot hold universally. But

for pure projective purposes, it is irrelevant whether our space possesses

or does not possess this property. The axiom of continuity itself may
be stated in either of the two following forms. (1) All points on a

line are limits of series of rational points, and all infinite series of

rational points have limits ; (2) if aU points of a line be divided into

two classes, of which one wholly precedes the other, then either the first

class has a last term, or the last has a first term, but both do not

happen. In the first of these ways, the continuity which results is exactly

Cantor's, but the second, which is Dedekind's definition, is a necessary,

not a sufficient, condition for Cantor's continuity; Adopting this first

definition, the rational points, omitting their first term, form an endless

compact denumerable series ; all points form a perfect series ; and

between any two points there is a rational point, which is precisely

the ordinal definition of continuityf. Thus if a projective space is

to have continuity at all, it must have the kind of continuity which

belongs to the real numbers.

417. Let us consider next the continuity of a metrical space ; and,

for the sake of definiteness, let us take Euclidean space. The question

is here more difficvilt, for continuity is not usually introduced by an

axiom ad hoc, but appears to result, in some sense, from the axioms of

distance. It was already known to Plato that not all lengths are

commensurable, and a strict proof of this fact is contained in the tenth

book of Euclid. But this does not take us very far in the direction

of Cantor's continuity. The gist of the assertion that not all lengths

are commensurable, together with the postulate of the circle, may be

expressed as follows. If AB, AC he two lengths along the same straight

Cf. Fieri, op. cit. § 6, Prop. 1. + See Part V, Chap, xxxvi.
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line, it may happen that, if AB be divided into m equal parts, and AC
into n equal parts, then, however m and n may be chosen, one of the

parts of AB will not be equal to one of the parts of AC, but will be

greater for some values of m and n, and less for others ; also lengths

equal to either may be taken along any given line and with any given

end-points* But this fact by no means proves that the points on

a line are not denumerable, since all algebraic numbers are denumerable.

Let us see, then, what our axioms allow us to infer.

In Greek Geometry there were two great sources of irrationals,

namely, the diagonal of a square and the circumference of a circle. But

there could be no knowledge that these are irrationals of different kinds,

the one being measured by an algebraic number, the other by a tran-

scendent number. No general method was known for constructing

any assigned algebraic number f, still less for constructing an assigned

transcendent number. And so far as I know, such methods, except

by means of limits, are still wanting. Some algebraic and some tran-

scendent numbers can be constructed geometrically without the use of

limits, but the constructions are isolated, and do not follow any general

plan. Hence, for the present, it cannot be inferred from Euclid's axioms

that space has continuity in Cantor's sense, or that the points of space

are not denumerable. Since the introduction of analytic Geometry,

some equivalent assumption has been always tacitly made. For example,

it has been assumed that any equation which is satisfied by real values

of the variables will represent a figure in space ; and it seems even to be

unirersally supposed that to every set of real Cartesian coordinates a

point must correspond. These assumptions were made, until quite recent

times, without any discussion at all, and apparently without any con-

sciousness that they were assumptions.

When once these assumptions are recognized as such, it becomes

apparent that, here as in projective space, continuity must be introduced

by an axiom ad hoc. But as against the philosophers, we may make the

following remark. Cantor's continuity is indubitably sufficient to satisfy

all metrical axioms, and the only question is, whether existent space

need have continuity of so high an order. In any case, if measurement

is to be theoretically possible, space must not have a greater continuity

than that of the real numbers.

The axiom that the points on a line form a continuous series may be

put in the form which results from amending Dedekind, or in the form

that a line is a perfect series. In the first form, every section of the

lijie is definable by a single point, which is at one end of one of the parts

produced by the section, while the other part has no end. In the second

* A length is not synonymous with a segment, since a length is regarded as

essentially terminated. But a length is, for present purposes, synonymous with

a stretch or a distance.

+ For shortness, 1 shall identify numbers with the lengths which they measure.
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form, which is preferable because, unhke the first, it completely defines

the ordinal type, every infinite series of points has a limit, and every point

is a limiting point. It is not necessary to add that the line has cohesion*,

for this results from the axioms of Archimedes and of linearity, which

are in any case essential to measurement. Whether the axiom of con-

tinuity be true as regards our actual space, is a question which I see no

means of deciding. For any such question must be empirical, and it

would be quite impossible to distinguish empirically what may be called

a rational space from a continuous space. But in any case there is

no reason to think that space has a higher power than that of the

continuum.

418. The axiom of continuity enables us to dispense with the

postulate of the circle, and to substitute for it the following pair.

(1) On any straight line there is a point whose distance from a given

point on the line is less than a given distance. (2) On any straight

line there is a point whose distance from a given point on or off the line

is greater than a given distance. From these two assumptions, together

with continuity, the existence of the circle can be proved. Since it is

not possible, conversely, to deduce continuity from the circle, and since

much of analytic Geometry might be false in a discontinuous space, it

seems a distinct advance to banish the circle from om- initial assumptions,

and substitute continuity with the above pair of axioms.

419. There is thus no mystery in the continuity of space, and no

need of any notions not definable in Arithmetic. There is, however,

among most philosophers, a notion that, in space, the whole is prior to

the parts f; that although every length, area, or volume can be divided

into lengths, areas, or volumes, yet there are no indivisibles of which

such entities are composed. According to this view, points are mere

fictions, and only volumes are genuine entities. Volumes are not to be

regarded as classes of points, but as wholes containing parts which are

never simple. Some such view as this is, indeed, often put forward

as giving the very essence of what should be called continuity. This

question is distinct from the question of absolute and relative position,

which I shall discuss in the following chapter; For, if we regard

position as relative, our present question will arise again concerning

continuous portions of matter. This present question is, in fact,

essentially concerned with continuity, and may therefore be appro-

priately discussed here.

The series which arise in Arithmetic, whether continuous or not,

are essentially composed of terms—integers, rationals, real numbers, etc.

And where we come near to the continuity of space, as in the case of

the real numbers, each real number is a segment or infinite class

* See Part V, Chap. xxxv.

+ Cf. Leibniz, Phil. Werke (Gerhardt), u, p. 379 ; iv, p. 491 ; also my Philosophy

of Leibniz, Chap. ix.
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of rationals, and no denial that a segment is composed of elements

is possible. In this case, we start from the elements and gradually

construct various infinite wholes. But in the case of space, we are

told, it is infinite wholes that are given to begin with ; the elements

are only inferred, and the inference, we are assured, is very rash. This

question is in the main one of Logic. Let us see how the above view

is supported.

Those who deny indivisible points as constituents of space have had,

in the past, two lines of argument by which to maintain their denial.

They had the difficulties of continuity and infinity, and they had the

way in which space is presented in what, according to their school, they

called intuition or sensation or perception. The difficulties of continuity

and infinity, as we saw in Part V, are a thing of the past ; hence this

line of argument is no longer open to those who deny points. As
regards the other argument, it is extremely difficult to give it a precise

form—indeed I suspect that it is impossible. We may take it as agreed

that everything spatial, of whose existence we become immediately aware

in sensation or intuition, is complex and divisible. Thus the empirical

premiss, in the investigation of space, is the existence of divisible entities

with certain properties. But here it may be well to make a little

digression into the meaning of an empirical premiss.

420. An empirical premiss is a proposition which, for some reason or

for no reason, I believe, and which, we may add, is existential. Having

agreed to accept this proposition, we shall usually find, on examination,

that it is complex, and that there are one or more sets of simpler

propositions from which it may be deduced. If P be the empirical

premiss, let A be the class of sets of propositions (in their simplest form)

from which P may be deduced ; and let two members of the class A be

considered equivalent when they imply one another. From the truth

of P we infer the truth of one set of the class A. HA has only one

member, that member must be true. But if there are many members

of the class A, not all equivalent, we endeavour to find some other

empirical premiss P', implied by all sets of simple propositions of the

class A'. If now it should happen that the classes A and A' have only

one common member, and the other members of A are inconsistent \\\t\\

the other members of ^', the common member must be true. If not, we

seek a new empirical premiss P", and so on. This is the essence of

induction*. The empirical premiss is not in any essential sense a

premiss, but is a proposition which we wish our deduction to arrive at.

In choosing the premisses of our deduction, we are only guided by

logical simplicity and the deducibility of our empirical premiss.

421. Applying these remarks to Geometry, we see that the common
desire for self-evident axioms is entirely mistaken. This desire is due to

* Cf. C'outurat, Ln Logique de Leibniz, Paris, 1901^ p. 270.
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the belief that the Geometry of our actual space is an a priori science,

based on intuition. If this were the case, it would be properly deducible

from self-evident axioms, as Kant believed. But if we place it along

with other sciences concerning what exists, as an empirical study based

upon observation, we see that all that can be legitimately demanded is

that observed facts should follow from our premisses, and, if possible,

from no set of premisses not equivalent to those which we assume. No
one objects to the law of gravitation as being not self-evident, and

similarly, when Geometry is taken as empirical, no one can legitimately

object to the axiom of parallels—except, of course, on the ground that,

like the law of gravitation, it need only be approximately true in order

to yield observed facts. It cannot be maintained that no premisses

except those of Euclidean Geometry will yield observed results ; but

others which are permissible must closely approximate to the Euclidean

premisses. And so it is with continuity : we cannot prove that our

actual space must be continuous, but we cannot prove that it is not so,

and we can prove that a continuous space would not differ in any dis-

coverable manner from that in which we live.

422. To return from this digression : we agreed that the empirical

premisses, as regards the continuity of space, are concerned always with

divisible entities which have divisible parts. The question before us is

whether we are to infer from this that the logical premisses for the

science of existing space {i.e. the definition of existing space) may or

must be concerned with divisible entities. The question whether our

premisses must be concerned with divisible entities is fully answered, in

the negative, by actual Geometry, where, by means of indivisible points,

a space empirically indistinguishable from that in which we live is con-

structed. The only reasons hitherto alleged by philosophers against

regarding this answer as satisfactory, are either such as were derived

from the difficulties of infinity and continuity, or such as were based

upon a certain logical theory of relations. The former have been already

disproved ; the latter will be discussed in the next chapter. The question

whether our premisses may be concerned with divisible entities is far more

difficult, and can be answered only by means of the logical discussions

of Part II. Whatever is complex, we then decided (§ 143), nmst be

composed of simple elements ; and this conclusion carries us a long way

towards the decision of our present question. But it does not quite

end our doubts. We distinguished, in Part II, two kinds of wholes,

namely aggregates and imities. The former may be identified, at any

rate for present purposes, with classes, while the latter seem to be in-

distinguishable from propositions. Aggregates consist of units from

whose addition (in the sense presupposed in Arithmetic) they result;

unities, on the contrary, are not reconstituted by the addition of their

constituents. In all unities, one term at least is either a predicated

predicate or a relating relation ; in aggregates, there is no such terra.
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Now what is really maintained by those who deny that space is com-

posed of points is, I imagine, the view that space is a unity, whose

constituents do not reconstitute it. I do not mean to say that this

view is consciously held by all who make the denial in question, but

that it seems the only view which renders the said denial reasonable.

Before discussing this opinion, it is necessary to make a distinction.

An aggregate may be an aggregate of unities, and need by no means be

an aggregatie of simple terms. The question whether a space is an

aggregate of unities or of simple terms is mathematically, though not

philosophically, irrelevant ; the difference of the two cases is illusti'ated

by the difference between an independent projective space and the pro-

jective space defined in terms of the elements of a descriptive space.

For the present, I do not wish to discuss whether points are unities or

simple terms, but whether space is or is not an aggregate of points.

This question is one in which confusions are very liable to occur,

and have, I think, actually occurred among those who have denied that

a space is an aggregate. Relations are, of course, quite essential to a

space, and this has led to the belief that a space is, not only its terms,

but also the relations relating them. Here, however, it is easy to see

that, if a space be the field of a certain class of relations, then a space

is an aggregate ; and if relations are essential to the definition of a

space, there must be some class of relations having a field which is

the space. The relations essential to Geometry will not hold between

two spatially divisible terms : there is no straight line joining two

volumes, and no distance between two surfaces. Thus, if a space is

to be defined by means of a class of relations, it does not follow, as

is suggested, that a space is a unity, but rather, on the contrary, that

it is an aggregate, namely the field of the said class of relations. And
against any view which starts from volumes or surfaces, or indeed any-

thing except points and straight lines, we may urge, with Peano*, that

the distinction between curves, surfaces, and volumes, is only to be

effected by means of the straight line, and requires, even then, the most

elaborate developments f. There is, therefore, no possibility of any

definite Geometry without points, no logical reason against points, and

strong logical reasons in their favour. We may therefore take it as

proved that, if we are to construct any self-consistent theory of space,

we must hold space to be an aggregate of points, and not a unity which

is indefinable as a class. Space is, in fact, essentially a class, since

it cannot be defined by enumeration of its terms, but only by means

of its relation to the class-concept point. Space is nothing but the

* JRiv. di Mat. iv, p. 5.3.

t Cf. Peano, "Sur une xourbe qui remplit toute une aire plane," Math.

Annalen, xxxvi, where it is shown that a continuous curve can be made to pass

through all the points of the area of a square, or, for that matter, of the volume

of a cube.
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extension of the concept point, as the British army is the extension

of the concept British soldier ; only, since the number of points is in-

finite, Geometry is unable to imitate the Army-List by the issue of a

Space-List.

Space, then, is composed of points ; and if analytical Geometry is to

be possible, the number of points must be either equal to, or less than,

the number of the continuum. If the number be less, some propositions

of the accepted Geometry will be false ; but a space in which the number
of points is equal to the number of finite numbers, and in which the

points of a line form a series ordinally similar to the rationals, will,

with suitable axioms, be empirically indistinguishable from a continuous

space, and may be actual. Thus Arithmetic, as enlarged by Cantor, is

undoubtedly adequate to deal with Geometry ; the only question is,

whether the more elaborate parts of its machinery are required. It is

in number that we become certain of the continuum ; among actual

existents, so far as present evidence shows, continuity is possible, but

cannot be rendered certain and indubitable.



CHAPTER LI.

LOGICAL ARGUMENTS AGAINST POINTS.

423. It has been an almost universal opinion among philosophers,

ever since the time of Leibniz, that a space composed of points is logically

impossible. It is maintained that the spatial relations with which we
have been concerned do not hold between spatial points, which essentially

and timelessly have the relations which they do have, but between

material points, which are capable of motion, i.e. of a change in their

spatial relations. This is called the theory of relative position, whereas

the theory of spatial points is called the theory of absolute position.

Those who advocate relative position usually also maintain that matter

and spatial relations, on account of certain contradictions supposed to

be found in them, are not real, but belong only to the world of appear-

ance. This is, however, a further point, which need not be explicitly

discussed in what follows. Apart from this point, the issue between

the absolute and relative theories may be stated as follows : The absolute

theory holds that there are true propositions in which spatial relations

are asserted to hold timelessly between certain terms, which may be

called spatial points ; the relational theory holds that every true pro-

position asserting a spatial relation involves a time at which this relation

holds between its terms, so that the simplest spatial propositions assert

triangular relations of a time and two terms, which may be called

material points.

The question as to which of these two theories applies to the actual

world is, like all questions concerning the actual world, in itself irre-

levant to pure mathematics*- But the argument against absolute position

usually takes the form of maintaining that a space composed of points is

logically inadmissible, and hence issues are raised which a philosophy of

mathematics must discuss. In what follows, I am concerned only with

the question : Is a space composed of points self-contradictory ? It is

true that, if this question be answered in the negative, the sole ground

* Some arguments on this point will be found in the earlier part of my paper,

"Is position in Time and Space absolute or relative.'" Mind, N.S., No. 39 ; the later

portions of this paper are here reprinted.
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for denying that such a space exists in the actual world is removed ; hut

this is a further point, which, being irrelevant to our subject, will be

left entirely to the sagacity of the reader.

424. The arguments against the absolute theory are, in my opinion,

one and all fallacious. They are best collected in Lotze's Metaphysic

(§ 108 ff.). TTiey are there confused with arguments for the subjectivity

of space—an entirely distinct question, as should have been evident

from the fact that Kant, in the Critique, appears to have advocated the

theory of absolute position*. Omitting arguments only bearing on this

latter point, we have the following summary of Lotze's arguments against

absolute space.

(1) Relations only are either (a) as presentations in a relating

consciousness, or (/3) as internal states in the real elements which are

said to stand in these relations (§ 109).

(2) The being of empty space is neither the being which works

effects (which belongs to a thing), nor the mere validity of a truth, nor

the fact of being presented by us. ^Vhat kind of being is it then?

(§ 109).

(3) All points are exactly alike, yet every pair have a relation

peculiar to themselves ; but being exactly like every other pair, the

relation should be the same for all pairs (§ 111).

(4) The being of every point must consist in the fact that it

distinguishes itself from every other, and takes up an invariable position

relatively to every other. Hence the being of space consists in an active

mutual conditioning of its various points, which is really an interaction

(§ 110).

(5) If the relations of points were a mere fact, they could be

altered, at least in thought ; but this is impossible : we cannot move

points or imagine holes in space. This impossibility is easily explained

by a subjective theory (§ 110).

(6) If there are real points, either (a) one point creates others in

appropriate relations to itself, or (/8) it brings already existing points

into appropriate relations, which are indifferent to their natures (§ 111).

425. (1) All these arguments depend, at bottom, upon the first, the

dogma concerning relations. As it is of the essence of the absolute theory

to deny this dogma, I shall begin by examining it at some lengthf.

" All relations," Lotze tells us, " only are as presentations in a relating

consciousness, or as internal states in the real elements which, as we are

wont to say, stand in these relations." This dogma Lotze regards as

self-evident, as indeed he well may ; for I doubt if there is one

anterior philosopher, unless it be Plato, who does not, consciously or

* Cf. Vaihinger, C'ommentar, pp. 189-190.

t The logical opinions which follow are in the main due to Mr G. E. Moore, to

whom I owe also my first perception of the difficulties in the relational theory of

space and time.



423-425] Logical arguments against Points 447

unconsciously, employ the dogma as an essential part of his system. To
deny it, therefore, is a somewhat hardy undertaking. Let us, neverthe-

less, examine the consequences to which the dogma leads us.

It would seem that, if we accept the dogma, we must distinguish

two kind of relations, (a) those which are presentations in a relating

consciousness, and (/3) those which are internal states of the elements

supposed to be related. These may be ultimately identical, but it will

be safer in the mean time to treat them as different. Let us begin with

those which are only presentations in a relating consciousness. These
presentations, we must suppose, are beliefs in propositions asserting

relations between the terms which appear related. For it must be
allowed that there are beliefs in such propositions, and only such beliefs

seem capable of being regarded as presentations in which relations have
their being. But these beliefs, if the relations believed to hold have no
being except in the beliefs themselves, are necessarily false. If I believe

A to be E's father, when this is not the case, my belief is erroneous

;

and if I believe A to be west of B, when westerliness in fact exists only

in my mind, I am again mistaken. Thus this first class of relations has

no validity whatever, and consists merely in a collection of mistaken
beliefs. The objects concerning which the beliefs are entertained are as

a matter of fact wholly unrelated ; indeed there cannot even be objects,

for the plural implies diversity, and all beliefs in the relation of diversity

must be erroneous. There cannot even be one object distinct from

myself, since this would have to have the relation of diversity to me,
which is impossible. Thus we are committed, so far as this class of

relations goes, to a rigid monism.
But now, what shall we say of the second class of relations, those

namely which are reducible to internal states of the apparently related

objects .'' It must be observed that this class of relations presupposes a

plurality of objects (two at least), and hence involves the relation of

diversity. Now we have seen that, if there be diversity, it cannot be

a relation of the first class ; hence it must itself be of the second class.

That is, the mere fact that A is different from B must be reducible to

internal states of A and B. But is it not evident that, before we can

distinguish the internal states of A from those of B, we must first dis-

tinguish A from B ? i.e. A and B must be different, before they can have

different states. If it be said that A and B are precisely similar, and
are yet two, it follows even more evidently that their diversity is not

due to difference of internal states, but is prior to it. Thus the mere

admission that there are internal states of different things destroys the

theory that the essence of relations is to be found in these states. We
are thus brought back to the notion that the apparent relations of two

things consist in the internal states of one thing, which leads us again

to the rigid monism implied in the first type of relation.

Thus the theory of relations propounded by Lotze is, in fact, a
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theory that there are no relations. This has been recognised by the

most logical adherents of the dogma

—

e.g. Spinoza and Mr Bradley

—

who have asserted that there is only one thing, God or the Absolute,

and only one type of proposition, namely that ascribing predicates to

the Absolute. In order to meet this development of the above theory

of relations, it will be necessary to examine the doctrine of subject and
predicate.

426. Every proposition, true or false—so the present theory con-

tends—ascribes a predicate to a subject, and—what is a corollary from

the above—there is only one subject. The consequences of this doctrine

are so strange, that I cannot believe ,they have been realised by those

who maintain it. The theory is in fact self-contradictory. For if the

Absolute has predicates, then there are predicates ; but the proposition

" there are predicates " is not one which the present theory can admit.

We cannot escape by saying that the predicates merely qualify the

Absolute ; for the Absolute cannot be qualified by nothing, so that

the proposition "there are predicates'' is logically prior to the pro-

position "the Absolute has predicates." Thus the theory itself demands,

as its logical prius, a proposition without a subject and a predicate

;

moreover this proposition involves diversity, for even if there be only

one predicate, this must be different from the one subject. Again,

since there is a predicate, the predicate is an entity/ and its predica-

bility of the Absolute is a relation between it and the Absolute. Thus

the very proposition which was to be non-relational turns out to be,

after all, relational, and to express a relation which current philosophical

language would describe as purely external. For both subject and

predicate are simply what they are— neither is modified by its relation

to the other. To be modified by the relation could only be to have

some other predicate, and hence we should be led into an endless regress.

In short, no relation ever modifies either of its terms. For if it holds

between A and B, then it is between A and B that it holds, and to say

that it modifies A and B is to say that it really holds between different

terms C and D. To say that two terms which are related would be

different if they were not related, is to say something perfectly barren

;

for if they were different, they would be other, and it would not be the

terms in question, but a different pair, that would be unrelated. The

notion that a term can be modified arises from neglect to observe the

eternal self-identity of all terms and' all logical concepts, which alone

form the constituents of propositions*. What is called modification

consists merely in having at one time, but not at another, some specific

relation to some other specific term ; but the term which sometimes has

and sometimes has not the relation in question must be unchanged,

* See Mr G. E. Moore's paper on "The Nature of Judgment," Mind, N.S.,

Vol. VIII. Also xupra, §§ 47, 48, where the view adopted differs somewhat from

Mr Moore's.
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otherwise it would not be that term which had ceased to have the

relation.

The general \objection to Lotze's theory of relations may be thus

summed up. The theory implies that all propositions consist in the

ascription of a predicate to a subject, and that this ascription is not

a relation. The objection is, that the predicate is either something

or nothing. If nothing, it cannot be predicated, and the pretended

proposition collapses. If something, predication expresses a relation,

and a relation of the very kind which the theory was designed to avoid.

Thus in either case the theory stands condemned, and there is no reason

for regarding relations as all reducible to the subject-predicate form.

427. (2) I come now to the second of Lotze's objections to empty
space. This is again of a somewhat abstract logical character, but it

is far easier to dispose of, since it depends upon a view more or less

peculiar to Lotze. There are, it says, three and only three kinds of

being, no one of which belongs to space. These are (a) the being

of things, which consists in activity or the power to produce effects

;

(/3) the validity of a truth ; (7) the being which belongs to the contents

of our presentations.

The answer to this is, that there is only one kind of being, namely,

being simpliciter, and only one kind of existence, namely, existence sim-

pliciter. Both being and existence, I believe, belong to empty space

;

but being alone is relevant to the refutation of the relational theory

—

existence belongs to the question which Lotze confounds with the above,

namely, as to the reality or subjectivity of space. It may be weU first

to explain the distinction of being and existence, and then to return to

Lotze's three kinds of being.

^eing is that which belongs to every conceivable term, to every

possible object of thought—in short to everything that can possibly

occur in any proposition, true or false, and to all such propositions

themselves. Being belongs to whatever can be counted. If A be any

term that can be counted as one, it is plain that A is something, and

therefore that A is. "A is not" must always be either false or meaning-

less. For if A were nothing, it could not be said not to be ; "A is not

"

implies that there is a term A whose being is denied, and hence that

A is. Thus unless " A is not " be an empty sound, it must be false

—

whatever A may be, it certainly is. Numbers, the Homeric gods,

relations, chimeras and four-dimensional spaces all have being, for if

they were not entities of a kind, we could make no propositions about

them. Thus being is a general attribute of everything, and to mention

anything is to show that it is.

Existence, on the contrary, is the prerogative of some only amongst

beings. To exist is to have a specific relation to existence—a relation,

by the way, which existence itself does not have. This shows, inci-

dentally, the weakness of the existential theory of judgment—the theory,

E. 29
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that is, that every proposition is concerned with something that exists.

* For if this theory were true, it would still be true that existence itself

is an entity, and it must be admitted that existence does not exist.

Thus the consideration of existence itself leads to non-existential pro-

positions, and so contradicts the theory. The theory seems, in fact, to

have arisen from neglect of the distinction between existence and being.

Yet this distinction is essential, if we are ever to deny the existence of

anything. For what does not exist must be something, or it would be

meaningless to deny its existence ; and hence we need the concept of

being, as that which belongs even to the non-existent.

Returning now to Lotze's three kinds of being, it is sufficiently

evident that his views involve hopeless confusions.

(a) The being of things, Lotze thinks—following Leibniz here as

elsewhere—consists in activity. Now activity is a highly complex notion,

which Lotze falsely supposed unanalyzable. But at any rate it is plain

that, if there be activity, what is active must both be and exist, in

the senses explained above. It will also be conceded, I imagine, that

existence is conceptually distinguishable from activity. Activity may
be a universal mark of what exists, but can hardly be s)monymous with

existence. Hence Lotze requires the highly disputable proposition that

whatever exists must be active. The true answer to this proposition

lies (1) in disproving the grounds alleged in its favour, (2) in proving

that activity implies the existence of time, which cannot be itself active.

For the moment, however, it may suffice to point out that, since existence

and activity are logically separable, the supposition that something which

is not active exists cannot be logically absurd.

(/8) The validity of a truth—which is Lotze's second kind of being

—

is in reality' no kind of being at aU. The phrase, in the first place, is

ill-chosen—what is meant is the truth of a truth, or rather the truth of

a proposition. Now the truth of a proposition consists in a certain

••elation to truth, and presupposes the being of the proposition. And
as regards being, false propositions are on exactly the same level, since

to be false a proposition must already be. Thus validity is not a kind

of being, but being belongs to valid and invalid propositions alike.

(7) The being which belongs to the contents of our presentations is

a subject upon which there exists everywhere the greatest confusion.

This kind is described by Lotze as " ein VorgesteUtwerden durch uns!"

Lotze presumably holds that the mind is in some sense creative—that

what it intuits acquires, in some sense, an existence which it would not

have if it were not intuited. Some such theory is essential to every

form of Kantianism—to the belief, that is, that propositions which are

beUeved solely because the mind is so made that we cannot but believe

them may yet be true in virtue of our belief. But the whole, theory

rests, if I am not mistaken, upon neglect of the fundamental distinction

between an idea and its object. Misled by neglect of being, people
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have supposed that what does not exist is nothing. Seeing that numbers,

relations, and many other objects of thought, do not exist outside the

mind, they have supposed that the thoughts in which we think of these

entities actually create their own objects. Every one except a philo-

sopher can see the difference between a post and my idea of a post,

but few see the difference between the number 2 and my idea of the

number 2. Yet the distinction is as necessary in one case as in the other.

The argument that 2 is mental requires that 2- should be essentially an
existent. But in that case it would be particular, and it would be

impossible for 2 to be in two minds, or in one mind at two times. Thus
2 must be in any case an entity, which will have being even if it is in no
mind*. But further, there are reasons for denying that 2 is created by
the thought which thinks it. For, in this case, there could never be two
thoughts until some one thought so ; hence what the person so thinking

supposed to be two thoughts would not have been two, and the opinion,

when it did arise, would be erroneous. And applying the same doctrine

to 1; there cannot be one thought until some one thinks so. Hence
Adam's first thought must have been concerned with the number 1

;

for not a single thought could precede this thought. In short, all

knowledge must be recognition, on pain of being mere delusion ; Arith-

metic must be discovered in just the same sense in which Columbus
discovered the West Indies, and we no more create numbers than he

created the Indians. The number 2 is not purely mental, but is an
entity which may be thought of. Whatever can be thought of has

being, and its being is a precondition, not a result, of its being thought

of As regards the existence of an object of thought, however, nothing

can be inferred from the fact of its being thought of, since it certainly

does not exist in the thought which thinks of it. Hence, finally, no
special kind of being belongs to the objects of our presentations as such.

With this conclusion, Lotze's second argument is disposed of

428. (3) Lotze's third argument has been a great favourite, ever

since Leibniz introduced it. All points, we are told, are exactly alike,

and therefore any two must have the same mutual relation as any
other two ; yet their mutual distances must differ, and even, according

to Lotze (though in this, in the sense in which he seems to mean it,

he is mistaken), the relation of every pair must be peculiar to that

pair. This argument will be found to depend again upon the subject-

predicate logic which we have already examined. To be exactly alike

can only mean—as in Leibniz's Identity of Indiscemibles—not to

have different predicates. But when once it is recognised that there

is no essential distinction between subjects and predicates, it is seen that

any two simple terms simply differ immediately—they are two, and
this is the sum-total of their differences. Complex terms, it is true,

have differences which can be revealed by analysis. The constituents

* Cf. Frege, 0-rundgesetze der Arithmetik, p. xviii.

29—2
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of the one may be ^, B, C, D, while those of the other are A, E, F, G.

But the differences of B, C, D from E, F, G are still immediate dif-

ferences, and immediate differences must be the source of all mediate

differences. Indeed it is a sheer logical eiTor to suppose that, if there

were an ultimate distinction between subjects and predicates, subjects

could be distinguished by differences of predicates. For before two

subjects can differ as to predicates, they must already be two ; and

thus the immediate diversity is prior to that obtained from diversity

of predicates. Again, two terms cannot be distinguished in the first

instance by difference of relation to other terms; for difference of relation

presupposes two distinct terms, and cannot therefore be the ground of

their distinctness. Thus if there is to be any diversity at all, there must

be immediate diversity, and this kind belongs to points.

Again, points have also the subsequent kind of diversity consisting in

difference of relation. They differ not only, as Lotze urges, in their

relations to each other, but also in their relations to the objects in them.

Thus they seem to be in the same position as colours, sounds, or smells.

Two colours, or two simple smells, have no intrinsic difference save im-

mediate diversity, but have, like points, different relations to other terms.

Wherein, then, lies the plausibility of the notion that all points are

exactly alike .'' This notion is, I believe, a psychological illusion, due to

the fact that we cannot remember a point, so as to know it when we
meet it again. Among simultaneously presented points it is easy to

distinguish ; but though we are perpetually moving, and thus being

brought among new points, we are quite imable to detect this fact by
our senses, and we recognise places only by the objects they contain.

But this seems to be a mere blindness on our part—there is no difficulty,

so far as I can see, in supposing an immediate difference between points,

as between colours, but a difference which our senses are not constructed

to be aware of. Let us take an analogy : Suppose a man with a very

bad memory for faces : he would be able to know, at any moment,
whether he saw one face or many, but he would not be aware whether

he had ever seen any of the faces before. Thus he might be led to

define people by the rooms in which he saw them, and to suppose it

self-contradictory that new people should come to his lectures, or old

people cease to do so. In the latter point, at least, it will be admitted

by lecturers that he would be mistaken. And as with faces, so with

points—inability to recognise them must be attributed, not to the absence

of individuality, but merely to our incapacity.

429. (4) Lotze's fourth argument is an endeavour to effect a reductio

ad absurdum, by proving that, on the absolute theory, points must inter-

act. The being of every point, Lotze contends, must consist in the

fact that it distinguishes itself from every other, and takes up an

invariable position relatively to every other. Many fallacies are con-

tained in this argument. In the first place, there is what may be called
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the ratiocinator''s fallacy, which consists in supposing that everything

has to be explained by showing that it is something else. Thus the

being of a point, for Lotze, must be found in its difference from other

points, while, as a matter of fact, its being is simply its being. So far

from being explained by something else, the being of a point is pre-

supposed in all other propositions about it, as e.g. in the proposition

that the point differs from other points. Again, the phrase that the

point distinguishes itself from all other points seems to be designed to

imply some kind of self-assertion, as though the point would not be

different unless it chose to differ. This suggestion helps out the con-

clusion, that the relations between points are in reality a form of

interaction. Lotze, believing as he does that activity is essential to

existence, is unable to imagine any other relation between existents

than that of interaction. How hopelessly inapplicable such a view is,

will appear from an analysis of interaction. Interaction is an enormously

complex notion, presupposing a host of other relations, and involving, in

its usual form, the distinction of a thing from its qualities—a distinction

dependent on the subject-predicate logic already criticized. Interaction,

to begin with, is either the simultaneous action of ^ on i? and B on A,

or the action of the present states of J and B conjointly on their states

at the next instant. In either case it implies action. Action generally

may be defined as a causal relation between one or more states of one or

more things at the present instant and one or more states of the same or

different things at a subsequent instant. When there is only one thing

in both cases, the action is immanent if the thing be the same in cause

and effect, transient if the cause be in one thing and the effect in

another. In order to speak of action, rather than causality simply, it

is necessary to suppose things enduring for a certain time, and having

changing states. Thus the notion of interaction presupposes the fol-

lowing relations: (1) diversity between things; (2) diversity between

the states of things ; (3) simultaneity ; (4) succession ; (5) causality

;

(6) the relation of a thing to its states. This notion, involving, as

a moment's inspection shows, six simpler relations in its analysis, is

supposed to be the fundamental relation ! No wonder absurdities are

produced by such a supposition. But the absurdities belong to Lotze,

not to space. To reduce the relations of points to interactions, on the

ground that interaction is the type of all relations, is to display a com-

plete incapacity in the simplest problems of analysis. The relations of

points are not interactions, any more than before and after, or diversity,

or greater and less, are interactions. They are eternal relations of

entities, like the relation of 1 to 2 or of interaction itself to causality.

Points do not assign positions to each other, as though they were each

other's pew-openers : they eternally have the relations whii;h they have,

just like all other entities. The whole argument, indeed, rests upon an

absurd dogma, supported by a false and scholastic logic.
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430. (5) The fifth argument seems to be designed to prove the

Kantian apriority of space. There are, it says, necessary propositions

concerning space, which show that the nature of space is not a " mere

fact.'" We are intended to infer that space is an a priori intuition,

and a psychological reason is given why we cannot imagine holes in

space. The impossibility of holes is apparently what is called a necessity

of thought. This argument again involves much purely logical dis-

cussion. Concerning necessities of thought, the Kantian theory seems

to lead to the curious result that whatever we cannot help believing

must be false. What we cannot help believing, in this case, is something

as to the nature of space, not as to the nature of our minds. The
explanation offered is, that there is no space outside our minds ; whence

it is to be inferred that our unavoidable beliefs about space are all

mistaken. Moreover we only push one stage farther back the region

of " mere fact," for the constitution of our minds remains still a

mere fact.

The theory of necessity urged by Kant, and adopted here by Lotze,

appears radically vicious. Everything is in a sense a mere fact. A
proposition is said to be proved when it is deduced from premisses ; but

the premisses, ultimately, and the rule of inference, have to be simply

assumed. Thus any ultimate premiss is, in a certain sense, a mere fact.

On the other hand, there seems to be no true proposition of which there

is any sense in saying that it might have been false. One might as well

say that redness might have been a taste and not a colour. What is

true, is true ; what is false, is false ; and concerning fundamentals, there

is nothing more to be said. The only logical meaning of necessity seems

to be derived from implication. A proposition is more or less necessary

according as the class of propositions for which it is a premiss is greatef

or smaller*. In this sense the propositions of logic have the greatest

necessity, and those of geometry have a high degree of necessity. But

this sense of necessity yields no valid argument from our inability to

imagine holes in space to the conclusion that there cannot really be any

space at all except in our imaginations.

431. (6) The last argument may be shortly disposed of. If points

be independent entities, Lotze argues—so I interpret him—that we can

imagine a new point coming into existence. This point, then, must

have the appropriate relations to other points. Either it creates the

other points with the relations, or it merely creates the relations to

already existing points. Now it must be allowed that, if there be real

points, it is not self-contradictory to suppose some of them non-existent.

But strictly speaking, no single proposition whatever is self-contradictory.

The nearest approach would be " No proposition is true," since this

in\plies its own truth. But even here, it is not strictly self-contradictory

* Cf. G. E. Moore, "Necessity," Mind, N.S., No. 35.
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to deny the implication. Everywhere we come upon propositions ac-

cepted because they are self-evident, and for no other reason : the l^w

of contradiction itself is such a proposition. The mutual implication of

aU the points of space seems to be another ; the denial of some only

among points is rejected for the same reason as the assertion that such

and such a proposition is both true and false, namely, because both are

obviously untrue. But if, per impossibile, a point previously missing

were to come into existence, it would not create new points, but would

have the appropriate relations to already existing points. The point,

in fact, would have already had being, and as an entity would have

eternally had to other points the same relations as it has when it comes

•.into existence. Thus Lotze's argument on this, as on other points,

depends upon a faulty logic, and is easily met by more correct views

as to the nature of judgment.

I conclude, from the above discussion, that absolute position is not

logically inadmissible, and that a space composed of points is not self-

contradictory. The difficulties which used to be found in the nature

of infinity depended upon adherence to one definite axiom, namely, that

a whole must have more terms than a part; those in the nature of

space, on the other hand, seem to have been derived almost exclusively

from general logic. With a subject-predicate theory of judgment, space

necessarily appears to involve contradictions; but when once the ir-

reducible nature of relational propositions is admitted, all the supposed

difficulties vanish like smoke*. There is no reason, therefore, so far as

I am able to perceive, to deny the ultimate and absolute philosophical

validity of a theory of geometry which regards space as composed of

points, and not as a mere assemblage of relations between non-spatial

terms.

* Cf. my Philosophy of Leibniz, Cambridge, 1900, Chap. x.



CHAPTEK LII.

KANT'S THEORY OF SPACE.

432. In the present chapter I do not propose to undertake a

minute or textual examination of Kant's opinions ; this has been done

elsewhere, and notably in Vaihinger's monumental commentary, so well

that it need not be done over again here. It is only the broad outhnes

of the Kantian doctrine that I wish to discuss. This doctrine, more or

less modified, has held the field for over a century, and has won a nearly

universal acceptance. As my views are, on almost every point of mathe-

matics theory, diametrically opposed to those of Kant, it becomes

necessary explicitly to defend the opinions in which I differ from him*

In this I shall pay special attention to what Kant calls the transcendental

arguments, i.e. those derived from the nature of mathematics.

433. Broadly speaking, the way in which Kant seeks to deduce his

theory of space from mathematics (especially in the Prolegomena) is

as follows. Starting from the question :
" How is pure mathematics

possible?" Kant first points out that all the propositions of mathe-

matics are synthetic. He infers hence that these propositions cannot,

as Leibniz had hoped, be proved by means of a logical calculus ; on the

contrary, they require, he says, certain synthetic a priori propositions,

which may be called axioms, and even then (it would seem) the reasoning

employed in deductions from the axioms is different from that of pure

logic. Now Kant was not willing to admit that knowledge of the

external world could be obtained otherwise than by experience ; hence

he concluded that the propositions of mathematics aU deal with some-

thing subjective, which he calls a form of intuition. Of these forms

there are two, space and time ; time is the source of Arithmetic, space

of Geometry. It is only in the forms of time and space that objects

can be experienced by a subject; and thus pure mathematics must be

applicable to all experience. ^Vhat is essential, from the logical point

* The theory of space which 1 shall discuss will be that of the Critique and the

Prolegomena. Pre-critical works, and the Metaphysische Anfangsgrunde der Natur-

wisgenschafl (which differs from the Critique on this point), will not be considered.
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of view, is, that the a prion intuitions supply methods of reasoning and
inference which formal logic does not admit ; and these methods, we are

told, make the figure (which may of course be merely imagined) essential

to all geometrical proofs. The opinion that time and space are sub-

jective is reinforced by the antinomies, where Kant endeavours to prove

that, if they be anything more than forms of experience, they must be

definitely self-contradictory.

In the above outline I have omitted everything not relevant to the

philosophy of mathematics. The questions of chief importance to us,

as regards the Kantian theory, are two, namely, (1) are the reasonings

in mathematics in any way different from those of Formal Logic ? (2) are

there any contradictions in the notions of time and space .'' If these two
pillars of the Kantian edifice can be pulled down, we shall have success-

fully played the part of Samson towards his disciples.

434. The question of the nature of mathematical reasoning was

obscured in Kant's day by several causes. In the first place, Kant never

doubted for a moment that the propositions of logic are analytic, whereas

he rightly perceived that those of mathematics are synthetic. It has

since appeared that logic is just as synthetic as all other kinds of truth

;

but this is a purely philosophical question, which I shall here ^ass by*;

In the second place, formal logic was, in Kant's day, in a very much
more backward state than at present. It was still possible to hold, as

Kant did, that no great advance had been made since Aristotle, and
that none, therefore, was likely to occur in the future. The syllogism

still remained the one type of formally correct reasoning ; and the syl-

logism was certainly inadequate for mathematics. But now, thanks

mainly to the mathematical logicians, formal logic is enriched by several

forms of reasoning not reducible to the syllogism f, and by means of

these all mathematics can be, and large parts of mathematics actually

have been, developed strictly according to the rules. In the third place,

in Kant's day, mathematics itself was, logically, very inferior to what it

is now. It is perfectly true, for example, that any one who attempts,

without the use of the figure, to deduce Euclid's seventh proposition

from Euclid's axioms, will find the task impossible ; and there probably

did not exist, in the eighteenth century, any single logically correct

piece of mathematical reasoning, that is to say, any reasoning which

correctly deduced its result from the explicit premisses laid down by the

author. Since the correctness of the result seemed indubitable, it was

natural to suppose that mathematical proof was something different

from logical proof. But the fact is, that the whole difference lay in

the fact that mathematical proofs were simply unsound. On closer

examination, it has been found that many of the propositions which,

* See my Philosophy of Leibniz, § 11.

t See Chap, ii supra, esp. § 18.
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to Kant, were undoubted truths, are as a matter of fact demonstrably

false*. A still larger class of propositions—for instance, Euclid's seventh

proposition mentioned above—can be rigidly deduced from certain pre-

misses, but it is quite doubtful whether the premisses themselves are

true or false. Thus the supposed peculiarity of mathematical reasoning

has disappeared.

The belief that the reasonings of Geometry are in any way peculiar

has been, I hope, sufficiently refuted already by the detailed accounts

which have been given of these reasonings, and especially by Chapter xlix.

We have seen that all geometrical results follow, by the mere rules of

logic, from the definitions of the various spaces. And as regards the

opinion that Arithmetic depends upon time, this too, I hope, has been

answered by our accounts of the relation of Arithmetic to Logic. In-

deed, apart from any detail, it seems to be refuted by the simple

observation that time must have parts, and therefore plurality, whole

and part, are prior to any theory of time. All mathematics, we may
say—and in proof of our assertion we have the actual development of

the subject—is deducible from the primitive propositions of formal logic:

these being admitted, no further assumptions are required.

But admitting the reasonings of Geometry to be purely formal, a

Kantian may still maintain that an a priori intuition assures him that

the definition of three-dimensional Euclidean space, alone among the

definitions of possible spaces, is the definition of an existent, or at any

rate of an entity having some relation to existents which other spaces

do not have. This opinion is, strictly speaking, irrelevant to the philo-

sophy of mathematics, since mathematics is throughout indifferent to

the question whether its entities exist. Kant thought that the actual

reasoning of mathematics was different from that of logic ; the suggested

emendation drops this opinion, and maintains merely a new primitive

proposition, to the effect that Euclidean space is that of the actual

world. Thus, although I do not believe in any immediate intuition

guaranteeing any such primitive proposition, I shall not undertake the

refutation of this opinion. It is enough, for my purpose, to have shown

that no such intuition is relevant in any strictly mathematical pro-

position.

435. It remains to discuss the mathematical antinomies. These

are concerned with infinity and continuity, which Kant supposed to be

specially spatio-temporal. We have already seen that this view is mis-

taken, since both occur in pure Arithmetic. We have seen also in

Part V (especially in Chapter xlii) that the supposed antinomies of

infinity and continuity, in their arithmetical form, are soluble; it

remains to prove the same conclusion concerning Kanfs spatio-temporal

* For example, the proposition that every continuous function can be dif-

ferentiated.
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form. The third and fourth antinomies are not relevant here, since they

involve causality ; only the first two, therefore, will be examined.

First Antinomy. Thesis :
" The world has a beginning in time, and

as regards space also is enclosed within limits." This statement is not

concerned with pure time and pure space, but with the things in them.

The proof, such as it is, applies in the first instance to time only, and is

efiected by reductio ad absurdum. " For assume," it says, " that the

world has no beginning in time, then an eternity has passed away

{abgeUmfen) before every given point of time, and consequently an

infinite series of conditions of the things in the world has happened.

But the infinity of a series consists in this, that it can never be com-

pleted by successive synthesis. Consequently an infinite past series of

things in the world (Weltreihe) is impossible, and a beginning of the

world is a necessary condition of its existence, which was first to be

proved."

This argument is difficult to follow, and suggests a covert appeal to

causality and the supposed necessity for a first cause. Neglecting this

aspect of the argument, it would seem that, like most of the arguments

against infinity, it fails to understand the use of the class-concept and

the word any. It is supposed—so it would seem—that the events pre-

ceding a given event ought to be definable by extension, which, if their

number is infinite, is obviously not the case. " Completion by successive

synthesis " seems roughly equivalent to enumeration, and it is true that

enumeration of an infinite series is practically impossible. But the series

may be none the less perfectly definable, as the class of terms having a

specified relation to a specified term. It then remains a question, as

with aU classes, whether the class is finite or infinite; and in the latter

alternative, as we saw in Part V, that there is nothing self-contradictory.

In fact, to elicit a contradiction, it would be necessary to state as an

axiom that every class must have a finite number of terms—an axiom

which can be refuted, and for which there are no grounds. It seems,

however, that previous events are regarded by Kant as causes of later

ones, and that the cause is supposed to be logically prior to the effect.

This, no doubt, is the reason for speaking of conditions, and for confining

the antinomy to events instead of moments. If the cause were logically

prior to the effect, this argument would, I think, be valid ; but we shall

find, in Part VII, that cause and efifect are on the same logical level.

Thus the thesis of the fii-st antinomy, in so far as it concerns time, must

be rejected as false, and the argument concerning space, since it depends

upon that regarding time, falls also.

Antithesis. "The world has no beginning, and no limits in space,

but is infinite both in respect of time and space." The proof of this

proposition assumes the infinity of pure time and space, and argues that

these imply events and things to fill them. This view was rejected, as

regards space, in the preceding chapter, and can be disproved, as regards
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time, by precisely similar arguments ; it is in any case irrelevant to our

contention, since no proof is offered that time and space are themselves

infinite. This, in fact, seems incapable of proof, since it depends upon
the merely self-evident axiom that there is a moment before any given

moment, and a point beyond any given point. But as no converse proof

is valid, we may, in this instance, regard the self-evident as true.

Whether events had a beginning, and whether matter is bounded by
empty space, are questions which, if our philosophy of space and

time be sound, no argument independent of causality can decide.

Second Antinomy. Thesis :
" Every complex substance in the world

consists of simple parts, and nothing exists anywhere except the simple,

or what is composed of simple parts." Here, again, the argument applies

to things in space and time, not to space and time themselves. We
may extend it to space and time, and to all collections, whether existent

or not. It is indeed obvious that the proposition, true or false, is

concerned purely with whole and part, and has no special relation to

space and time. Instead of a complex substance, we might consider the

numbers between 1 and 2, or any other definable collection. And with

this extension, the proof of the proposition must, I think, be admitted

;

only that terms or concepts should be substituted for substances, and

that, instead of the argument that relations between substances are

accidental {zvfdllig), we should content ourselves with saying that

relations imply terms, and complexity implies relations.

Antithesis. " No complex thing in the world consists of simple parts,

and nothing simple exists in it anywhere." The proof of this pro-

position, as of the first antithesis, assumes, what is alone really interest-

ing, to us, the corresponding property of space. "Space," Kant says,

"does not consist of simple parts, but of spaces." This dogma is

regarded as self-evident, though all employment of points shows that

it is not universally accepted. It appears to me that the argument of

the thesis, extended as I have just suggested, applies to pure space as to

any other collection, and demonstrates the existence of simple points

which compose space. As the dogma is not argued, we can only con-

jecture the grounds upon which it is held. The usual argument from

infinite division is probably what influenced Kant. However many parts

we divide a space into, these parts are still spaces, not points. But

however many parts we divide the stretch of ratios between 1 and 2

into, the parts are still stretches, not single numbers. Thus the argument

against points proves that there are no numbers, and will equally prove

that there are no colours or tones. All these absurdities involve a

covert use of the axiom of finitude, i.e. the axiom that, if a space does

consist of points, it must consist of some finite number of points. AVhen

once this is denied, we may admit that no finite number of divisions of

a space will lead to points, while yet holding every space to be com-

posed of points. A finite space is a whole consisting of simple parts,
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but not of any finite number of simple parts. Exactly the same thing

is true of the stretch between 1 and 2. Thus the antinomy is not

specially spatial, and any answer which is applicable in Arithmetic is

applicable here also. The thesis, which is an essential postulate of Logic,

should be accepted, while the antithesis should be rejected.

Thus Kant's antinomies do not specially involve space and time : any

other continuous series, including that of real numbers, raises the same
problems. And what is more, the properties of space and time, to

which Kant appeals, are general properties of such series. Other

antinomies than Kant's

—

e.g. that concerning absolute and relative

position, or concerning the straight line as both a relation and a

collection of points—have been solved in the preceding chapters of

this Part. Kant's antinomies, which involve the difficulties of infinity,

are by far the most serious, and these being essentially arithmetical,

have been already solved in Part V.

436. Before proceeding to matter and motion, let us briefly re-

capitulate the results of this Part. Geometry, we said, is the study

of series having more than one dimension ; and such series arise wherever

we have a series whose terms are series. This subject is important in

pure mathematics, because it gives us new kinds of order and new

methods of generating order. It is important in applied mathematics,

because at least one series of several dimensions exists, namely, space.

We found that the abstract logical method, based upon the logic of

relations, which had served hitherto, was still adequate, and enabled us

to define all the classes of entities which mathematicians call spaces,

and to deduce from the definitions all the propositions of the cor-

responding Geometries. We found that the continuity and infinity

of a space can always be arithmetically defined, and that no new

indefinables occur in Geometry. We saw that the philosophical ob-

jections to points raised by inost philosophers are all capable of being

answered by an amended logic, and that Kant's belief in the peculiarity

of geometrical reasoning, and in the existence of certain antinomies

peculiar to space and time, has been disproved by the modem realization

of Leibniz's universal characteristic. Thus, although we discussed no

problems specially concerned with what actually exists, we incidentally

answered all the arguments usually alleged against the existence of an

absolute space. Since common sense affirms this existence, there seems

therefore no longer any reason for denying it ; and this conclusion, we

shall find, will give us the greatest assistance in the philosophy of

Dynamics.





PART VII.

MATTER AND MOTION.





CHAPTER LIII.

MATTER.

437. The nature of matter, even more than that of space, has

always been regarded as a cardinal problem of philosophy. In the

present work, however, we are not concerned with the question : What
is the nature of the matter that actually exists .'' We are concerned

merely with the analvsis of rational Dynamics considered as a branch

of pure mathematics, which introduces its subject-matter by definition,

not by observation of the actual world. Thus we are not confined to

laws of motion which are empirically verified : non-Newtonian Dynamics,

like non-Euclidean Geometrv, must be as interesting to us as the or-

thodox system. It is true that philosophical arguments against the

reality of matter usually endeavour to raise logical objections to the

notion of matter, and these objections, like the objections to absolute

space, are relevant to a discussion of mathematical principles. But they

need not greatly concern iis at this stage, as they have mostly been dealt

with incidentally in the vindication of space. Those who have agreed

that a space composed of points is possible, will probably agree also

that matter is possible. But the question of possibility is in any case

subsequent to our immediate question, which is : What is matter ? And
here matter is to mean, matter as it occurs in rational Dynamics, quite

independently of all questions as to its actual existence.

438. There is—so we decided in Part VI—no logical implication of

other entities in space. It does not follow, merely becaiase there is

space, that therefore there are things in it. If we are to believe this,

we must believe it on new grounds, or rather on what is called the

evidence of the senses. Thus we are here taking an entirely new step.

Among terms which appear to exist, there are, we may say, four great

classes : (1) instants, (2) points, (3) terms which occupy instants but not

points, (4) terms which occupy both points and instants. It seems to

be the fact that there are no terms which occupy points but not instants.

What is meant by occupying a point or an instant, analysis cannot

explain ; this is a fundamental relation, expressed by in or at, asym-

metrical and intransitive, indefinable and simple. It is evident that

bits of matter are among the terms of (4). Matter or materiality itself,

the class-concept, is among the terms which do not exist, but bits of

R. 30
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matter exist both in time and in space. They do not, however, form

the whole of class (4) : there are, besides, the so-called secondary qualities,

at least colours, which exist in time and space, but are not matter. We
are not called upon to decide as to the subjectivity of secondary qualities,

but at least we must agree that they differ from matter. How, then, is

matter to be defined .''

439. There is a well-worn traditional answer to this question.

Matter, we are told, is a substance, a thing, a subject, of which secondary

qualities are the predicates. But this traditional answer cannot content

us. The wholfe doctrine of subject and predicate, as we have already had

occasion to argue, is radically false, and must be abandoned. It may be

questioned whether, without it, any sense other than that of Chapter iv

can be made of the notion of thing. We are sometimes told that things

are organic unities, composed of many parts expressing the whole and

expressed in the whole. This notion is apt to replace the older notion of

substance, not, I think, to the advantage of precise thinking. The only

kind of unity to which I can attach any precise sense—apart from the unity

of the absolutely simple—is that of a whole composed of parts. But this

form of unity cannot be what is called organic ; for if the parts express the

whole or the other parts, they must be complex, and therefore themselves

contain parts : if the parts have been analyzed as far as possible, they

must be simple terms, incapable of expressing anything except them-

selves. A distinction is made, in support of organic unities, between

conceptual analysis and real division into parts. What is really indi-

visible, we are told, may be conceptually analyzable. This distinction, if

the conceptual analysis be regarded as subjective, seems to me whoUy
inadmissible. All complexity is conceptual in the sense that it is due

to a whole capable of logical analysis, but is real in the sense that it

has no dependence upon the mind, but only upon the nature of the

object. Where the mind can distinguish elements, there must be different

elements to distinguish ; though, alas ! there are often different elements

which the mind does not distinguish. The analysis of a finite space

into points is no more objective than the analysis (say) of causality into

time-sequence -I- ground and consequent, or of equality into sameness of

relation to a given magnitude. In every case of analysis, there is a

whole consisting of parts with relations; it is only the nature of the

parts and the relations which distinguishes different cases. Thus the

notion of an organic whole in the above sense must be attributed to

defective analysis, and cannot be used to explain things.

It is also said that analysis is falsification, that the complex is not

equivalent to the sum of its constituents and is changed when analyzed

into these. In this doctrine, as we saw in Parts I and II, there is a

measure of truth, when what is to be analyzed is a unity. A proposition

has a certain indefinable unity, in virtue of which it is an assertion;

and this is so completely lost by analysis that no enumeration of

constituents will restore it, even though itself be mentioned as a con-
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stituent. There is, it must be confessed, a grave logical difficulty in

this fact, for it is difficult not to believe that a whole must be constituted

by its constituents. For us, however, it is sufficient to observe that

all unities are propositions or prepositional concepts, and that con-

sequently nothing that exists is a unity. If, therefore, it is maintained

that things are unities, we must reply that no things exist.

440. Thus no form of the notion of substance seems applicable

to the definition of matter. The question remains: How and why is

matter distinguished from the so-called secondary qualities ? It cannot,

I think, be distinguished as belonging to a different logical class of

concepts; the only classes appear to be things, predicates, and relations,

and both matter and the secondary qualities belong to the first class.

Nevertheless the world of dynamics is sharply distinguished from that of

the secondary qualities, and the elementally properties of matter are

quite different from those of colours. Let us examine these properties

with a view to definition.

The most fundamental characteristic of matter lies in the nature of

its connection with space and time. Two pieces of matter cannot

occupy the same place at the same moment, and the same piece cannot

occupy two places at the same moment, though it may occupy two
moments at the same place. That is, whatever, at a given moment, has

extension, is not an indivisible piece of matter : division of space always

implies division of any matter occupying the space, but division of time

has no corresponding implication. (These properties are commonly
attributed to matter : I do not wish to assert that they do actually

belong to it.) By these properties, matter is distinguished from what-

ever else is in space. Consider colours for example : these possess

impenetrability, so that no two colours can be in the same place at

the same time, but they -do not possess the other property of matter,

since the same colour may be in many places at once. Other pairs

of qualities, as colour and hardness, may also coexist in one place.

On the view which regarded matter as the subject of which qualities

were attributes, one piece of colour was distinguished from another

by the matter whose attribute it was, even when the two colours were

exactly similar. I should prefer to say that the colour is the same, and

has no direct relation to the matter in the place. The relation is

indirect, and consists in occupation of the same place. (I do not wish to

decide any moot questions as to the secondary qualities, but merely

to show the difference between the common-sense notions of these and of

matter respectively.) Thus impenetrability and its converse seem to

characterize matter sufficiently to distinguish it from whatever else

exists in space. Two pieces of matter cannot occupy the same place

and the same time, and one piece of matter cannot occupy two places

at the same time. But the latter property must be understood of a

simple piece of matter, one which is incapable of analysis or division.

Other properties of matter flow from the nature of motion. Every

30—2
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piece of matter persists through time: if it exists once, it would seem

that it must always exist. It either retains its spatial position, or

changes it continuously, so that its positions at various times form a

continuous series in space. Both these properties require considerable

discussion, which will follow at a later stage. They are purely kine-

matical, i.e. they involve none of the so-called laws of motion, but only

the nature of motion itself.

A controversy has always existed, since early Greek times, as to the

possibility of a vacuum. The question whether there is a vacuum

cannot, I think, be decided on philosophical groimds, i.e. no decision is

possible from the nature of matter or of motion. The answer belongs

properly to Science, and therefore none will be suggested here.

We may sum up the nature of matter as follows. Material unit is a

class-concept, applicable to whatever has the following characteristics

:

(1) A simple material unit occupies a spatial point at any moment;
two units cannot occupy the same point at the same moment, and one

cannot occupy two points at the same moment. (2) Every material

unit persists through time ; its positions in space at any two moments

may be the same or different; but if different, the positions at times

intermediate between the two chosen must form a continuous series.

(3) Two material units differ in the same immediate manner as two

points or two colours ; they agree in having the relation of inclusion in

a class to the general concept matter, or rather to the general concept

material unit. Matter itself seems to be a collective name for all pieces

of matter, as space for all points and time for all instants. It is thus

the peculiar relation to space and time which distinguishes matter from

other qualities, and not any logical difference such as that of subject and

predicate, or substance and attribute.

441. We can now attempt an abstract logical statement of what

rational Dynamics requires its matter to be. In the first place, time

and space may be replaced by a one-dimensional and n-dimensional

series respectively. Next, it is plain that the only relevant function of

a material point is to establish a correlation between all moments

of time and some points of space, and that this correlation is many-one.

So soon as the correlation is given, the actual material point ceases to

have any importance. Thus we may replace a material point by a

many-one relation whose domain is a certain one-dimensional series, and

whose converse domain is contained in a certain three-dimensional series.

To obtain a material universe, so far as kinematical considerations go,

we have only to consider a class of such relations subject to the condition

that the logical product of any two relations of the class is to be null.

This condition insures impenetrability. If we add that the one-dimen-

sional and the three-dimensional series are to be both contmuous, and

that each many-one relation is to define a continuous function, we have

all the kinematical conditions for a system of material particles,

generalized and expressed in terms of logical constants.



CHAPTER LIV.

MOTION.

442. Much has been written concerning the laws of motion, the

possibility of dispensing with Causality in Dynamics, the relativity of

motion, and other kindred .questions. But there are several preliminary

questions, of great difficulty and importance, concerning which little has

been said. Yet these questions, speaking logically, must be settled before

the more complex problems usually discussed can be attacked with any

hope of success. Most of the relevant modem philosophical literature

will illustrate the truth of these remarks : the theories suggested usually

repose on a common dogmatic basis, and can be easily seen to be unsatis-

factory. So long as an author confines himself to demolishing his

opponents, he is irrefutable; when he constructs his own theory, he

exposes himself, as a rule, to a similar demolition by the next author.

Under these circumstances, we must seek some different path, whose

by-ways remain unexplained. " Back to Newton "
is the watchword of

reform in this matter. Newton's scholium to the definitions contains

arguments which are unrefuted, and so far as I know, irrefutable : they

have been before the world two hundred years, and it is time they were

refuted or accepted. Being unequal to the former, I have adopted the

latter alternative.

The concept of motion is logically subsequent to that of occupying

a place at a time, and also to that of change. Motion is the occupation,

by one entity, of a continuous series of places at a continuous series of

times. Change is the difference, in respect of truth or falsehood, between

a proposition concerning an entity and a time T and a proposition con-

cerning the same entity and another time T', provided that the two

propositions differ only by the fact that T occurs in the one where T'

occurs in the other. Change is continuous when the propositions of the

above kind form a continuous series correlated with a continuous series

of moments. Change thus always involves (1) a fixed entity, (2) a three-

cornered relation between this entity, another entity, and some but not all,

of the moments of time. This is its bare minimum. Mere existence at

some but not all moments constitutes change on this definition. Con-
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sider pleasure, for example. This, we know, exists at some moments,

and we may suppose that there are moments when it does, not exist.

Thus there is a relation between pleasure, existence, and some moments,

which does not subsist between pleasure, existence, and other moments.

According to the definition, therefore, pleasure changes in passing from

existence to non-existence or vice versa. This shows that the definition

requires emendation, if it is to accord with usage. Usage does not

permit us to speak of change except where what changes is an existent

throughout, or is at least a class-concept one of whose particulars always

exists. Thus we should say, in the case of pleasure, that my mind is

what changes when the pleasure ceases to exist. On the other hand, if

my pleasure is of different magnitudes at different times, we should say

the pleasure changes its amount, though we agreed in Part III that not

pleasure, but only particular amounts of pleasure, are capable of

existence. Similarly we should say that colour changes, meaning that

there are different colours at different times in some connection ; though

not colour, but only particular shades of colour, can exist. And
generally, where both the class-concept and the particulars are simple,

usage would allow us to say, if a series of particulars exists at a con-

tinuous series of times, that the class-concept changes. Indeed it seems

better to regard this as the only kind of change, and to regard as

unchanging a term which itself exists throughout a given period of time.

But if we are to do this, we must say that wholes consisting of existent

parts do not exist, or else that a whole cannot preserve its identity

if any of its parts be changed. The latter is the correct alternative,

but some subtlety is required to maintain it. Thus people say they

change their minds : they say that the mind changes when pleasure

ceases to exist in it. If this expression is to be correct, the mind must

not be the sum of its constituents. For if it were the sum of all its

constituents throughout time, it would be evidently unchanging ; if it

were the sum of its constituents at one time, it would lose its identity

as soon as a former constituent ceased to exist or a new one began

to exist. Thus if the mind is anything, and if it can change, it must

be something persistent and constant, to which all constituents of

a psychical state have one and the same relation. Personal identity

could be constituted by the persistence of this term, to which all a

person's states (and nothing else) would have a fixed relation. The

change of mind would then consist merely in the fact that these states

are not the same at all times.

Thus we may say that a term changes, when it has a fixed relation to

a collection of other terms, each of which exists at some part of time,

while all do not exist at exactly the same series of moments. Can we

say, with this definition, that the universe changes ? The universe is a

somewhat ambiguous term : it may mean all the things that exist at a

single moment, or all the things that ever have existed or will exist,
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or the common quality of whatever exists. In the two former senses it

cannot change ; in the last, if it be other than existence, it can change.

Existence itself would not be held to change, though different terms exist

at different times; for existence is involved in the notion of change as

commonly employed, which applies only in virtue of the difference

between the things that exist at different times. On the whole, then,

we shall keep nearest to usage if we say that the fixed relation,

mentioned at the beginning of this paragraph, must be that of a simple

class-concept to simple particulars contained under it.

443. The notion of change has been much obscured by the doctrine

of substance, by the distinction between a thing's nature and its external

relations, and by the pre-eminence of subject-predicate propositions. It

has been supposed that a thing could, in some way, be different and yet

the same : that though predicates define a thing, yet it may have different

predicates at different times. Hence the distinction of the essential and

the accidental, and a number of other useless distinctions, which were

(I hope) employed precisely and consciously by the scholastics, but are

used vaguely and unconsciously by the moderns. Change, in this meta-

physical sense, I do not at all admit. The so-called predicates of a

term are mostly derived from relations to other terms ; change is due,

ultimately, to the fact that many terms have relations to some parts of

time which they do not have to others. But every term is eternal,

timeless, and immutable; the relations it may have to parts of time

are equally immutable. It is merely the fact that different terms are

related to different times that makes the difference between what exists

at one time and what exists at another. And though a term may cease

to exist, it cannot cease to be ; it is still an entity, which can be counted

as one, and concerning which some propositions are true and others false.

444. Thus the important point is the relation of terms to the times

they occupy, and to existence. Can a term occupy a time without

existing ? At first sight, one is tempted to say that it can. It is hard

to deny that Waverley's adventures occupied the time of the '45, or

that the stories in the 1,001 Nights occupy the period of Harun al

Raschid. I should not say, with Mr Bradley, that these times are

not parts of real time ; on the contrary, I should give them a definite

position in the Christian Era. But I should say that the events are not

real, in the sense that they never existed. Nevertheless, when a term

exists at a time, there is an ultimate triangular relation, not reducible

to a combination of separate relations to existence and the time re-

spectively. This may be shown as follows. If "A exists now" can

be analyzed into "J is now" and "A exists," where exiMs is used

without any tense, we shall have to hold that "J is then" is logically

possible even if A did not exist then ; for if occupation of a time be

separable from existence, a term may occupy a time at which it does

not exist, even if there are other times when it does exist. But, on the
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theory in question, "^ is then" and "^ exists" constitute the very

meaning of ^^A existed then,'" and therefore, when these two propositions

are true, A must have existed then. This can only be avoided by

denying the possibility of analyzing " A exists now " into a combination

of two-term relations ; and hence non-existential occupation of a time,

if possible at all, is radically different from the existential kind of

occupation.

It should be observed, however, that the above discussion has a

merely philosophical interest, and is strictly irrelevant to our theme.

For existence, being a constant term, need not be mentioned, from a

mathematical point of view, in defining the moments occupied by a term.

From the mathematical point of view, change arises from the fact that

there are propositional functions which are true of some but not all

moments of time, and if these involve existence, that is a further point

with which mathematics as such need not concern itself.

445. Before applying these remarks to motion, we must examine

the difficult idea of occupying a place at a time. Here again we seem

to have an irreducible triangular relation. If there is to be motion, we

must not analyze the relation into occupation of a place and occupation

of a time. For a moving particle occupies many places, and the essence

of motion lies in the fact that they are occupied at different times. If

"^ is here now" were analyzable into "^ is here" and ".i is now," it

would follow that " A is there then " is analyzable into " A is there

"

and " A is then." If all these propositions were independent, we could

combine them differently: we could, from "^ is now" and "^ is there,"

infer " A is there now," which we know to be false, \i A is, a. material

point. The suggested analysis is therefore inadmissible. If we are

determined to avoid a relation of three terms, we may reduce "A is

here now " to " ^'s occupation of this place is now." Thus we have a

relation between this time and a complex concept, ^'s occupation of this

place. But this seems merely to substitute another equivalent proposi-

tion for the one which it professes to explain. But mathematically, the

whole requisite conclusion is that, in relation to a given term which

occupies a place, there is a correlation between a place and a time.

446. We can now consider the nature of motion, which need not,

I think, cause any great difficulty. A simple unit of matter, we agreed,

can only occupy one place at one time. Thus if ^ be a material point,

^' A is here now " excludes " A is there now," but not " A istliere then."

Thus any given moment has a unique relation, not direct, but via A, to

a single place, whose occupation by A is at the given moment ; but there

need not be a unique relation of a given place to a given time, since the

occupation of the place may fill several times. A moment such that

an interval containing the given moment otherwise than as an end-point

can be assigned, at any moment within which interval A is in the same

place, is a moment when A is at rest. A moment when this cannot be



444-447] Motion 473

done is a moment when A is in motion, provided A occupies sonw place

at neighbouring moments on either side. A moment when there are

such intervals, but all have the said moment as an end-term, is one of

transition from rest to motion or vice versa. Motion consists in the fact

that, by the occupation of a place at a time, a correlation is established

between places and times ; when different times, throughout any period

however short, are correlated with different places, there is motion ; when
diflferent times, throughout some period however short, are all correlated

with the same place, there is rest.

We may now proceed to state our doctrine of motion in abstract

logical terms, remembering that material particles are replaced by many-

one relations of all times to some places, or of all terms of a continuous

one-dimensional series t to some terms of a continuous three-dimensional

series *. Motion consists broadly in the correlation of different terras of t

with different terms of *. A relation R which has a single term of * for

its converse domain corresponds to a material particle which is at rest

throughout all time. A relation R which correlates all the terms of t

in a certain interval with a single term of s corresponds to a material

particle which is at rest throughout the interval, with the possible ex-

clusion of its end-terms (if any), which may be terms of transition between

rest and motion. A time of momentary rest is given by any term for

which the differential coefficient of the motion is zero. The motion is

continuous if the correlating relation R defines a continuous function.

It is to be taken as part of the definition of motion that it is continuous,

and that further it has first and second differential coefficients. This is

an entirely new assumption, having no kind of necessity, but serving

merely the purpose of giving a subject akin to rational Dynamics.

447. It is to be observed that, in consequence of the denial of the

infinitesimal, and in consequence of the allied purely technical view of

the derivative of a function, we must entirely reject the notion of a state

of motion. Motion consists merely in the occupation of different places

at different times, subject to continuity as explained in Part V. There

is no transition from place to place, no consecutive moment or con-

secutive position, no such thing as velocity except in the sense of a real

number which is the limit of a certain Set of quotients. The rejection

of velocity and acceleration as physical facts (i.e. as properties belonging

at each instant to a moving point, and not merely real numbers expressing

limits of certain ratios) involves, as we shall see, some difficulties in the

statement of the laws of motion ; but the reform introduced by Weier-

strass in the infinitesimal calculus has rendered this rejection imperative.



CHAPTER LV.

CAUSALITY.

448. A GREAT controversy has existed in recent times, among those

who are interested in the principles of Dynamics, on the question whether

the notion of causaUty occurs in the subject or not. Kirchoff* and

Mach, and, in our own country, Karl Pearson, have upheld the view

that Dynamics is purely descriptive, while those who adhere to the more

traditional opinion maintain that it not merely registers sequences, but

discovers causal connections. This controversy is discussed in a very

interesting manner in Professor James Ward's Naturalism and Agnosti-

cism, in which the descriptive theory is used to prove that Dynamics

cannot give metaphysical truths about the real world. But I do not

find, either in Professor Ward's book or elsewhere, a very clear statement

of the issue between the two schools. The practical mathematical form

of the question arises as regards force, and in this form, there can be no

doubt that the descriptive school are in the right : the notion of force

is one which ought not to be introduced into the principles of Dynamics.

The reasons for this assertion are quite conclusive. Force is the sup-

posed cause of acceleration : many forces are supposed to concur in

producing a resultant acceleration. Now an acceleration, as was pointed

out at the end of the preceding chapter, is a mere mathematical fiction,

a number, not a physical fact ; and a component acceleration is doubly

a fiction, for, like the component of any other vector sum, it is not part

of the resultant, which alone could be supposed to exist. Hence a force,

if it be a cause, is the cause of an effect which never takes place. But

this conclusion does not suffice to show that causality never occurs in

Dynamics. If the descriptive theory were strictly correct, inferences

from what occurs at some times to what occurs at others would be

impossible. Such inferences must involve a relation of implication

between events at diiFerent times, and any such relation is in a general

sense causal. What does appear to be the case is, that the only causality

occurring in Dynamics requires the whole configuration of the material

world as a datum, and does not yield relations of particulars to par-

* Vorlesungen ilber mathematische Physik, Leipzig, 1883, Vorrede.
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ticulars, such as are usually called causal. In this respect, there is

a difficulty in interpreting such seeming causation of particulars by
particulars as appears, for example, in the law of gravitation. On
account of this difficulty, it will be necessary to treat causation at some
length, examining first the meaning to be assigned to the causation of

particulai-s by particulars as commonly undei-stood, then the meaning
of causality which is essential to rational Dynamics, and finally the

difficulty as regards component acceleration.

449. The first subject of the present chapter is the logical nature

of causal propositions. In this subject there is a considerable difficulty,

due to the fact that temporal succession is not a relation between events

directly, but only between moments*. If two events could be successive,

we could regard causation as a relation of succession holding between
two events without regard to the time at which they occur. If "J
precedes B " (where A and B are actual or possible temporal existents)

be a true proposition, involving no reference to any actual part of time,

but only to temporal succession, then we say A caioses B. The law of

causality would then consist in asserting that, among the things which

actually precede a given particular existent B now, there is always one

series of events at successive moments which would necessarily have

preceded B then, just as well as B now ; the temporal relations of B
to the terms of this series may then be abstracted from all particular

times, and asserted per se.
,

Such would have been the account of causality, if we had admitted
that events can be successive. But as we have denied this, we require

a different and more complicated theory. As a preliminary, let us

examine some characteristics of the causal relation.

A causal relation between two events, whatever its nature may be,

certainly involves no reference to constant particular parts of time. It

is impossible that we should have such a proposition as "A causes B now,
but not then." Such a proposition would merely mean that A exists

now but not then, and therefore B will exist at a slightly subsequent

moment, though it did not exist at a time slightly subsequent to the

former time. But the causal relation itself is eternal : if A had existed

at any other time, B would have existed at the subsequent jnoment.

Thus "A causes B" has no reference to constant particular parts of time.

Again, neither A nor B need ever exist, though if A should exist at

any moment, B must exist at a subsequent moment, and vice versa. In

all Dynamics (as I shall prove later) we work with causal connections

;

yet, except when applied to concrete cases, our terms are not existents.

Their non-existence is, in fact, the mark of what is called rational

Dynamics. To take another example : All deliberation and choice, all

decisions as to policies, demand the validity of causal series whose terms

* See my article in Mind, N.S., No. 39, "Is position in time and space absolute

or relative ?
"
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do not and will not exist. For the rational choice depends upon the

construction of two causal series, only one of which can be made to

exist. Unless both were valid, the choice could have no foundation.

The rejected series consists of equally valid causal connections, but the

events connected are not to be found among existents. Thus all states-

manship, and all rational conduct of life, is based upon the method of

the frivolous historical game, in which we discuss what the world would

be if Cleopatra's nose had been half an inch longer.

A causal relation, we have seen, has no essential reference to existence,

as to particular parts of time. But it has, none the less, some kind of

connection with both. If one of its terms is among existents, so is the

other; if one is non-existent, the other is also non-existent. If one

of the terms is at one moment, the other is at a later or earlier moment.

Thus if A causes B, we have also ".(i's existence implies ^'s" and "^'s

being at this moment implies B's being at a subsequent moment."

These two propositions are implied by " A causes B " ; the second, at

least, also implies " A causes S," so that we have here a mutual impli-

cation. Whether the first also implies "^ causes B^ is a difficult

question. Some people would hold that two moments of time, or two

points of space, imply each other's existence ; yet the relation between

these cannot be said to be causal.

It would seem that whatever exists at any part of time has causal

relations. This is not a distinguishing characteristic of what exists,

since we have seen that two non-existent terms may be cause and eflPect.

But the absence of this characteristic distinguishes terms which cannot

exist from,terms which might exist. Excluding space and time, we may
define as a possible existent any term which has a causal relation to some

other term. This definition excludes numbers, and all so-called abstract

ideas. But it admits the entities of rational Dynamics, which might

exist, though we have no reason to suppose that they do.

If we admit (what seems undeniable) that whatever occupies any

given time is both a cause and an effect, we obtain a reason for either

the infinity or the circularity of time, and a proof that, if there are

even,ts at any part of time, there always have been and always will be

events. If, moreover, we admit that a single existent A can be isolated

as the cause of another single existent B, which in turn causes C, then

the world consists of as many independent causal series as there are

existents at any one time. This leads to an absolute Leibnizian

monadism—a view which has always been held to be paradoxical, and

to indicate an error in the theory from which it springs. Let us, then,

return to the meaning of causality, and endeavour to avoid the paradox

of independent causal series.

450. The proposition " A causes B " is, as it stands, incomplete.

The only meaning of which it seems capable is " ^'s existence at any

time implies 5's existence at some future time." It has always been
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customary to suppose that cause and effect must occupy consecutive

moments ; but as time is assumed to be a compact series, there cannot

be any consecutive moments, and the interval between any two moments
will always be finite. Thus in order to obtain a more complete causal

proposition, we must specify the interval between A and B. A causal

connection then asserts that the existence of A at any one time implies

the existence of B after an interval which is independent of the parti-

cular time at which A existed. In other words, we assert :
" There is

an interval t such that ^'s existence at any time t-^ implies ^'s existence

at a time t^ + ti" This requires the measurement of time, and con-

sequently involves either temporal distance, or magnitude of divisibility,

which last we agreed to regard as not a motion of pure mathematics.

Thus if our measure is effected by means of distance, our proposition is

capable of the generalization which is required for a purely logical

statement.

451. A very difficult question remains—^the question which, when
the problem is precisely stated, discriminates most clearly between

monism and monadism. Can the causal relation hold between particular

events, or does it hold only between the whole present state of the universe

and the whole subsequent state.'' Or can we take a middle position,

and regard one group of events now as causally connected with one group

at another time, but not with any other events at that other time .''

I will illustrate this difficulty by the case of gravitating particles.

Let there be three particles A, B, C. We say that B and C both

cause accelerations in A, and we compound these two accelerations

by the parallelogram law. But this composition is not truly addition,

for the components are not parts of the resultant. The resultant is

a new term, as simple a^ its components, and not by any means their

sum. Thus the effects attributed to B and C are never produced, but

a third term different from either is produced. This, we may say, is

produced by B and C together, taken as one whole. But the effect

which they produce as a whole can only be discovered by supposing

each to produce a separate effect : if this were not supposed, it would be

impossible to obtain the two accelerations whose, resultant is the actual

acceleration. Thus we seem to reach an antinomy: the whole has no

effect except what results from the effects of the parts, but the effects of

the parts are non-existent.

» The examination of this difficulty will rudely shake our cherished

prejudices concerning causation. The laws of motion, we shall find,

actually contradict the received view, and demand a quite different and

far more complicated view. In Dynamics, we shall find (1) that the

causal relation holds between events at three times, not at two; (2) that

the whole state of the material universe at two of the three times is

necessary to the statement of a causal relation. In order to provide for

this conclusion, let us re-examine causality in a less conventional spirit.
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452. Causality, generally, is the principle in virtue of which, from

a sufficient number of events at a sufficient number of moments, one or

more events at one or more new moments can be inferred. Let us

suppose, for example, that, by means of the principle, if we are given e^

events at a time t^, e^ at a time t^j.-Xn at a time t^, then we can infer

en+1 events at a time tn+i- If, then, e^+i ^ e„ and if the times t^ are

arbitrary, except that t^+i is after t^, it follows that, from the original

data, we can infer certain events at all future times. For we may

choose gj of the events e^,...en of the events £»+,, and infer e,i_|.i events

at a new time tn+i- Hence by means of our supposed law, inference to

future times is assured. And if, for any value of r, e^+i > ^r? then more

than e„+i events can be inferred at the time t^+i, since there are several

ways of choosing e,. events out of e^+i events. But if for any value of r,

e^j^i>e^, then inference to the past becomes in general impossible. In

order that an unambiguous inference to the past may be possible, it is

necessary that the implication should be reciprocal, i.e. that e^ events at

time t-i should be implied by e^ at t^...en+\ at tn+i- But some inference

to the past is possible without this condition, namely, that at time t^

there were e^ events implying, with the others up to <„, the e^+i events

at time ^„+,. But even this inference soon fails if, for any value of r,

e,.+i > e^, since, after inferring e^ events at time ^j, e^ for the next inference

takes the place of e^+u but is too small to allow the inference. Thus if

unambiguous inference to any part of time is to be possible, it is necessary

and sufficient (1) that any one of the rt + 1 groups of events should be

implied by the other n groups; (2) that e^ = e^+-^ for all values of r.

Since causality demands the possibility of such inference, we may take

these two conditions as satisfied.

Another somewhat complicated point is the following. If e-^ e^. . .e„

cause e^+i, and eo-'^a+u cause e„+2 and so on, we have an independent

causal series, and a return to raonadism, though the monad is now complex,

being at each moment a group of events. But this result is not

necessary. It may happen that only certain groups e-^ e^. . .e„ allow

inference to e„+i, and that e^ e^.-.e^, e^+i is not such a group. Thus

suppose e'l e'^-.-e't simultaneous with ei...en, and causing /„+!. It may
be that e^e^.-.e^ e'„+i and e\ e\. . .e',i e^^rx form the next causal groups,

causing e„+2 and e'„+2 respectively. In this way no independent causal

series will arise, in spite of particular causal sequences. This however

remains a mere possibility, of which, so far as I know, no instance

OCCIU'S.

Do the general remarks on the logical nature of causal propositions

stiU hold good .'' Must we suppose the causal relation to hold directly

between the events e^ e2---en+i5 and merely to imply their temporal

succession .'' There are difficulties in this view. For, having recognized

that consecutive times are impossible, it has become necessary to assume

finite intervals of time between e^ and e^, e^ and e^ etc. Hence the length
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of these intervals must be specified, and thus a mere reference to events,

without regard to temporal position, becomes impossible. All we can

say is, that only relative position is relevant. Given a causal relation

in which the times are t„ this relation will still be valid for times T +t^.

Thus the ultimate statement seems to be: given m events at any

moment, m other events at a moment whose distance from the first

is specified, and so on till we have rt groups of events, then m new events

can be inferred at any new moment whose distance from the first is

specified, provided m and n have suitable values, and the groups of

events be suitably chosen—where, however, the values to be assigned

to m and n may depend upon the nature of the events in question. For

example, in a material system consisting of N particles, we shall have

m = N, w = 2. Here m depends upon the nature of the material system

in question. What circumstances obtain in Psychology, it is as yet

impossible to say, since psychologists have failed to establish any strict

causal laws.

Thus rational Dynamics assume that, in an independent material

system, the configm-ations at any two moments imply the configuration

at any other moment. This statement is capable of translation into

the language of pure mathematics, as we shall see in the next chapter.

But it remains a question what weare to say concerning such causation

of particulars by particulars as appears to be involved in such principles

as the law of gravitation. But this discussion must be postponed until

we have examined the so-called laws of motion.



CHAPTER LVI.

DEFINITION OF A DYNAMICAL WORLD.

453. Befouk proceeding to the laws of motion, which introduce new

complications of which some are difficult to express in terms of pure

mathematics, I wish briefly to define in logical language the dynamical

world as it results from previous chapters.

Let ^ be a one-dimensional continuous series, * a three-dimensional

continuous series, which we will not assume to be Euclidean as yet.

If i2 be a many-one relation whose domain is t and whose converse

domain is contained in s, then R defines a motion of a material particle.

The indestructibility and ingenerability of matter are expressed in the

fact that R has the whole of t for its field. Let us assume further that

R defines a continuous function in s.

In order to define the motions of a material system, it is only

necessary to consider a class of relations having the properties assigned

above to R, and such that the logical product of any two of them

is null. This last condition expresses impenetrability. For it asserts

that no two of our relations relate the same moment to the same point,

i.e. no two particles can be at the same place at the same time. A
set of relations fulfilling these conditions will be called a class of

kinematical motions.

With these conditions, we have all that kinematics requires for the

definition of matter ; and if the descriptive school were whoUy in the

right, our definition would not add the new condition which takes

us from kinematics to kinetics. Nevertheless this condition is essential

to inference from events at one time to events at another, without which

Dynamics would lose its distinctive feature.

454. A generalized form of the statement of causality which we

require is the following : A class of kinetk motions is a class of kine-

matical motions such that, given the relata of the various component

relations at n given times, the relata at all times are determinate. In

ordinary Dynamics we have « = 2, and this assumption may be made

without the loss of any interesting generality. Our assertion then

amounts to saying that there is a certain specific many-one relation
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which holds between any two configurations and their times and any
third time, as referent, and the configuration at the third time as

relatum ; in ordinary language, given two configurations at two given

times, the configuration at any other time is determinate. Formally,

the principle of causality in this form may be stated as follows. If R
be a relation which is any one of our motions, and t any time, let Rt be
the relation holding only between t and the term to which t has the

relation R. If K be the whole class of motions, let Kt be the whole
class of such terms as Rf Then Kt expresses the configuration of the

system at the time t. Now let t' , t" be any other two times. Then K
is a class of kinetic motions if there is a many-one relation S, the same
for any three times, which holds between the class whose terms are

t, t', t", Kt, Kt', as referent and the configuration Kt" as relatum.

The particular causal laws of the particular universe considered are

given when S is given, and vice versa*. We may treat of a whole set

of universes agreeing in having the same S, i.e. the same causal laws,

and differing only in respect of the distribution of matter, i.e. the

class K. This is the ordinary procedure of rational Dynamics, which

commonly defines its S in the way believed to apply to the actual world,

and uses its liberty only to imagine different material systems.

It will be observed that, owing to the rejection of the infinitesimal,

it is necessary to give an integrated form to our general law of causality.

We cannot introduce velocities and accelerations into statements of

general principles, though they become necessary as soon as we descend

to the laws of motion. A large part of Newton's laws, as we shall

see in the next chapter, is contained in the above definition, but the

third law introduces a radical novelty, and gives rise to the difficulty as

to the causation of particulars by particulars, which we have mentioned

but not yet examined.

* In the Dynamics applicable to the actual world, the specification of .S requires

the notion of mass.

R. 31



CHAPTER LVII.

NEWTON'S LAWS OF MOTION.

455. The present chapter will adopt, for the moment, a naive

attitude towards, Newton's Laws. It will not examine whether they

really hold, or whether there are other really ultimate laws applying to

the ether ; its problem is merely to give those laws a meaning.

The first thing to be remembered is—what physicists now-a-days

will scarcely deny—that force is a mathematical fiction, not a physical

entity. The second point is that, in virtue of the philosophy of the

calculus, acceleration is a mere mathematical limit, and does not itself

express a definite state of an accelerated particle. It may be remembered

that, in discussing derivatives, we inquired whether it • was possible to

regard them otherwise than as limits—whether, in fact, they could

be treated as themselves fractions. This we found impossible. In this

conclusion there was nothing new, but its application in Dynamics will

yield much that is distinctly new. It has been customary- to regard

velocity and acceleration as physical facts, and thus to regard the laws

of motion as connecting configuration and acceleration. This, however,

as an ultimate account, is forbidden to us. It becomes necessary to

seek a more integrated form for the laws of motion, and this form, as is

evident, must be one connecting three configurations.

456. The first law of motion is regarded sometimes as a definition

of equal times. This view is radically absurd. In the first place, equal

times have no definition except as times whose magnitude is the same.

In the second place, unless the first law told us when there is no acceler-

ation (which it does not do), it would not enable us to discover what

motions are uniform. In the third place, if it is always significant to

say that a given motion is uniform, there can be no motion by which

uniformity is defined. In the fourth place, science holds that no

motion occurring in nature is uniform ; hence there must be a meaning

of uniformity independent of all actual motions—and this definition is,

the description of equal absolute distances in equal absolute times.

The first law, in Newton's form, asserts that velocity is unchanged in

the absence of causal action from some other piece of matter. As it
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stands, this law is wholly confused. It tells us nothing as to how
we are to discover causal action, or as to the circumstances under which

causal action occurs. But an important meaning may be found for it,

by remembering that velocity is a fiction, and that the only events that

occur in any material system are the various positions of its various

particles. If we then assume (as all the laws of motion tacitly do) that

there is to be some relation between different configurations, the law

tells us that such a relation can only hold between three configurations,

not between two. For two configurations are required for velocity, and

another for change of velocity, which is what the law asserts to be

relevant. Thus in any dynamical system, when the special laws (other

than the laws of motion) which regulate that system are specified, the

configuration at any given time can be inferred when two configura-

tions at two given times are known.

457. The second and third laws introduce the new idea of masfi ;

the third also gives one respect in which acceleration depends upon

configuration.

The second law sis it stands is worthless. For we know nothing

about the impressed force except that it produces change of motion,

and thus the law might seem to be a mere tautology. But by relating

the impressed force to the configuration, an important law may be

discovered, which is as follows. In any material system consisting

of n particles, there are certain constant coefficients (masses) m^, ni, ...m,i

to be associated with these particles respectively; and when these

coefficients are considered as forming part of the configuration, then m^

multiplied by the corresponding acceleration is a certain function of the

momentary configuration ; this is the same function for all times and all

configurations. It is also a function dependent only upon the relative

positions : the same configuration ih another part of space will lead to the

same accelerations. That is, if x,, y^, n, be the coordinates of w,. at time

<, we have .»',=/] (0 ^^c, and

Ml j'l
= F(mi, m.,. Til,, ... tHn, .J'2-J"i, .rg- ,r, ... Xn—^i, ij,— iji, ...).

This involves the assumption that .i\ =/[ (r) is a function having a second

differential coefficient .rj; the use of the equation involves the further

assumption that i?i has a first and second integral. The above, how-

ever, is a very specialized form of the second law ; in its general form,

the function F may involve other coefficients than the masses, and

velocities as well as positions.

458. The third law is very interesting, and allows the analysis

of F into a vector sum of functions each depending only on /», and one

other particle nir and their relative position. It asserts that the

acceleration of m, is made up of component accelerations having special

reference respectively to m., m^ ... m,,; and if these components be /,j,

.31—2
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yis? •Jini it asserts that the acceleration of any other particle ot^ has a

corresponding component
J^,-!

such that

This law leads to the usual properties of the centre of mass. For if

Xi2 be the .r-component oi fi^, we have m^ Xy^ + rrio x^ = 0, and thus

2 S rrtr Xrs = 0.
r s

Again, the special reference of j^a to m^ can only be a reference to the

mass m„, the distance r^i, and the direction of the lihe 12; for these are

the only intrinsic relations of the two particles. It is often specified as

part of the third law that the acceleration is in the direction 12, and

this seems worthy to be included, as specifying the dependence of

fi-i upon the line 12. Thus _/!., is along 12, and

and TW]
<f}

(m^, ?«.,, r^^) = — m^cj) (m.>, 7??i,
—

>\.J,

or, measuring y^2 from 1 towards 2, and ^i from 2 towards 1, both ^^'ill

have the same sign, and

Wi
(f}

{m^, m.,, Tia) = riu </> {nh„ m^, r^^.

Hence m^
<f)

(wj, m^, r^^) is a symmetrical function of m^ and m^, say

Thus Ji2= — '^ (w^i ) ffi' , ?'i2)

)

Thus the resultant acceleration of each particle is analyzable into

components depending only upon itself and one other particle; but

this analysis applies only to the statement in terms of acceleration. No
such analysis is possible when we compare, not configuration and accelera-

tion, but three configurations. At any moment, though the change of

distance and straight line 12 is not due to Wj and m,, alone, yet the

acceleration of rrii consists of components each of which is the same

it would be if there were only one other particle in the field. But

where a finite time is in question this is no longer the case. The total

change in the position of Wj during a time t is not what it would have

been if m^ had first operated alone for a time t, then ni^ alone and so on.

Thus we cannot speak of any total effect of m^ or of Wj; and since

momentary effects are fictions, there are really no independent effects of

separate particles on mj. The statement by means of accelerations is

to be regarded as a mathematical device, not as though there really

were an actual acceleration which is caused in one particle by one other.

And thus we escape the very grave difficulty \\hich we should otherwise
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have to meet, namely, that the component accelerations, not being
(in general) parts of the resultant acceleration, would not be actual

even if we allowed that acceleration is an actual fact.

459. The first two laws are completely contained in the following

statement : In any independent system; the configuration at any time is

a function of that time and of the configurations at two given times,

provided we include in configuration the masses of the various particles

composing the system. The third law adds the further fact that the

configuration can be analyzed into distances and straight lines ; the

function of the configuration which represents the acceleration of any
particle is a vector-sum of functions containing only one distance, one
straight line, and two masses each—moreover, if we accept the addition

to the third law spoken of above, each of these functions is a vector

along the join of the two particles which enter into it. But for this

law, it might happen that the acceleration of m^ would involve the area

of the triangle 1 2 3, or the volume of the tetrahedron 12 3 4; and but
for this law, we should not have the usual properties of the centre of mass.

The three laws together, as now expounded, give the greater part of

the law of gravitation ; this law merely tells us that, so far as gravitation

is concerned, the above function

It should be remembered that nothing is known, from the laws of motion,

as to the form of i/r, and that we might have e.g. -«|r = if rj, > R. If

1^ had this form, provided R were small compared to sensible distances,

the world would seem as though there were no action at a distance.

It is to be observed that the first two laws, according to the above

analysis, merely state the general form of the law of causality explained

in Chapter lv. From this it results that we shall be able, with the

assumptions commonly made as to continuity and the existence of first

and second derivatives, to determine a motion completely when the

configuration and velocities at a given instant are given ; and in par-

ticular, these data will enable us to determine the acceleration at the

given instant. The third law and the law of gravitation together add

the further properties that the momentary accelerations depend only

upon the momentary configuration, not upon the momentary velocities,

and that the resultant acceleration of any particle is the vector-sum

of components each dependent only on the masses and distances of the

given particle and one other.

The question whether Newtonian Dynamics applies in such problems

as those of the motion of the ether is an interesting and important one

;

but in so far as it deals with the truth or falsehood of the laws of motion

in relation to the actual world, it is for us irrelevant. For us, as pure

mathematicians, the laws of motion and the law of gravitation are Hot

properly laws at all, but parts of the definition of a certain kind of matter.
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460. By the abo^e account the view of causaUty which has usually

satisfied philosophers is contravened in two respects, (1) in that the

relation embodied in a causal law holds between three events, not

between two
; (2) in that the causal law has the unity of a formula or

function, i.e. of a constant relation, not merely that derived from

repetition of the same" cause. The fii'st of these is necessitated by modern

theories of the infinitesimal calculus ; the second was always necessary,

at least since Newton's time. Both demand some elucidation.

(1) The whole essence of dynamical causation is contained in the

following equation : if ^i , t^ be specified times, C] , C, the corresponding

configurations of any self-contained system, and C the configuration

at any time t, then

{^ ^ 1* y\^i^ Cj , C-2, r.j, tj

(a compressed form for as many equations as C has coordinates). The
form of F depends only upon the number of particles and the dynamical

laws of the system, not upon the choice of Cj or C.^. The cause must

be taken to be the two configurations Ci and Ca, and the interval ^2~^i
may be any we please. Further t may fall between t^ and f.,, or before

both. The effect is any single one of the coordinates of the system

at time t, or any collection of these coordinates ; but it seems better to

regard each coordinate as one effect, since each is given in one equation.

Thus the language of cause and effect has to be greatly strained to

meet the case, and seems scarcely worth preserving. The cause is two

states of the whole system, at times as far apart as we please ; the

effect is one coordinate of the system at any time before, after, or

between the times in the cause. Nothing could well be more unlike the

views which it has pleased philosophers to advocate. Thus on the

whole it is not worth while preserving the word cause : it is enough
to say, what is far less misleading, that any two configurations allow

us to infer any other.

(2) The causal law regulating any system is contained in the

form of F. The law does not assert that one event A will always

be followed by another B ; it A he the configuration of the system at

one time, nothing can be infeiTed as to that at another ; the configura-

tion might recur without a recurrence of any configuration that formerly

followed it. If A be two configurations whose distance in time is given,

then indeed our causal law does tell us what configurations will follow

them, and if A recurred, so would its consequences. But if this were

all that our causal law told us, it would afford cold comfort, since no

configuration ever does actually recur. Moreover, we should need an

infinite number of causal laws to meet the requirements of a system

which has successively an infinite number of configurations. What our

law does is to assert that an infinite class of effects have each the same

functional relation to one of an infinite class of causes ; and this is done

by means of a formula. One formula connects ainj three configurations,
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and but for this fact continuous motions would not be amenable to causal

laws, which consist in specifications of the formula.

461. I have spoken hitherto of independent systems of n particles.

It remains to examine whether any difficulties are introduced by the fact

that, in the dynamical world, there are no independent systems short of

the material universe. We have seen that no effect can be ascribed,

within a material system, to any one part of the system ; the whole

system is necessary for any inference as to what will happen to one

particle. The only eff"ect traditionally attributed to the action of a

single particle on another is a component acceleration ; but (a) this

is not part of the resultant acceleration, (/3) the resultant acceleration

itself is not an event, or a physical fact, but a mere mathematical limit.

Hence nothing can be attributed to particular particles. But it may be

objected that we cannot know the whole material universe, and that,

since no effect is attributable to any part as such, we cannot consequently

know anything about the effect of the whole. For example, in calculating

the motions of planets, we neglect the fixed stars ; we pretend that the

solar system is the whole universe. By what right, then, do we assume

that the effects of this feigned universe in any way resemble those of the

actual universe ?

The answer to this question is found in the law of gravitation. We
can show that, if we compare the motions of a particle in a number
of universes differing only as regards the matter at a greater distance

than B, while much within this distance all of them contain much
matter, then the motion of the particle in question relatively to the

matter well within the distance R will be approximately the same in

all the universes*. This is possible because, by the third law, a kind

, of fictitious analysis into partial effects is possible. Thus we can ap-

proximately calculate the effect of a universe of which part only is

known. We must not say that the effect of the fixed stai-s is insensible,

for we assume that they have np effect per se ; we must say that the

effect of a universe in which they exist differs little from that of one in

which they do not exist ; and this we are able to prove in the case of

gravitation. Speaking broadly, we require (recurring to our previous

function ^) that, if e be any number, however small, there should be

some distance R such that, recurring to our previous function ^, if -r

denote differentiation in any direction, then

When this condition is satisfied, the difference between the relative

accelerations of two particles within a certain region, which results from

assuming different distributions of matter at a distance greater than R
from a certain point within the region, will have an assignable upper

limit ; and hence there is an upper limit to the error incurred by pre-

* This is true only of relative, not of absolute motions.
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tending that there is no matter outside the space of radius R. Hence

approximation becomes possible in spite of the fact that the whole

universe is involved in the exact determination of any motion.

The above leads to two observations of some interest. First, no law

which does not satisfy the above inequality is capable of being practically

applied or tested. The assumption that gravity varies as the direct

distance, for example, could only be tested in a finite universe. And in

ail phenomena, such as those of electricity, we must assume, where the

total effect is a sum or integral, or is calculated by means of a sum or

integral, that the portion contributed to relative motions by large values

of r is small. Secondly, the denial of any partial effect of a part is

quite necessary if we are to apply our formulae to an infinite universe

in the form of integrals. For an integral is not really an infinite sum,

but the limit of a finite sum. Thus if each particle had a partial effect,

the total effect of an infinite number of particles would not be an in-

tegral. But though an integral cannot represent an infinite sum, there

seems no reason whatever why it should not represent the effect of a

universe which has an infinite number of parts. If there are finite

volumes containing an infinite number of particles, the notion of mass

must be modified so as to apply no longer to single particles, but to

infinite classes of particles. The density at a point will then be not the

mass of that point, but the differential coefficient, at the point, of the

mass with respect to the volume.

It should be observed that the impossibility of an independent system

short of the whole universe does not result from the laws of motion, but
from the special laws, such as that of gravitation, which thje laws of

motion lead us to seek.

462. The laws of motion, to conclude, have no vestige of self-

evidence ; on the contrary, they contradict the form of causality which

has usually been considered evident. Whether they are ultimately valid,

or are merely approximate generalizations, must remain doubtful ; the

more so as, in all their usual forms, they assume the truth of the axiom
of parallels, of which we have so far no evidence. The laws of motion,

like the axiom of parallels in regard to space, may be viewed either as

parts of a definition of a class of possible material universes, or as empiri-

cally verified assertions concerning the actual material universe. But in

no way can they be taken as a priori truths necessarily applicable to any
possible material world. The a priori truths involved in Dynamics are

only those of logic : as a system of deductive reasoning, Dynamics re-

quires nothing further, while as a science of what exists, it requires

experiment and observation. Those who have admitted a similar

conclusion in Geometry are not likely to question it here ; but it is

important to establish separately every instance of the principle that

knowledge as to what exists is never derivable from general philosophical

considerations, but is always and wholly empirical.
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ABSOLUTE AND RELATIVE MOTION.

463. Ix the justly famous scholium to the definitions, Newton has

stated, with admirable precision, the doctrine of absolute space, time,

and motion. Not being a skilled philosopher, he was unable to give

grounds for his views, except an empirical argument derived from actual

Dynamics. Leibniz, with an unrivalled philosophical equipment, con-

troverted Newton's position in his letters against Clarke*; and the

victory, in the opinion of subsequent philosophers, rested wholly with

Leibniz. Although it would seem that Kant, in the Transcendental

Aesthetic, inclines to absolute position in space, yet in the Metaphysisclie

Anfangsgrunde der Naturwissenschaft he quite definitely adopts the

relational view. Not only other philosophers, but also men of science,

have been nearly unanimous in rejecting absolute motion, the latter on

the ground that it is not capable of being observed, and cannot therefore

be a datum in an empirical study.

But a great difficulty has always remained as regards the argument

from absolute rotation, adduced by Newton himself. This argument, in

spite of a definite assertion that all motion is relative, is accepted and

endorsed by Clerk Maxwellf. It has been revived and emphasized by

Heymansj, combated by Mach§, Karl Pearson||, and many others, and

made part of the basis of a general attack on Dynamics in Professor

Ward's Naturalism and Agnosticism. Let us first state the argument in

vaiious forms, and then examine some of the attempts to reply to it.

For us, since absolute time and space have been admitted, there is no

need to avoid absolute motion, and indeed no possibility of doing so.

But if absolute motion is in any case unavoidable, this affords a new

argument in favour of the justice of our logic, which, unlike the logic

current among philosophers, admits and even urges its possibility.

* PhU. WerJee, ed. Gerhardt, V^ol. vii.

t Matter and Motion, Art. cv. Contrast Art. xxx.

I Die Gesetxe and Elemente des wissenschaftlichen Denkeits, Leydeii, 1890.

§ Die Mechanik in ihrer Entwickelung, Leipzig, 1883. (Translated, London, 1902.)

II
Grammar of Science, London, 1892. (2nd edition, 1900.)
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464. If a bucket containing water is rotated, Newton observes, the

water will become concave and mount up the sides of the bucket. But

if the bucket be left at rest in a rotating vessel, the water will remain

level in spite of the relative rotation. Thus absolute rotation is involved

in the phenomenon in question. Similarly, from Foucault's pendulum

and other similar experiments, the rotation of the earth can be demon-

strated, and could be demonstrated if there were no heavenly bodies in

relation to which the rotation becomes sensible. But this requires us to

admit that the earth's rotation is absolute. Simpler instances may be

given, such as the case of two gravitating particles. If the motion dealt

with in Dynamics were wholly relative, these particles, if they constituted

the whole univei-se, could only move in the line joining them, and would

therefore ultimately fall into one another. But Dynamics teaches that,

if they have initially a relative velocity not in the line joining them,

they will describe conies about their common centre of gravity as focus.

And generally, if acceleration be expressed in polars, there are terms

in the acceleration which, instead of containing several differentials,

contain squares of angular velocities : these terms require absolute

angular velocity, and are inexplicable so long as relative motion is

adhered to.

If the law of gravitation be regarded as universal, the pojnt may be

stated as follows. The laws of motion require to be stated by reference

to what have been called kinetic axes : these are in reality axes having

no absolute acceleration and no absolute rotation. It is asserted, for

example, when the third law is combined with the notion of mass, that,

if m, ni be the masses of two particles between which there is a force,

the component accelerations of the two particles due to this force are

in the ratio m^ : rrii. But this will only be true if the accelerations

are measured relatively to axes which themselves have no acceleration.

We cannot here introduce the centre of mass, for, according to the

principle that dynamical facts must be, or be derived from, observable

data, the masses, and therefore the centre of mass, must be obtained

from the acceleration, and not vice versa. Hence any dynamical motion,

if it is to obey the laws of motion, must be referred to axes which are

not subject to any forces. But, if the law of gravitation be accepted,

no material axes will satisfy this condition. Hence we shall have to

take spatial axes, and motions relative to these are of course absolute

motions.

465. In order to avoid this conclusion, C. Neumann* assumes as an

essential part of the laws of motion the existence, somewhere, of an

absolutely rigid "Body Alpha,'" by reference to which all motions are

to be estimated. This suggestion misses the essence of the discussion,

which is (or should be) as to the logical nieaning of dynamical pro-

* Die Gulilei-Newtonsche The.orie, Leipzig, 1870, p. I").
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positions, not as to the way in which they are discovered. It seems

sufficiently evident that, if it is necessary to invent a fixed body, purely

hypothetical and serving no pui-pose except to be fixed, the reason i.s

that what is really relevant is a fixed place, and that the body occupying

it is irrelevant. It is true that Neumann does not incur the vicious

circle which would be involved in saying that the Body Alpha is fixed,

while all motions are relative to it ; he asserts that it is rigid, but

rightly avoids any statement as to its rest or motion, which, in his

theory, would be wholly unmeaning. Nevertheless, it seems evident

that the question whether one body is at rest or in motion must have

as good a meaning as the same question concerning any other body

;

and this seems sufficient to condemn Neumann's suggested escape from

absolute motion.

466. A development of Neumann's views is undertaken by Streintz*,

who refers motions to what he calls "fundamental bodies " and " fun-

damental axes." These are defined as bodies or axes which do not rotate

and are independent of all outside influences. Streintz follows Kanfs

Anfangsgrilnde in regarding it as possible to admit absolute rotation

while denying absolute translation. This is a view which I shall discuss

shortly, and which, as we shall see, though fatal to what is desired of

the relational theory, is yet logically tenable, though Streintz does not

show that it is so. But apart from this question, two objections may
be made to his theory. (1) If motion means motion relative to fun-

damental bodies (and if not, their introduction is no gain from a logical

point of view), then the law of gravitation becomes strictly meaningless

if taken to be universal—a view which seems impossible to defend. The

theory requires that there should be matter not subject to any forces,

and this is denied by the law of gravitation. The point is not so much

that universal gravitation must be true, as that it must be significant

—

whether true or false is an irrelevant question. (2) We have already

seen that absolute accelerations are required even as regards translations,

and that the failure to perceive this is due to overlooking the fact that

the centre of mass is not a piece of matter, but a spatial point which is

only determined by means of accelerations.

467. Somewhat similar remarks apply to Mr W. H. Macaulay's article

on " Newton's Theory of Kineticsf." Mr Macaulay asserts that the true

way to state Newton's theory (omitting points irrelevant to the present

issue) is as follows :
" Axes of reference can be so chosen, and the

assignment of masses so arranged, that a certain decomposition of

the rates of change of momenta, relative to the axes, of all the particles

of the universe is possible, namely one in which the components occur

* IHe physikalischen Grundlagen der Mechanik, Leipzig, 1883 ; see esp. pp. 24, 2.5.

+ Bulletin of the American Math. Soc, Vol. in. (1896-7). For a later statement

of Mr Macaulay's views, see Art. Motion, Lawn of, in the new volumes of the Enmjcl.

Brit. (Vol. xxxi).
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in pairs ; the members of each pair belonging to two different particles,

and being opposite in direction, in the line joining the particles, and

equal in magnitude'" (p. 368). Here again, a purely logical point

remains. The above statement appears unobjectionable, but it does

not show that absolute motion is unnecessary. The axes cannot be

material, for all matter is or may be subject to forces, and therefore

unsuitable for our purpose ; they (cannot even be defined by any fixed

geometrical relation to matter. Thus our axes will really be spatial;

and if there were no absolute space, the suggested axes could not exist.

For apart from absolute space, any axes would have to be material or

nothing. The axes can, in a sense, be defined by relation to matter, but

not by a constant geometrical relation ; and when we ask what property

is changed by motion relative to such axes, the only possible answer is

that the absolute position has changed. Thus absolute space and absolute

motion are not avoided by ^Ir Macaulay''s statement of Newton's laws.

468. If absolute rotation alone were in question, it would be possible,

by abandoning all that recommends the relational theory to philosophers

and men of science, to keep its logical essence intact, ^^^lat is aimed

at is, to state the principles of Dynamics in terms of sensible entities.

Among these v,e find the metrical properties of space, but not straight

lines and planes. Collinearity and coplanaritv may be included, but if

a set of coUinear material points change their straight line, there is no

sensible intrinsic change. Hence all advocates of the relational theory,

when they are thorough, endeavoui', like Leibniz*, to deduce the straight

line from distance. For this there is also the reason that the field of a

given distance is all space, whereas the field of the generating relation

of a sti-aight line is only that straight line, whence the latter, but not

the former, makes an intrinsic distinction among the points of space,

which the relational theory seeks to avoid. Still, we might regard

straight lines as relations between material points, and absolute rotation

would then appear as change in a relation between material points,

which is logically compatible with a relational theory of space. We
should have to admit, however, that the straight line was not a sensible

property of two particles between which it was a relation ; and in any

case, the necessity for absolute translational accelerations remains fatal

to any relational theor\- of motion.

469. Mach+ has a very curious argument by which he attempts to

refute the grounds in favour of absolute rotation. He remarks that, in

the actual world, the earth rotates relating to the fixed stai"s, and that

the universe is not given t\vice over in different shapes, but only once,

and as we find it. Hence any argument that the rotation of the earth

could be inferred if there were no heavenly bodies is futile. This ar-

gument contains the verv essence of empiricism, in a sense in which

* See my article "Recent A\'ork on Leibniz,' in Mind, 190-3.

t LHe Mechanik in ihrer Entivickelung, 1st edition, p. 211!.
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empiricism is radically opposed to the philosophy advocated in the

present work*. The logical basis of the argument is that all proposi-

tions are essentially concerned with actual existents, not with entities

which may or may not exist. For if, as has been held throughout our

previous discussions, the whole dynamical world with its laws can be

considered without regard to existence, then it can be no part of the

meaning of these laws to Jissert that the matter to which they apply

exists, and therefore they can be applied to univei-ses which do not exist.

Apart from general arguments, it is evident that the laws are so applied

throughout rational Dynamics, and that, in all exact calculations, the

distribution of matter which is assumed is not that of the actual world.

It seems impossible to deny significance to such calculations ; and yet,

if they have significance, if they contain propositions at all, whether true

or false, then it can be no necessary part of their meaning to assert the

existence of the matter to which they are applied. This being so, the

universe is given, as an entity, not only twice, but as many times as

there are possible distributions of matter, and Machos argument falls to

the ground. The point is important, as illustrating a respect in which

the philosophy here advocated is to be reckoned with idealism and

not with empiricism, in spite of the contention that what exists can

only be known empirically.

Thus, to conclude : Absolute motion is essential to Dynamics, and

involves absolute space. This fact, which is a difficulty in current philo-

- sophies, is for us a powerful confirmation of the logic upon which our

discussions have been based.

* Cf. Art. "Nativism ' in the Dictionary of Philosophy and Psychology, edited by

Baldwin, Vol. n, 1902.



CHAPTER LIX.

HERTZTS DYNAMICS.

470. We have seen that Newton's Laws are wholly lacking in self-

evidence—so much so, indeed, that they contradict the law of causation

in a form which has usually been held to be indubitable. We have seen

also that these laws are specially suggestive of the law of gravitation.

In order to eliminate what, in elementary Dynamics, is specially New-

tonian, from what is really essential to the subject, we shall do well to

examine some attempts to re-state the fundamental principles in a fonn

more applicable to such sciences as Electricity. For this purpose the

most suitable work seems to be that of Hertz*
The fundamental principles of Hertz''s theory are so simple and so

admirable that it seems worth while to expound them briefly. His

object, like that of most recent writers, is to construct a system in

which there ai-e only three fundamental concepts, space, time, and mass.

The elimination of a foui-th concept, such as force or energy, though

evidently demanded by theory, is difficult to carry out mathematically.

Hertz seems, however, to have overcome the difficulty in a satisfactory

manner. There are, in his system, three stages in the specification of

a motion. In the first stage, only the relations of space and time are

considered: this stage is purelv kinematical. Matter appeai-s here merely

a.s a means of establishing, through the motion of a particle, a one-one

correlation between a series of points and a series of instants. At this

stage a collection of n particles has S« coordinates, all so far independent:

the motions which result when all are regarded as independent are all

the thinkable motions of the system. But befor'e coming to kinetics.

Hertz introduces an intermediate stage. ^\'ithout introducing time,

there are in any free material system direct relations between space

and mass, which form the geometrical connections of the spteni.

(These may introduce time in the sense of involving velocities, but

they are independent of time in the sense that they are expres.sed at

all times by the same equations, and that these do not contain the time

explicitly.) Those among thinkable motions which satisfy the equations

* Principien der Meckanik, Leipzig, 1894.
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of connection are called possible motions. The connections among the

parts of a system are assumed further to be continuous in a certain

well-defined sense (p. 89). It then follows that they can be expressed

by homogeneous linear differential equations of the fii-st order among
the coordinates. But now a further principle is needed to discriminate

among possible motions, and here Hertz introduces his only law of

motion, which is as follows :

" Every free system persists in its state of rest or of uniform motion
in a straightest path."

This law requires some explanation. In the first place, when there are

in a system unequal particles, each is split into a number of particles

proportional to its mass. By this means all particles become equal.

If now there are 7i particles, their 3n coordinates are regarded as the

coordinates of a point in space of 3)i dimensions. The above law then

asserts that, in a free system, the velocitv of this representative point is

constant, and its path from a given point to another neighbouring point

in a given direction is that one, among the possible paths through these

two points, which has the smallest curvature. Such a path is called a

natural path, and motion in it is called a natural motion.

471. It will be seen that this system, though far simpler and more
philosophical in form than Newton''s, does not difi^er very greatly in

regard to the problems discussed in the preceding chapter. We still

have, what we found to be the essence of the law of inertia, the necessity

for three configurations in order to obtain a causal relation. This broad

fact must reappear in every system at all resembling ordinary Dynamics,

and is exhibited in the necessity for differential equations of the second

order, which per\'ades all Physics. But there is one very material dif-

ference between Hertz's system and Newton's—a difference which, as

Heilz points out, renders an experimental decision between the two

at least theoretically possible. The special laws, other than the laws

of motion, which regulate any particular system, are for Newton laws

concerning mutual accelerations, such as gravitation itself. For Hertz,

these special laws are all contained in the geometrical connections of

the system, and are expressed in equations involving only velocities

[v. p. 48). This is a considerable simplification, and is shown by Heiiz

to be more conformable to phenomena in all departments except where

gravitation is concerned. It is also a great simplification to have only

one law of motion, instead of Newton's three. But for the philosopher,

so long as this law involves second differentials (which are introduced

through the curvature), it is a comparatively minor matter that the

special laws of special systems should be of the first order.

The definition of mass as number of particles, it should be observed,

is a mere mathematical device, and is not, I think, regarded by Hertz as

anything more (f. p. 54). Not only must we allow the possibility of

incommensurable masses, but even if this difficulty were overcome, it
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would still remain significant to assert that all our ultimate particles

were equal. Mass would therefore still be a variety of magnitude, only

that all particles would happen to be of the same magnitude as regards

their mass. This would not effect any theoretical simplification, and we
shall do well, therefore, to retain mass as an intensive quantity of which

a certain magnitude belongs to a certain particle, withoub any implica-

tion that the particle is divisible. There is, in fact, no valid ground for

denying ultimately different masses to difl^erent particles. The whole

question is, indeed, purely empirical, and the philosopher should, in this

matter, accept passively what the physicist finds requisite.

With regard to ether and its relations to matter, a similar remark

seems to be applicable. Ether is, of course, matter in the philosophical

sense ; but beyond this the present state of Science will scarcely permit

us to go. It should be observed, however, that in Electricity, as else-

where, our equations are of the second order, thus indicating that the

law of inertia, as interpreted in the preceding chapter, still holds good.

This broad fact seems, indeed, to be the chief result, for philosophy, of

our discussion of dynamical principles.

472. Thus to sum up, we have two principal results

:

(1) In any independent system, there is a relation between the

configurations at three given times, which is such that, given the con-

figurations at two of the times, the configuration at the third time is

determinate.

(2) There is no independent system in the actual world except the

whole material universe ; but if two universes which have the same causal

laws as the actual universe differ only in regard to the matter at a great

distance from a given region, the relative motions within this region will

be approximately the same in the two universes

—

i.e. an upper limit can

be found for the difference between the two sets of motions.

These two principles apply equally to the Dynamics of Newton and

to that of Hertz. When these are abandoned, other principles will give

a science having but little resemblance to received Dynamics.

473. One general principle, which is commonly stated as vital to

Dynamics, deserves at least a passing mention. This is the principle

that the cause and effect are equal. Owing to pre-occupation with

quantity and ignorance of symbolic logic, it appears to have not been

perceived that this statement is equivalent to the assertion that the

implication between cause and effect is mutual. All equations, at bottom,

are logical equations, i.e. mutual implications ; quantitative equality

between variables, such as cause and effect, involves a mutual formal

implication. Thus the principle in question can only be maintained

if cause and effect be placed on the same logical level, which, with the

interpretation we were compelled to give to causality, it is no longer

possible to do. Nevertheless, when one state of the universe is given,

any two others have a mutual implication ; and this is the source of
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the various laws of conservation which pervade Dynamics, and give the
truth underlying the supposed equality of cause and effect.

474. We may now review the whole course of the arguments con-

tained in the present work. In Part I, an attempt is made to analyze

the nature of deduction, and of the logical concepts involved in it. Of
these, the most puzzling is the notion of class, and from the contra-

diction discussed in Chapter x (though this is perhaps soluble by the

doctrine of types*), it appeared that a tenable theory as to the nature

of classes is very hard to obtain. In subsequent Parts, it was shown
that existing pure mathematics (including Geometry and Rational
Dynamics) can be derived wholly from the indefinables and indemon-
strables of Part I. In this process, two points are specially important

:

the definitions and the existence-theorems. A definition is always either

the definition of a class, or the definition of the single member of a unit

class : this is a necessary result of the plain fact that a definition can
only be effected by assigning a property of the object or objects to

be defined, i.e. by stating a propositional function which they are to

satisfy. A kind of grammar controls definitions, making it impossible

e.g. to define Euclidean Space, but possible to define the class of Euclidean

spaces. And wherever the principle of abstraction is employed, i.e. where
the object to be defined is obtained from a transitive symmetrical re-

lation, some class of classes will always be the object required. When
symbolic expressions are used, the requirements of what may be called

grammar become evident, and it is seen that the logical type of the

entity defined is in no way optional.

The existence-theorems of mathematics

—

i.e. the proofs that the

various classes defined are not null—are almost all obtained from

Arithmetic. It may be well here to collect the more important of

them. The existence of zero is derived from the fact that the null-

class is a member of it ; the existence of 1 from the fact that zero is a

unit-class (for the null-class is its only member). Hence, from the fact

that, if n be a finite number, n 4- 1 is the number of numbers from to «
(both inclusive), the existence-theorem follows for all finite numbers.

Hence, from the class of the finite cardinal numbers themselves, follows

the existence of a„, the smallest of the infinite cardinal numbers ; and
from the series of finite cardinals in order of magnitude follows the

existence of w, the smallest of infinite ordinals. From the definition

of the rational numbers and of their order of magnitude :^llows the

existence of r;, the type of endless compact denumerable series ; thence,

from the segments of the series of rationals, the existence of the real

numbers, and of 6, the type of continuous series. The terms of the

series of well-ordered types are proved to exist from the two facts

:

(1) that the number of well-ordered types from to a is a -|- 1, (2) that

* See Appendix B.

R. 32
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if M be a class of well-ordered types having no maximum, the series of

all types not greater than every u is itself of a type greater than every u.

From the existence of 6, by the definition of complex numbers (Chapter

xLiv), we prove the existence of the class of Euclidean spaces of any

number of dimensions ; thence, by the process of Chapter xlvi, we prove

the existence of the class of projective spaces, and thence, by removing

the points outside a closed quadric, we prove the existence of the class

of non-Euclidean descriptive (hyperbolic) spaces. By the methods of

Chapter xlviii, we prove the existence of spaces with various metrical

properties. Lastly, by correlating some of the points of a space with

all the terms of a continuous series in the ways explained in Chapter lvi,

we prove the existence of the class of dynamical worlds. Throughout

this process, no entities are employed but such as are definable in terms

of the fundamental logical constants. Thus the chain of definitions

and existence-theorems is complete, and the purely logical nature of

mathematics is established throughout.
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APPENDIX A.

THE LOGICAL AND ARITHMETICAL DOCTRINES OF FREGE.

475. The work of Frege, which appears to be far less known than it

deserves, contains many of the doctrines set forth in Parts I and II of the

present work, and where it differs from the views which I have advocated,

the differences demand discussion. Frege's work abounds in subtle distinc-

tions, and avoids all the usual fallacies which beset writers on Logic. His

symbolism, though unfortunately so cumbrous as to be very difficult to

employ in practice, is based upon an analysis of logical notions much more

profound than Peano's, and is philosophically very superior to its more

convenient rival. In what follows, I shall try briefly to expound Frege's

theories on the most important points, and to explain my grounds for

differing where I do differ. But the points of disagreement are very few

and slight compared to those of agreement. They all result from difference

on three points: (1) Frege does not think that there is a contradiction in the

notion of concepts which cannot be made logical subjects (see § 49 supra)
;

(2) he thinks that, if a term a occurs in a proposition, the proposition can

always be analysed into a and an assertion about a (see Chapter vii)

;

(3) he is not aware of the contradiction discussed in Chapter x. These are

very fundamental matters, and it will be well here to discuss them afresh,

since the previous discussion was written in almost complete ignorance of

Frege's work.

Frege is compelled, as I have been, to employ common words in technical

senses which depart more or less from usage. As his departures are frequently

different from mine, a difficulty arises as regards the translation of his terms.

Some of these, to avoid confusion, I shall leave untranslated, since every

English equivalent that I can think of has been already employed by me in a

slightly different sense.

The principal heads under which Frege's doctrines may be discussed are

the following: (1) meaning and indication; (2) truth-values and judgment;

(3) Begriff and Gegenstand; (4) classes; (5) implication and symbolic logic;

(6) the definition of integers and the principle of abstraction; (7) mathe-

matical induction and the theory of progressions. I shall deal successively

with these topics.
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476. Meaning and indication. The distinction between meaning (Sinn)

and indication (Bedeutung)* is roughly, though not exactly, equivalent to

my distinction between a concept as such and what the concept denotes

(§ 96). Frege did not possess this distinction in the first two of the works

under consideration (the Begriffsschrift and the Grundlagen der Arithraetik)

;

it appears first in BuG. (cf. p. 198)', and is specially dealt with in SuB.

Before making the distinction, he thought that identity has to do with the

names of objects (Bs. p. 13) :
" A is identical with B" means, he says, that

the sign A and the sign B have the same signification (Bs. p. 15)—a definition

which, verbally at least, suffers from circulariiy. But later he explains

identity in much the same way as it was explained in § 64. " Identity," he

says, " calls for reflection owing to questions which attach to it and are not

quite easy to answer. I^ it a relation? A relation between Gegenstande?

or between names or signs of Gegenstande?" (SuB. p. 25). We must

distinguish, he says, the meaning, in which is contained the way of being

given, from what is indicated (from the Bedeutung). Thus "the evening star"

and "the morning star" have the same indication, but not the same meaning.

A word ordinarily stands for its indication; if we wish to speak of its

meaning, we must use inverted commas or some such device (pp. 27-8). The

indication of a proper name is the object which it indicates ; the presentation

which goes with it is quite subjective ; between the two lies the meaning,

which is not subjective and yet is not the object (p. 30). A proper name

expresses its meaning, and indicates its indication (p. 31).

This theory of indication is more sweeping and general than mine, as

appears from the fact that every proper name is supposed to have the two

sides. It seems to me that only such proper names as are derived from con-

cepts by means of the can be said to have meaning, and that such words as

John merely indicate without meaning. If one allows, as I do, that concepts

can be objects and have proper names, it seems fairly evident that their

proper names, as a rule, will indicate them without having any distinct

meaning ; but the opposite view, though it leads to an endless regress, does

not appear to be logically impossible. The further discussion of this point

must be postponed until we come to Frege's theory of Begrifie.

477. Truth-values atid Judgment. The problem to be discussed under

this head is the same as the one raised in § 52 f, concerning the difference

between asserted and unasserted propositions. But Frege's position on this

question is more subtle than mine, and involves a more radical analysis of

judgment. His Begriffsschrift, owing to the absence of the distinction

between meaning and indication, has a simpler theory than his later works.

I shall therefore omit it from the discussions.

There are, we are told (Gg. p. x), three elements in judgment : (1) the

recognition of truth, (2) the Gedanke, (3) the truth-value (Wahrlieitswerth).

* I do not translate Bedeutung by denotation, because this word has a technical

meaning different from Frege's, and also because bedeuten, for him, is not quite the same

as denoting for me.

t This is the logical side of the problem of Annahmen, raised by Meinong in his able

work on the subject, Leipzig, 1902. The logical, though not the psychological, part of

Meinong's work appears to have been completely anticipated by Frege.
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Here the Gedanke is what I have called an unasserted proposition—or rather,

what I called by this name covers both the Gedanke alone and the Gedanke

together with its truth-value. It will be well to have names for these two

distinct notions ; I shall call the Gedanke alone a propositiorial concept ; the

truth-value of a Gedanke I shall call an assumption*. Formally at least, an

assumption does not require that its content should be a prepositional

concept: whatever x may be, "the truth of x" is a definite notion. This

means the true if x is true, and if x is false or not a proposition it means the

false (FuB. p. 21). In like manner, according to Frege, there is "the

falsehood of x"; these are not assertions and negations of propositions, but

only assertions of truth or of falsity, i.e. negation belongs to what is asserted,

and is not the opposite of assertion!. Thus we have first a propositional

concept, next its truth or falsity as the case may be, and finally the assertion

of its truth or falsity. Thus in a hypothetical judgment, we have a relation,

not of two judgments, but of two propositional concepts (SuB. p. 43).

This theory is connected in a very curious way with the theory of

meaning and indication. It is held that every assumption indicates the

true or the false (which are called truth-values), while it means the

corresponding propositional concept. The assumption "2^=4" indicates

the true, we are told, just as "2^" indicates 4 J (FuB. p. 13; SuB. p. 32).

In a dependent clause, or where a name occurs (such as Odysseus) which

indicates nothing, a sentence may have no indication. But when a sentence

has a truth-value, this is its indication. Thus every assertive sentence

(Behauptungssatz) is a proper name, which indicates the true or the false

(SuB. pp. 32—4; Gg. p. 7). The sign of judgment (Urtheilstrich) does

not combine with other signs to denote an object ; a judgment indicates

nothing, but asserts something. Frege has a special symbol for judgment,

which is something distinct from and additional to the truth-value of a

propositional concept (Gg. pp. 9— 10).

478. There are some difiiculties in the above theory which it will be

well to discuss. In the first place, it seems doubtful whether the introduction

of truth-\alues marks any real analysis. If we consider, say, " Caesar died,"

it would seem that what is asserted is the propositional concept "the death

of Caesar," not " the truth of the death of Caesar." This latter seems to be

merely another propositional concept, asserted in " the death of Caesar is

true," which is not, I think, the same proposition as " Caesar died." There

is great difficulty in avoiding psychological elements here, and it would

seem that Frege has allowed them to intrude in describing judgment as

the recognition of truth (Gg. p. x). The difficulty is due to the fact that

there is a psychological sense of assertion, which is what is lacking to

Meinong's Annahmen, and that this does not run parallel with the logical

sense. Psychologically, any proposition, whether true or false, may be

merely thought of, or may be actually asserted : but for this possibility,

error would be impossible. But logically, true propositions only are asserted,

* Frege, like Meinong, calls this an Ami(f,hine : FuB. p. 21.

t Gg. p. 10. Cf. also Bs. p. 4.

X When a term which indicates is itself to be spoken of, as opposed to what it indicates,

Frege uses inverted commas. Cf. § 56.
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though they may occur in an unasserted form as parts of other propositions.

In "jo implies q," either or both of the propositions p, q may be true, yet

each, in this proposition, is unasserted in a logical, and not merely in a

psychological, sense. Thus assertion has a definite place among logical

notions, though there is a psychological notion of assertion to which nothing

logical corresponds. But assertion does not seem to be a constituent of

an asserted proposition, although it is, in some sense, contained in an

asserted proposition. If ^ is a proposition, " p'& truth" is a concept which

has being even if p is false, and thus "p'a truth'' is not the same as p
asserted. Thus no concept can be found which is equivalent to p asserted,

and therefore assertion is not a constituent in p asserted. Yet assertion

is not a term to which p, when asserted, has an external relation ; for any

such relation would need to be itself asserted in order to yield what we
want. Also a difficulty arises owing to the apparent fact, which may
however be doubted, that an asserted proposition can never be part of

another proposition : thus, if this be a fact, where any statement is made
about p asserted, it is not really about p asserted, but only about the

assertion of p. This difficulty becomes serious in the case of Frege's one

and only principle of inference (Bs. p. 9): "p is true and /(implies q;
therefore q is true*." Here it is quite essential that there should be three

actual assertions, otherwise the assertion of propositions deduced from

asserted premisses would be impossible
;
yet the three assertion? together

form one proposition, whose unity is shown by the word therefore, without

which q would not have been deduced, but would have been asserted as a

fresh premiss.

It is also almost impossible, at least to me, to divorce assertion from

truth, as Frege does. An asserted proposition, it would seem, must be

the same as a true proposition. We may allow that negation belongs to

the content of a proposition (Bs. p. 4), and regard every assertion as

asserting something to be true. We shall then correlate p and not-^ as

unasserted propositions, and regard "pis false" as meaning "not-p is true."

But to divorce assertion from truth seems only possible by taking assertion

in a psychological sense.

479. Frege's theory that assumptions are proper names for the true

or the false, as the case may be, appears to me also untenable. Direct

inspection seems to sliow that the relation of a proposition to the true

or the false is quite different from that of (say), "the present King of

England " to Edward VII. Moreover, if Frege's view were correct on this

point, we should have to hold that in an asserted proposition it is the

meaning, not the indication, that is asserted, for otherwise, all asserted

propositions would assert the very same thing, namely the true, (for false

propositions are not asserted). Thus asserted propositions would not differ

from one another in any way, but would be all strictly and simply identical.

Asserted propositions have no indication (FuB. p. 21), and can only differ,

if at all, in some way analogous to meaning. Thus the meaning of the

unasserted proposition together with its truth-value must be what is asserted,

* Cf. supra, § 18,' (4) and § 38.
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if the meaning simply is rejected. But there seems no purpose in introduc-

ing the truth-value here : it seems quite sufficient to say that an asserted

proposition is one whose meaning is true, and that to say the meaning is

true is the same as to say the meaning is asserted. We might then conclude

that true propositions, even when they occur as parts of others, are always

and essentially asserted, while false propositions are always unasserted, thus

escaping the difficulty about therefore discussed above. It may also be objected

to Frege that " the true " and " the false," as opposed to truth and falsehood,

do not denote single definite things, but rather the classes of true and false

propositions respectively. This objection, however, would be met by his

theory of ranges, which correspond approximately to my classes ; these,

he says, are things, and the true and the false are ranges [v. inf.).

480. Begriff and Gegenatand. Functions. I come now to a point in

which Frege's work is very important, and requires careful examination.

His use of the word Begriff does not correspond exactly to any notion in

my vocabulary, though it comes very near to the notion of an assertion as

defined in § 43, and discussed in Chapter vii. On the other hand, his

Gegenstand seems to correspond exactly to what I have called a thing (§ 48).

I shall therefore translate Gegenstand by thing. The meaning of proper

name seems to be the same for him as for me, but he regards the range of

proper names as confined to things, because they alone, in his opinion, can

be logical subjects.

Frege's theory of functions and Begriffe is set forth simply in FuB. and

defended against the criticisms of Kerry* in BuG. He regards functions

—

and in this I agree with him—as more fundamental than predicates and

relations ; but he adopts concerning functions the theory of subject and

assertion which we discussed and rejected in Chapter vii. The acceptance of

this view gives a simplicity to his exposition which I have been unable to

attain ; but I do not find anything in his work to persuade me of the

legitimacy of his analysis.

An arithmetical function, e.g. 2x^ + x, does not denote, Frege says, the

result of an arithmetical operation, for that is merely a number, which would

be nothing new (FuB. p. 5). The essence of a function is what is left when

the X is taken away, i.e.] in the above instance, 2
( f + { ). The argument

X does not belong .to the function, but the two together make a whole

(ib. p. 6). A function may be a proposition for every value of the variable

;

its value is then always a truth-value (p. 13). A proposition may be divided

into two parts, as "Caesar" and "conquered Gaul." The former Frege calls

the argument, the latter the function. Any thing whatever is a possible

argument for a function (p. 17). (This division of propositions corresponds

exactly to my subject and assertion as explained in § 43, but Frege does not

restrict this method of analysis as I do in Chapter vii.) A thing is anything

which is not a function, i.e. whose expression leaves no empty place. The

two following accounts of the nature of a function are quoted from the

earliest and one of the latest of Frege's works respectively.

(1) "If in an expression, whose content need not be prepositional

* Vierteljahrschritt fur wias. Phil., vol. xi, pp. 249-307.
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(beurtheilbar), a simple or composite sign occurs in one or more places, and

we regard it as replaceable, in one or more of these places, by something else,

but by the same everywhere, then we call the part of the expression which

remains invariable in this process a Junction, and the replaceable part we
call its argument" (Bs. p. 16).

(2) " If from a proper name we exclude a proper name, which is part

or the whole of the first, in some or all of the places where it occurs, but in

such a way that these places remain recognizable as to be filled by one and

the same arbitrary proper name (as argument positions of the first kind),

I call what we thereby obtain the name of a function of the first order with

one argument. Such a name, together with a proper name which fills the

argument-places, forms a proper name " (Gg. p. 44).

The latter definition may become plainer by the help of some examples;

" The present king of England " is, according to Frege, a proper name, and
" England " is a proper name which is part of it. Thus here we may regard

England as the argument, and " the present king of " as function. Thus we

are led to " the present king of x." This expression will always have a

meaning, but it will not have an indication except for those values of x

which at present are monarchies. The above function is not prepositional.

But "Caesar conquered Gaul " leads to " x conquered Gaul " ; here we have a

prepositional function. There is here a minor point to be noticed : the asserted

proposition is not a proper name, but only the assumption is a proper name
for the true or the false {v, supra) ; thus it is not " Caesar conqiiered Gaul

"

as asserted, but only the corresponding assumption, that is involved in the

genesis of a propositional function. This is indeed sufficiently obvious, since

we wish X to be able to be any thing in " x conquered Gaul," whereas there

is no such asserted proposition except when x did actuallj'^ perform this feat.

Again consider " Socrates is a man implies Socrates is a mortal." This

(unasserted) is, according to Frege, a proper name for the true. By varying

the proper name " Socrates,' we can obtain three propositional functions,

namely "a; is a man implies Socrates is a mortal," "Socrates is a man implies

a; is a mortal," " a; is a man implies aj is a mortal." Of these the first and

third are true for all values of x, the second is true when and only when x is

a mortal.

By suppressing in like manner a proper name in the name of a function

of the first order with one argument, we obtain the name of a function of the

first order with two arguments (Gg. p. 44). Thus e.g. starting from " 1 < 2,"

we get first "a; < 2," which is the name of a function of the first order with

one argument, and thence "x<y,'' which is the name of a function of the

first order with two arguments. By .suppressing a function in like manner,

Frege says, we obtain the name of a function of the second order (Gg. p. 44).

Thus e.g. the assertion of existence in the mathematical sense is a function

of the second order :
" There is at least one value of x satisfying <j)X '' is not a

function of x, but may be regarded as a function of <^. Here <^ must on no

account be a thing, but may be any function. Thus this proposition,

considered as a function of <^, is quite different from functions of the first

order, by the fact that the possible arguments are different. Thus given any

proposition, say /(a), we may consider either /(a;), the function of the first
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order resulting from varying a and keeping/ constant, or 0(a), the function
of the second order got by varying/and keeping a fixed ; or, finally, we may
consider <^ (a;), in which both / and a are separately varied. (It is to be
observed that such notions as <^ (a), in which we consider any proposition
concerning a, are involved in the identity of indiscernibles as stated in § 43.)
Functions of the first order with two variables, Frege points out, express
relations (Bs. p. 17) ; the referent and the relatum are both subjects in a
relational proposition (Gl. p. 82). Relations, just as much as predicates,

belong, Frege rightly says, to pure logic {ib. p. 83).

481. The word Begriff is used by Frege to mean nearly the same thing

9,§ propositional function {e.g. FuB. p. 28) * ; when there are two variables,

tjie Begriff is a relation. A thing is anything not a function, i.e. anything
i#hose expression leaves no empty place {ib. p. 18). To Frege's theory of the

'essential cleavage between things and Begriffe, Kerry objects {loc. cit. p. 272 ff.)

that Begriffe also can occur as subjects. To this Frege makes two replies.

In the first place, it is, he says, an important distinction that some terms can
only occur as subjects, while others can occur also as concepts, even if Begriffe

can also occur as subjects (BuG. p. 195). In this I agree with him entirely

;

the distinction is the one employed in §§ 48, 49. But he goes on to a second

point which appears to me mistaken. We can, he says, have a concept

falling under a higher one (as Socrates falls under man, he means, not as

Greek falls under man) ; but in such cases, it is not the concept itself, but its

name, that is in question (BuG. p. 195). "The concept horse," he says, is

not a concept, but a thing ; the peculiar use is indicated by inverted commas
{ib. p. 196). But a few pages later he makes statements which seem to

involve a difierent view. A concept, he says, is essentially predicative even
when something is asserted of it : an assertion which can be made of a

concept does not fit an object. When a thing is said to fall under a concept,

land when a concept is said to fall under a higher concept, the two relations

involved, though similar, are not the same {ib. p. 201). It is difficult to me
io reconcile these remarks with those of p. 195; but I shall return to this

point shortly.

Frege recognizes the unity of a proposition : of the parts of a propositional

concept, he says, not all can be complete, but one at least must be incomplete

{ungesdttigt) or predicative, otherwise the parts would not cohere {ib. p. 205).

He recognizes also, though he does not discuss, the oddities resulting from

any and every and such words : thus he remarks that every positive integer

is the sum of four squares, but "every positive integer" is not a possible

value of X in "x is the sum of four squares." The meaning of "every

positive integer," he says, depends upon the context (Bs. p. 17)—a remark

which is doubtless correct, but does not exhaust the subject. Self-contra-

dictory notions are admitted as concepts : F is a, concept if " a falls under

the concept F" is a proposition whatever thing a may be (Gl. p. 87). A
concept is the indication of a predicate ; a thing is what can nev^er be

* "We have here a function whose value is always a truth-value. Sueh functions

with one argument we have called Begriffe ; with two, we call them relations." Cf. Gl.

pp. 82-3.
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the whole indication of a predicate, though it may be that of a subject

(BuG. p. 198).

482. The above theory, in spite of close resemblance, differs in some

important points from the theory set forth in Part I above. Before

examining the differences, I shall briefly recapitulate my own theory.

Given any propositional concept, or any nnity (see § 136), which may
in the limit be simple, its constituents are in general of two sorts : (1) those

which may be replaced by anything else whatever without destroying the

unity of the whole; (2) those which have not this property. Thus in "the

death of Caesar," anything else may be substituted for Caesar, but a proper

name must not be substituted for death, and hardly anything can be

substituted for of. Of the unity in question, the former class of constituents

will be called terms, the latter coiicepts. We have then, in regard to any

unity, to consider the following objects :

(1) What remains of the said unity when one of its terms is simply

removed, or, if the term occurs several times, when it is removed from

one or more of the places in which it occurs, or, if the unity has more than

one term, when two or more of its terms are removed from some or all of the

places where they occur. This is what Frege calls a function.

(2) The class of unities differing from the said unity, if at all, only by

the fact that one of its terms has been replaced, in one or more of the places

where it occurs, by some other terms, or by the fact that two or more of its

terms have been thus replaced by other terms.

(3) Any member of the class (2).

(4) The assertion that every member of the class (2) is true.

(5) The assertion that some member of the class (2) is true.

(6) The relation of a member of the class (2) to the value which the

variable has in that member.

The fundamental case is that where our unity is a propositional concept.

From this is derived the usual mathematical notion of function, which might

at first sight seem simpler. If /{x) is not a propositional function, its value

for a given value of x (/(x) being assumed to be one-valued) is the term y
satisfying the propositional function y =f{x), i.e. satisfying, for the given

value of X, some relational proposition ; this relational proposition is involved

in the definition of f{x), and some such propositional function is required

in the definition of any function which is not propositional.

As regards (1), confining ourselves to one variable, it was maintained

in Chapter vii that, except where the proposition from which we start

is predicative or else asserts a fixed relation to a fixed term, there is no

such entity : the analysis into argument and assertion cannot be performed

in the manner required. Thus what Frege calls a, function, if our conclusion

was sound, is in general a non-entity. Another point of difference from

Frege, in which, however, he appears to be in the right, lies in the fact

that -I place no restriction upon the variation of the variable, whereas

Frege, according to the nature of the function, confines the variable to

things, functions of the first order with one variable, functions of the first

order with two variables, functions of the second order with one variable,

and so on. There are thus for him an infinite number of different kinds
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of variability. This arises from the fact that he regards as distinct the

concept occurring as such and the concept occurring as term, which I (§ 49)

have identified. For me, the functions, which cannot be values of variables

in functions of the first order, are non-entities and false abstractions.

Instead of the rump of a proposition considered in (1), I substitute (2)

or (3) or (4) according to circumstances. The ground for regarding the

analysis into argument and function as not always possible is that, when
one term is removed from a propositional concept, the remainder is apt

to have no sort of unity, but to fall apart into a set of disjointed terms.

Thus what is fundamental in such a case is (2). Frege's general definition

of a function, which is intended to cover also functions which are not

propositional, may be shown to be inadequate by considering what may
be called the identical function, i.e. a; as a function of x. If we follow

Frege's advice, and remove x in hopes of having the function left, we find

that nothing is left at all
;
yet nothing is not the meaning of the identical

function. Frege wishes to have the empty places where the argument is

to be inserted indicated in some way ; thus he says that in 23? + x the

function is 2( Y + { ). But here his requirement that the two empty
places are to be filled by the same letter cannot be indicated : there is no

way of distinguishing what we mean from the function involved in 2a? + y.

The fact seems to be that we want the notion of any term of a certain

class, and that this is what our empty places really stand for. The function,

as a single entity, is the relation (6) above ; we can then consider any

relatum of this relation, or the assertion of all or some of the relata, and

any relation can be expressed in terms of the corresponding referent, as

" Socrates is a man " is expressed in terms of Socrates. But the usual

formal apparatus of the calculus of relations cannot be employed, because

it presupposes propositional functions. We may say that a propositional

function is a many-one relation which has all terms for the class of its

referents, and has its relata contained among propositions* : or, if we
prefer, we may call the class of relata of such a relation a propositional

function. But the air- of formal definition about these statements is

fallacious, since propositional functions are presupposed in defining the

class of referents and relata of a relation.

Thus by means of propositional functions, propositions are collected into

classes. (These classes are not mutually exclusive.) But we may also collect

them into classes by the terms which occur in them : all propositions con-

taining a given term a will form a class. In this way we obtain propositions

concerning variable propositional functions. In the notation <^ {x), the <^ is

essentially variable ; if we wish it not to be so, we must take some particular

proposition about x, such as "x is a class" or "a; implies x." Thus <^ (a')

essentially contains two variables. But, if we have decided that <^ is not a

separable entity, we cannot regard <^ itself as the second variable. It will

be necessary to take as our variable either the relation of a; to ^ (a;), or else

the class of propositions ^ (y) for different values of y but for constant <^.

This does not matter formally, but it is important for logic to be clear as to

* Not all relations having this property are propositional functions ; v. inf.
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the meaning of what appears as the variation of ^. We obtain in this way
another division of propositions into classes, but again these classes are not

mutually exclusive.

In the above manner, it would seem, we can make use of prepositional

functions without having to introduce the objects which Frege calls functions.

It is to be observed, however, that the kind of relation by which proposi-

tional functions are defined is less general than the class of many-one relations

having their domain coextensive with terms and their converse domain con-

tained in propositions. For in this way any proposition would, for a suitable

relation, be relatum to any term, whereas the term which is referent must,

for a prepositional function, be a constituent of the proposition which is its

relatum*. This point illustrates again that the class of relations involved

is fundamental and incapable of definition. But it would seem also to show

that Frege's different kinds of variability are unavoidable, for in considering

(say) 4> (2), where 4> is variable, the variable would have to have as its range

the above class of relations, which we may call propositioned relatio^is.

Otherwise, ^ (2) is not a proposition, and is indeed meaningless, for we
are dealing with an indefinable, which demands that (2) should be the

relatum of 2 with regard to some prepositional relation. The contradiction

discussed in Chapter x seenis to show that some mystery lurks in the varia-

tion of prepositional functions ; but for the present, Frege's theory of different

kinds of variables must, I think, be accepted.

483. It remains to discuss afresh the question whether concepts can be

made into logical subjects without change of meaning. Frege's theory, that

when this appears to be dene it is really the name of the concept that is

involved, will not, I think, bear investigation. In the first place, the mere

assertion " not the concept, but its name, is involved," has already made the

concept a subject. In the second place, it seems always legitimate to ask

:

"what is it that is named by this name?" If there were no answer, the

name could not be a name ; but if there is an answer, the concept, as opposed

to its name, can be made a subject. (Frege, it may be observed, does not

seem to have clearly disentangled the logical and linguistic elements of

naming : the former depend upon denoting, and have, I think, a much more
restricted range than Frege allows them.) It is true that we found difficulties

in the doctrine that everything can be a logical subject : as regards "any a,"

for example, and also as regards plurals. But in the case of " any a," there

is ambiguity, which introduces a new class of problems ; and as regards

plurals, there are prepositions in which the many behave like a logical

subject in every respect except that they are many subjects and not one

only (see §§ 127, 128). In the case of concepts, however, no such escapes

are possible. The case of asserted propositions is difficult, but is met, I think,

by holding that an asserted proposition is merely a true proposition, and is

therefore asserted wherever it occurs, even when grammar would lead to

the opposite conclusion. Thus, on the whole, the doctrine of concepts which

cannot be made subjects seems untenable.

484. Classes. Frege's theory of classes is very difficult, and I am not

* The notion of a constituent of a proposition appears to be a logical indefinable.
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sure that I have thoroughly understood it. He gives the name Werthver-

lauf* to an entity which appears to be nearly the same as what I call the

class as one. The concept of the class, and the class as many, do not appear

in his exposition. He differs from the theory set forth in Chapter vi chiefly

by the fact that he adopts a more intensional view of classes than I have

done, being led thereto mainly by the desirability of admitting the null-class

and of distinguishing a term from a class whose only member it is. I agree

entirely that these two objects cannot be attained by an extensional theory,

though I have tried to show how to satisfy the requirements of formalism

(§§69,73).

The extension of a Begriff, Frege says, is the range of a function whose

value for every argument is a truth-value (FuB. p. 16). Ranges are things,

whereas functions are not (ih. p. 19). There would be no null-class, if classes

were taken in extension ; for the null-class is only possible if a class is not

a collection of terms (KB. pp. 436-7). If a; be a term, we cannot identify

X, as the extensional view requires, with the class whose only member is x
;

for suppose a; to be a class having more than one member, and let y, z be

two different members of x ; then if x is identical with the class whose only

member is x, y and z will both be members of this class, and will therefore

be identical with x and with each other, contrary to the hypothesis!. The

extension of a Begriff h&s its being in the Begriff itseli, not in the individuals

falling under the Begriff (ib. p. 451). When I say something about all men,

I say nothing about some wretch in the centre of Africa, who is in no way
indicated, and does not belong to the indication of man (p. 454). Begriffe

are prior to their extension, and it is a mistake to attempt, as Schroder does,

to base extension on individuals; this leads to the calculus of regions

(Oebiete), not to Logic (p. 455).

What Frege understands by a range, and in what way it is to be

conceived without reference to objects, he endeavours to explain in his

Grundgesetze der Arithmetik. He begins by deciding that two prepositional

functions are to have the same range when they have the same value for

every value of x, i.e. for every value of x both are true or both false

(pp. 7, 14) This is laid down as a primitive proposition. But this only

determines the equality of ranges, not what they are in themselves. If

X (^) be a function which never has the same value for different values of ^

and if we denote by ^' the range of (jix, we shall have X (</>') = -X (f) when

and only when ^' and xj/' are equal, i.e. when and only when </).t and ij/x always

have the same value. Thus the conditions for the equality of ranges do not

of themselves decide what ranges are to be (p. 16). Let us decide arbitrarily

—since the notion of a range is not yet fixed—that the true is to be the

range of the function "x is true " (as an assumption, not an asserted propo-

sition), and the false is to be the range of the function "a; = not every term

is identical with itself." It follows that the range of <^x' is the true when

and only when the true and nothing else falls under the Begriff ^x ; the

range of ^x is the false when and only when the false and nothing else falls

under the Begriff <j)x; in other cases, the range is neither the true nor

I shall translate this as range. t lb. p. 444. Cf. supra, § 74.



512 Appendix A 484,

the false (pp. 17— 18). If only one thing falls under a concept, this one
thing is distinct from the range of the concept in question (p. 18, note)

the reason is the same as that mentioned above.

There is an argument (p. 49) to prove that the name of the range of a

function always has an indication, i.e. that the symbol employed for it is

never meaningless. In view of the contradiction discussed in Chapter x,

I should be inclined to deny a meaning to a range when we have a proposi-

tion of the forfn <^ [./(<^) ], where/ is constant and
<f)

variable, or of the form

f^ (a;), where x is variable and f^ is a propositional function which is de-

terminate when X is given, but varies from one value of x to another

—

provided, wheny!^ is analyzed into things and concepts, the part dependent

on X does not consist only of things, but contains also at least one concept.

This is a very complicated case, in which, I should say, there is no class

as one, my only reason for saying so being that we can thus escape the

contradiction.

485. By means of variable propositional functions, Frege obtains a

definition of the relation which Peano calls e, namely the relation of a term

to a class of which it is a member*. The definition is as follows :
" a€u"

is to mean the term (or the range of terms if there be none or many) x such

that there is a propositional function (j> which is such that u is the range of

<^ and cj>a is identical with x (p. 53). It is observed that this defines acM

whatever things a and u may be. In the first place, suppose u to be a range.

Then there is at least one <^ whose range is u, and any two whose range is u
are regarded by Frege as identical. Thus we may speak of the function <^

whose range is u. In this case, atu is the proposition (f>a, which is true

when a is a member of u, and is false otherwise. If, in the second place,

u is not a range, then there, is no such propositional function as <^, and

therefore a^u is the range of a propositional function which is always false,

i.e. the null-range. Thus aeu indicates the true when m is a range and a

is a member of u ; aeii indicates the false when m is a range and a is not a

member of m ; in other cases, aeu indicates the null-range.

It is to be observed that from the equivalence of xeu, and X€V for all

values of X we can only infer the identity of m and v when u and v are

ranges. When they are not ranges, the equivalence will always hold, since

x^u and xw are the null-range for all values of x ; thus if we allowed the

inference in this case, any two objects which are not ranges would be

identical, which is absurd. One might be tempted to doubt whether u and v

must be identical even when they are ranges : with an intensional view of

classes, this becomes open to question.

Frege proceeds (p. 55) to an analogous definition of the propositional

function of three variables which I have symbolised as, x R y, and here again

he gives a definition which does not place any restrictions on- the variability

of R. This is done by introducing a double range, defined by a propositional

function of two variables ; we may regard this as a class of couples with

sense f. If then R is such a class of couples, and if (a;
; y) is a member of this

* Cf. §§ 21, 7C, supra.

t Neglecting, for the present, our doubts as to there being any such entity as a couple
with sense, cf. § 98.
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class, a; 5 y is to hold; in other cases it is to be false or null as before. On
this basis, Frege successfully erects as much of the logic of relations as is

required for his Arithmetic ; and he is free from the restrictions on the

variability of R which arise from the intensional view of relations adopted in

the present work (cf. § 83).

486. The chief difficulty which arises in the above theory of classes is as

to the kind of entity that a range is to be. The reason which led me, against

my inclination, to adopt an exteusional view of classes, was the necessity of

discovering some entity determinate for a given prepositional function, and

the same for any equivalent prepositional function. Thus "x is a man" is

equivalent (we will suppose) to "a; is a featherless biped," and we wish to

discover some one entity which is determined in the same way by both these

propositional functions. The only single entity I have been able to discover

is the class as one—except the derivative' class (also as one) of propositional

functions equivalent to either of the given propositional functions. This

latter class is plainly a more complex notion, which will not enable us to

dispense with the general notion of class; but this more complex notion

(so we agreed in § 73) must be substituted for the class of terms in the

symbolic treatment, if there is to be any null-class and if the class whose only

member is a given term is to be distinguished from that term. It would

certainly be a very great simplification to admit, as Frege does, a range

which is something other than the whole composed of the terms satisfying

the propositional function in question ; but for my part, inspection reveals to

me no such entity. On this ground, and also on account of the contradiction,

I feel compelled to adhere to the extensional theory of classes, though not

quite as set forth in Chapter vi.

487. That some modification in that doctrine is necessary, is proved by
the argument of KB. p. 444. This argument appears capable of proving

that a class, even as one, cannot be identified with the class of which it is the

only member. In § 74, I contended that the argument was met by the

distinction between the.class as one and the class as many, but this contention

now appears to me mistaken. For this reason, it is necessary to re-examine

the whole doctrine of classes.

Frege's argument is as follows. If a is a class of more than one term,

and if a is identical with the class whose only term is a, then to be a term

of a is the same thing as to be a term of the class whose only term is a,

whence a is the only term of a. This argument appears to prove not merely

that the extensional view of classes is inadequate, but rather that it is wholly

inadmissible. For suppose a to be a collection, and suppose that a collection

of one term is identical with that one term. Then, if a can be regarded as

one collection, the above argument proves that a is the only term of a. We
cannot escape by saying that e is to be a relation to the class-concept or the

concept of the class or the class as many, for if there is any such entity as

the class as one, there will be a relation, which we may call t, between terms

and their classes as one. Thus the above argument leads to the conclusion

that either (a) a collection of more than one term is not identical with the

collection whose only term it is, or (j8) there is no collection as one term at

all in the case of a collection of many terms, but the collection is strictly and

K. 33
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only many. One or other of these must be admitted in virtue of the above

argument.

488. (a) To either of these views there are grave objections. The
former is the view of Frege and Peano. To realize the paradoxical nature of

this view, it must be clearly grasped that it is not only the collection as

many, but the collection as one, that is distinct from the collection whose

only term it is. (I speak of collections, because it is important to examine

the bearing of Frege's argument upon the possibility of an extensional

standpoint.) This view, in spite of its paradox, is certainly the one which

seems to be required by the symbolism, fit is quite essential that we should

be able to regard a class as a single abject, that there should be a null-class,

and that a term should not (in general, at any rate) be identical with the

class of which it is the only member. It is subject to these conditions that

the symbolic meaning of class has to be interpreted. Frege's notion of a

range may be identified with the collection as one, and all will then go well.

But it is very hard to see any entity such as Frege's range, and the argument

that there must be such an entity gives us little help. Moreover, in virtue

of the contradiction, there certainly are cases where we have a collection as

many, but no collection as one (§ 104). Let us then examine (/8), and see

whether this offers a better solution.

(/3) Let us suppose that a collection of one term is that one term, and

that a collection of many terms is (or rather are) those many terms, so that

there is not a single terra at all which is the collection of the many terms in

question. In this view there is, at first sight at any rate, nothing para-

doxical, and it has the merit of admitting universally what the Contradiction

shows to be sometimes the case. In this case, unless we abandon one of our

fundamental dogmas, c will have to be a relation of a term to its class-concept,

not to its class ; if a is a class-concept, what appears symbolically as the class

whose only term is a will (one might suppose) be the class-concept under

which falls only the concept a, which is of course (in general, if not always)

different from a. We shall maintain, on account of. the contradiction, that

there is not always a class-concept for a given propositional function <^x,

i.e. that there is not always, for eveiy <^, some class-concept a such that xta

is equivalent to ^x for all values of x ; and the cases where there is no such

class-concept will be cases in which <^ is a quadratic form.

So far, all goes well. But now we no longer have one definite entity

which is determined equally by any one of a set of equivalent propositional

functions, i.e. there is, it might be urged, no meaning of class left which is

determined by the extension alone. Thus, to take a case where this leads to

confusion, if a and b be different class-concepts such that xea and xeb are

equivalent for all values of x, the class-concept under which a falls and

nothing else will not be identical with that under which falls b and nothing

«lse. Thus we cannot get any way of denoting what should symbolically

correspond to the class as one. Or again, if u and v be similar but different

classes, "similar to u" is a different concept from "similar to v'' ; thus, unless

we can find some extensional meaning for class, we shall not be able to say

that the number of u is the same as that of v. And all the usual elementary

problems as to combinations {i.e. as to the number of classes of specified kinds
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contained in a given class) will have become impossible and even meaningless.

For these various reasons, an objector might contend, something like the class

as one must be maintained; and Frege's range fultils the conditions required.

1 1 would seem necessary therefore to accept ranges by an act of faith, without

waiting to see whether there are such things.

Nevertheless, the non-identification of the class with the class as one,

whether in my form or in the form of Frege's range, appears unavoidable,

and by a process of exclusion the class as many is left as the only object

which can play the part of a class. By a modification of the logic hitherto

advocated in the present work, we shall, I think, be able at once to satisfy

the requirements of the Contradiction and to keep in harmony with common
sense *-

489. Let us begin by recapitulating the possible theories of classes which

have presented themselves. A class may be identified with (a) the predicate,

(j8) the class concept, (y) the concept of the class, (8) Frege's range, (e) the

numerical conjunction of the terms of the class, (^) the whole composed of

the terms of the class.

Of these theories, the first three, which are intensional, have the defect

that thej' do not render a class determinate when its terms are given.

The other three do not have this defect, but they have others. (8) suffers

from a doubt as to there being such an entity, and also from the fact

that, if ranges are terms, the contradiction is inevitable, (e) is logically

unobjectionable, but is not a single entity, except when the class has only

one member. (^) cannot always exist as a term, for the same reason as

applies against (8); also it cannot be identified with the class on account

of Frege's argument t.

Nevertheless, without a single object J to represent an extension,

Mathematics crumbles. Two propositional functions which are equivalent-

for all values of the variable may not be identical, but it is necessary that

thei"e should be some object determined by both. Any object that may be

proposed, however, presupposes the notion of clciss. We may define class

optatively as follows : A class is an object uniquely determined by a

propositional function, and determined equally by any equivalent propositional

function. Now we cannot take as tiiis object (as in other cases of symmetrical

transitive relations) the class of propositional functions equivalent to a given

propositional function, unless we ah-eady have the notion of class. Again,

equivalent relations, considered intensionally, may be distinct : we want

therefore to find some one object determined equally by any one of a set of

equivalent relations. But the only objects that suggest themselves are the

class of relations or the class of couples forming their common range ; and ..^

these both presuppose clans. And without the notion of class, elementary

problems, such as " how many combinations can be formed of m objects n at ;

a time?'' become meaningless. ^Moreover, it appears immediately evident ^

that there is some sense in saying that two class-concepts have the same

* The doctrine to be advocated in what follows is the direct denial of the dogma stated

in § 70, note.

t Archiv i. p. 444.

J For the use of the word object in the following discussion, see § 58, note.

33—2
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extension, and this requires that there should be some object which can be

called the extension of a class-concept. But it is exceedingly difficult to

discover any such object, and the contradiction proves conclusively that, even

if there be such an object sometimes, there are prepositional functions for

which the extension is not one term.

The class as many, which we numbered (e) in the above enumeration, is

unobjectionable, but is many and not one. We may, if we choose, represent

this by a single symbol: thus Xiu will mean "a; is one of the u's." This

must not be taken as a relation of two terms, x and u, because u as the

numerical conjunction is not a single term, and we wish to have a meaning
for Xiu which would be the same if for u we substituted an equal class v,

which prevents us from interpreting u intensionally. Thus we may regard

"cc is one of the u's" as expressing a relation of x to many terms, among
which X is included. The main objection to this view, if only single terms can

be subjects, is that, if u is a symbol standing essentially for many terms, we
cannot make u a logical subject without risk of error. We can no longer

speak, one might suppose, of a class of classes ; for what should be the

terms of such a class are not single terms, but are each many terms *-

We cannot assert a predicate of many, one would suppose, except in

the sense of asserting it of each of the many ; but what is required

here is the assertion of a predicate concerning the many as many, not

concerning each nor yet concerning the whole (if any) which all compose.

Thus a class of classes will be many many's ; its constituents will each be

only many, and cannot therefore in any sense, one might suppose, be

single constituents. Now I find myself forced to maintain, in spite of the

apparent logical difficulty, that this is precisely what is required for the

assertion of number. If we have a class of classes, each of whose members

has two terms, it is necessai'y that the members should each be genuinely

two-fold, and should not be each one. Or again, "Brown and Jones are two"

requires that we should not combine Brown and Jones into a single whole,

and yet it has the form of a subject-predicate proposition. But now a

difficulty arises as to the number of members of a class of classes. In what

sense can we speak of two couples ? This seems to require that each couple

should be a single entity
;
yet if it were, we should have two units, not two

couples. We require a sense for diversity of collections, meaning thereby,

apparently, if u and v are the collections in question, that xeu and xev are

not equivalent for all values of x.

490. The logical doctrine which is thus forced upon us is this : The

subject of a proposition may be not a single term, but essentially many terms

;

this is the case with all propositions asserting numbers other than and 1.

But the predicates or class-concepts or relations which can occur in propositions

having plural subjects are difierent (with some exceptions) from those that

can occur in propositions having single terms as subjects. Although a class

is many and not one, yet there is identity and diversity among classes, and

thus classes can be counted as though each were a genuine unity; and in this

sense we can speak of one class and of the classes which are members of a

* Wherever the context requires it, the reader is to add "provided the class in question

(or all the classes in question) do not consist of a single term."
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class of classes. One must be held, however, to be somewhat different when
asserted of a class from what it is when asserted of a term ; that is, there is

a meaning of one which is applicable in speaking of one term, and another

which is applicable in speaking of one class, but there is also a general

meaning applicable to both cases. The fundamental doctrine upon which

all rests is the doctrine that the subject of a proposition may be plural, and
that such plural subjects are what is meant by classes which have more than

one term*.

It will now be necessary to distinguish (1) terms, (2) classes, (3) classes

of classes, and so on ad infinitum ; we shall have to hold that no member of

one set is a member of any other set, and that Xiu requires that x should be

of a set of a degree lower by one than the set to which u belongs. Thus xex

will become a meaningless proposition ; and in this way the contradiction is

avoided.

491. But we must now consider the problem of classes which have one

member or none. The case of the null-class might be met by a bare denial

—

this is only inconvenient, not self-contradictory. But in the case of classes

having only one term, it is still necessary to distinguish them from their sole

members. This results from Frege's argument, which we may repeat as

follows. Let M be a class having more than one term ; let m be the class of*

classes whose onlj' member is u. Then lu has one member, u has many

;

hence u and lu are not identical. It may be doubted, at first sight, whether

this argument is valid. The relation of x to u expressed by xiu is a relation

of a single term to many terms ; the relation of u to m expressed by unu is

a relation of many terms (as subject) to many terms (as predicate) f. This

is, so an objector might contend, a different relation from the previous one

;

and thus the argument breaks down. It is in different senses that a: is a

member of u and that m is a member of lU ; thus u and m may be identical

in spite of the argument. ~-

This attempt, however, to escape from Frege's argument, is capable of

refutation. For all the purposes of Arithmetic, to begin with, and for many
of the purposes of logic, it is necessary to have a meaning for e which is

equally applicable to the relation of a term to a class, of a class to a class of
^

classes, and so on. But the chief point is that, if every single term is a class,

the proposition xsx, which gives rise to the Contradiction, must be admissible.

It is only by distinguishing x and ix, and insisting that in xiu the u must

always be of a type higher by one than x, that the contradiction can be

avoided. Thus, although we may identify the class with the numerical

conjunction of its terms, wherever there are many terms, yet where there is

only one term we shall have to accept Frege's range as an object distinct

from its only term.. And having done this, we may of course also admit a

range in the case of a null propositional function. We shall differ from

Frege only in regarding a range as in no case a term, but an object of a

different logical type, in the sense that a propositional function <^(x), in

which X may be any term, is in general meaningless if for x we substitute a

Cf. §§ 128, 132 supra.

t The word predicate is here used loosely, not in the precise sense defined in § 48.
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range; and if x may be any range of terms, 4> {^) will in general be meaning-

less if for X we substitute either a term or a range of ranges of terms.

Ranges, finally, are what are properly to be called classes, and it is of them

jthat cardinal numbers are asserted.

492. According to the view here advocated, it will be necessary, with

every variable, to indicate whether its field of significance is terms, classes,

classes of classes, or so on*. A variable will not be able, except in special

cases, to extend from one of these sets into another ; and in xeu, the x and

the u must always belong to diiFerent types ; e will not be a relation between

objects of the same type, but cc or tlief will be, provided li is so. We shall

have to distinguish also among relations according to the types to which

their domains and converse domains belong ; also variables whose fields

include relations, these being understood as classes of couples, will not as a

rule include anything else, and relations between relations will be difTerent

in type from relations between terms. This seems to give the truth—though

in a thoroughly extensional form—underlying Frege's distinction between

terms and the various kinds of functions. Moreover the opinion here

advocated seems to adhere very closely indeed to common sense.

Thus the final conclusion is, that the correct theory of classes is even

more extensional than that of Chapter vi ; that the class as many is the

only object always defined by a propositional function, and that this is

adequate for formal purposes; that the class as one, or the whole composed

of the terms of the class, is probably a genuine entity except where the class

is defined by a quadratic function (see § 103), but that in these cases, and in

other cases possibly, the class as many is the only object uniquely defined.

The theory that there are different kinds of variables demands a reform

in the doctrine of formal implication. In a formal implication, the variable

does not, in general, take all the values of which variables are susceptible, but

only all those that make the propositional function in question a proposition.

For other values of the variable, it must be held that any given propositional

function becomes meaningless. Thus in xeu, u must be a class, or a class of

classes, or etc., and x must be a term if m is a class, a class if m is a class of

classes, and so on; in every propositional function there will be some range

permissible to the variable, but in general there will be possible values for

other variables which are not admissible in the given case. This fact wiU

require a certain modification of the principles of Symbolic Logic; but it

remains true that, in a formal implication, all propositions belonging to a

given propositional function are asserted.

With this we come to the end of the more philosophical part of Frege's

work. It remains to deal briefly with his Symbolic Logic and Arithmetic;

but here I find myself in such complete agreement with him that it is hardly

necessary to do more than acknowledge his discovery of propositions which,

when I wrote, I believed to have been new.

493. Implication and Symbolic Logic. The relation which Frfege

employs as fundamental in the logic of propositions is not exactly the same

as what I have called implication: it is a relation which holds between

* See Appendix B. f On this notation, see §§ 28, 97.
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J) and q whenever q is true or /> is not true, whereas the relation which

I employ holds whenever f and q are propositions, and q is true or f is false.

That is to say, Prege's relation holds when p is not a proposition at all,

whatever q may be; mine does not hold unless -p and q are propositions.

His definition has the formal advantage that it avoids the necessity for

hypotheses of the form "^ and q are propositions"; but it has the

disadvantage that it does not lead to a definition of proposition and of

negation. In fact, negation is taken by Frege as indefinable; proposition is

introduced by means of the indefinable notion of a truth-value. Whatever

X may be, " the truth-value of x " is to indicate the true if x is true, and the

false in all other cases. Fi-ege's notation has certain advantages over Peano's,

in spite of the fact that it is exceedingly cumbrous and difficult to use. He
invariably defines expressions for all values of the variable, whereas Peano's

definitions are often preceded by a hypothesis. He has a special symbol for

assertion, and he is able to assert for all values of sc a prepositional function

not stating an implication, which Peano's symbolism will not do. He also

distinguishes, by the use of Latin and German letters respectively, between

any proposition of a certain propositional function and all such propositions.

By always using implications, Frege avoids the logical product of two

propositions, and therefore has no axioms corresponding to Importation and

Exportation*. Thus the joint assertion of p and q is the denial of "p implies

not-q."

494. Arithmetic. Frege gives exactly the same definition of cardinal

numbers as I have given, at least if we identify his range with my class\.

But following his intensional theory of classes, he regards the number as a

property of the class-concept, not of the class in extension. If m be a range,

the number of u is the range of the concept " range similar to u." In the

Grundlagen der Arithmetik, other possible theories of number are discusssed

and dismissed. Numbers cannot be asserted of objects, because the same

set of objects may have different numbers assigned to them (Gl. p. 29); for

example, one army is so many regiments and such another number of

soldiers. This view seems to me to involve too physical a view of objects

:

I do not consider the army to be the same object as the regiments.

A stronger argument for the same view is that will not apply to objects,

but only to concepts (p.' 59). This argument is, I think, conclusive up to a

certain point; but it is satisfied by the view of the symbolic meaning of

classes set forth in § 73. Numbers themselves, like other ranges, are things

(p. 67). For defining numbers as ranges, Frege gives the same general

ground as I have given, namely what I call the principle of abstraction J.

In the Grundgesetze der Arithmetik, various theorems in the foundations of

cardinal Arithmetic are proved with great elaboration, so great that it is

often very difficult to discover the difference between successive steps in a

demonstration. In view of the contradiction of Chapter x, it is plain that

some emendation is required in Frege's principles; but it is hard to believe

that it can do more than introduce some general limitation which leaves the

details unaffected.

'

* See § 18, (7), (8). t See Gl. pp. 79, 85 ; Gg. p. 57, Df. Z. X Gl. p. 79; cf. § 111 supra.
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495. In addition to his work on cardinal numbers, Frege has, already

in the Begriffsschrift, a very admirable theory of progressions, or rather

of all series that can be generated by many-one relations. Frege does not

confine himself to one-one relations : as long as we move in only one direction,

a many-one relation also will generate a series. In some parts of his theory,

he even deals with general relations. He begins bj' considering, for any

relation /(x, y), functions F which are such that, if f{x, y) holds, then F {x)

implies F (y). If this condition holds, Frege says that the property F is

inherited in the _/series (Bs. pp. 55—58). From this he goes on to define,

without the use of numbers, a relation which is equivalent to " some positive

power of the given relation." This is defined as follows. The relation in

question holds between x and y if every property F, which is inherited in the

y^series and is such that /{x, z) implies F(^z) for all values of z, belongs to y
(Bs. p. 60). On this basis, a non-numerical theory of series is very successfully

erected, and is applied in Gg. to the proof of propositions concerning the

number of finite numbers and kindred topics. This is, so far as I know, the

best method of treating such questions, and Frege's definition just quoted

gives, apparently, the best form of mathematical induction. But as no

controversy is involved, I shall not pursue this subject any further.

Frege's works contain much admirable criticism of the psychological

standpoint in logic, and also of the formalist theory of mathematics, which

believes that the actual symbols are the subject-matter dealt with, and that

their properties can be arbitrarily assigned by definition. In both these

points, I find myself in complete agreement with him.

496. Kerry {loc. cit.) has criticized Frege very severely, and professes

to have proved that a purely logical theory of Arithmetic is impossible

(p. 304). On the question whether concepts can be made logical subjects,

I find myself in agreement with his criticisms ; on other points, they seem

to rest on mere misunderstandings. As these are such as would naturally

occur to any one unfamiliar with symbolic logic, I shall briefly discuss them^

The definition of numbers as classes is, Kerry asserts, a vcmpov irpoTepov.

We must know that every concept has only one extension, and we must

know what one object is; Frege's numbers, in fact, are merely convenient

symbols for what are commonly called numbers (p. 277). It must be

admitted, I think, that the notion of a term is indefinable (cf. §132 supra),

and is presupposed in the definition of the number 1. But Frege argues

—

and his argument at least deserves discussion—that one is not a predicate,

attaching to every imaginable term, but has a less general meaning, and

attaches to concepts (Gl. p. 40). Thus a term is not to be analyzed into one

and term,, and does not presuppose the notion of one (cf. § 72 supra). As to

the assumption that every concept has only one extension, it is not necessary

to be able to state this in language which employs the number 1 : all we
need is, that if <jix and \l/x are equivalent propositions for all values of x,

then they have the same extension—a primitive proposition whose symbolic

expression in no way presupposes the number 1. From this it follows that

if a and h are both extensions of <^a;, a and b are identical, which again does

not formally involve the number 1. In like manner, other objections to

Frege's definition can be met.
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Kerry is misled by a certain passage (Gl. p. 80, note) into the belief that

Frege identifies a concept with its extension. The passage in question

appears to assert that the number of u might be deiined as the concept

"similar to u" and not as the range of this concept; but it does not say

that the two definitions are equivalent.

There is a long criticism of Frege's proof that is a number, which

reveals fundamental errors as to the existential import of universal

propositions. The point is to prove that, if u and v are null-classes, they are

similar. Frege defines similarity to mean that there is a one-one relation R
such that "x is a, u" implies "there is a -y to which x stands in the relation

R," and vice versa. (I have altered the expressions into conformity with my
usual language.) This, he says, is equivalent to " there is a one-one relation

R such that ' a; is a w ' and ' there is no term of v to which x stands in the

relation R ' cannot both be true, whatever value x may have, and vice versa ";

and this proposition is true if "a; is a m" and "y is a i; " are always false.

This strikes Kerrj- as absurd (pp. 287— 9). Similarity of classes, he thinks,

implies that they have terms. He afiirms that Frege's assertion above is

contradicted by a later one (Gl. p. 89): "If a is a u, and nothing is a v,

then ' a is a. u' and ' no term is a i; which has the relation ^S to a ' are both

true for all values of R." I do not quite know where Kerry, finds the

contradiction ; but he evidently does not realize that false propositions imply

all propositions and that universal .propositions have no existential import,

so that " all a is 6 " and " no a is 6 " will both be true if a is the null-class.

Kerry objects (p. 290, note) to the generality of Frege's notion of relation.

Frege asserts that any proposition containing a and b affirms a relation

between a and b (Gl. p. 83); hence Kerry (rightly) concludes that it is

self-contradictory to deny that a and b are related. So general a notion,

he says, can have neither sense nor purpose. As for sense, that a and b

should both be constituents of one proposition seems a perfectly intelligible

sense; as for purpose, the whole logic of relations, indeed the whole of

mathematics, may be adduced in answer. There is, however, what seems at

first sight to be a formal disproof of Frege's view. Consider the prepositional

function " R and S are relations which are identical, and the relation R does

not hold between R and aSV This contains two variables, R and S; let us

suppose that it is equivalent to " R has the relation T to S." Then substi-
'

tuting T for both R and S, we find, since T is identical with T, that " T does

not have the relation T to T" is equivalent to " T has the relation T to T."

This is a contradiction, showing that there is no such relation as T. Frege

might object to this instance, .on the ground that it treats relations as terms

;

but his double ranges, which, like single ranges, he holds to be things, will

bring out the same result. The point involved is closely analogous to that

involved in the Contradiction: it was there shown that some propositional

functions with one variable are not equivalent to any propositional function

asserting membership of a fixed class, while here it is shown that some

containing two variables are not equivalent to the assertion of any fixed

relation. But the refutation is the same in the case of relations as it was in

the previous case. There is a hierarchy of relations according to the type of

objects constituting their fields. Thus relations, between terms are distinct
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from those between classes, and these again are distinct from relations

between relations. Thus no relation can have itself both as referent and as

relatum, for if it be of the same order as the one, it must be of a higher order

than the other; the proposed propositional function is therefore meaningless

for all values of the variables R and <S'.

It is affirmed (p. 291) that only the concepts of and 1, not the objects

themselves, are defined by Frege. But if we allow that the range of a

Begriff is an object, this cannot be maintained; for the assigning of a concept

will carry with it the assigning of its range. Kerry does not perceive that

the uniqueness of 1 has been proved {ih.): he thinks that, with Frege's

definition, there might be several I's. I do not understand how this can be

supposed: the proof of uniqueness is precise and formal.

The definition of immediate sequence in the series of natural numbers

is also severely criticized (p. 292 fif.). This depends upon the general theory

of series set forth in Bs. Kerry objects that Frege has defined "F is

inherited in the y"-series," but has not defined "the ^/-series" nor "F is

inherited." The latter essentially ought not to be defined, having no precise

sense; the former is easily defined, if necessary, as the field of the relation f.

This objection is therefore trivial. Again, there is an attack on the definition

:

" y follow* X in the /-series if y has all the properties inherited in the /-series

and belonging to all terms to which x has the relation /*." This criterion,

we are told, is of doubtful value, because no catalogue of such properties

exists, and further because, as Frege himself proves, following x is itself one

of these properties, whence a vicious circle. This argument, to my mind,

radically misconceives the nature of deduction. In deduction, a proposition

is proved to hold concerning every member of a class, and may then be

asserted of a particular member: but the proposition concerning every does

not necessarily result from enumeration of the entries in a catalogue.

Kerry's position involves acceptance of Mill's objection to Barbara, tliat the

mortality of Socrates is a necessary premiss for the mortality of all men.

The fact is, of course, that general propositions can often be established

where no means exist of cataloguing the terms of the class for which they

hold; and even, as we have abundantly seen, general propositions fully

stated hold of all terms, or, as in the above case, of all functions, of which

no catalogue can be conceived. Kerry's argument, therefore, is answered

by a correct theory of deduction; and the logical theory of Arithmetic is

vindicated against its critics.

Note. The second volume of Gg., which appeared too late to be noticed

in the Appendix, contains an interesting discussion of the contradiction

(pp. 253—265), suggesting that the solution is to be found by denying that

two propositional functions which determine equal classes must be equivalent.

As it seems very likely that this is the true solution, the reader is strongly

recommended to examine Frege's argument on the point.

* Kerry omits the last clause, wrongly ; for not all properties inherited in the /-series

belong to all its terms ; for example, the property of being greater than 100 is inherited in

the number-series.



APPENDIX B.

THE DOCTRINE OF TYPES.

497. The doctrine of types is here put forward tentatively, as affording

a possible solution of the contradiction ; but it requires, in all probability,

to be transformed into some subtler shape before it can answer all diffi-

culties. In case, however, it should be found to be a first step towards the

truth, I shall endeavour in this Appendix to set forth its main outlines, as

well as some problems which it fails to solve.

Every propositional function <f>{x)—so it is contended—has, in addition

to its range of truth, a range of significance, i.e. a range within which x
must lie if (f>{x) is to be a proposition at all, whether true or false. This is

the first point in the theory of types ; the second point is that ranges of

significance form types, i.e. if x belongs to the range of significance of <l>(x),

then there is a class of objects, the type of x, all of which must also belong

to the range of significance of <^(a;), however <^ may be varied ; and the

range of significance is always either a single type or a sum of several wliole

types. The second point is less precise than the first, and the case of

numbers introduces difficulties ; but in what follows its importance and
meaning will, I hope, become plainer.

A term or individual is any object which is not a range. This is the

lowest type of object. If such an object—say a certain point in space

—

occurs in a proposition, any other individual may always be substituted

without loss of significance. What we called, in Chapter vi, the class as

one, is an individual, provided its members are individuals ; the objects of

daily life, persons, tables, chairs, apples, etc., are classes as one. (A person

is a class of psychical existents, the others are classes of material points,

with perhaps some reference to secondary qualities.) These objects, there-

fore, are of the same type as simple individuals. It would seem that all-

objects designated by single words, whether things or concepts, are of this

type. Thus e.g. the relations that occur in actual relational propositions are

of the same type as things, though relations in extension, which are what

Symbolic Logic employs, are of a different type. (The intensional relations

which occur in ordinary relational propositions are not determinate when

their extensions are given, but the extensional relations of Symbolic Logic are

classes of couples.) Individuals are the only objects of which numbers

cannot be significantly asserted.
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The next type consists of ranges or classes of individuals. (No ordinal

ideas are to be associated with the word range.) Thus "Brown and Jones ''

is an object of this type, and will in general not yield a significant propo-

sition if substituted for " Brown " in any" true or false proposition of which

Brown is a constituent. (This constitutes, in a kind of way, a justification

for the grammatical distinction of singular and plural; but the analogy is

not close, since a range may have one term or more, and where it has many,

it may yet appear as singular in certain propositions.) If m be a range

determined by a propoaitional function <^(a;), not-w will consist of all objects for

which <^(x) is false, so that not-M is contained in the range of significance

of <l>{x), and contains only objects of the same type as the members of u.

There is a difficulty in this connection, arising from the fact that two prepo-

sitional functions <t>{x), \p{x) may have the same range of truth u, while their

ranges of significance may be difierent ; thus not-M becomes ambiguous.

There will always be a minimum type within which u is contained, and not-

u may be defined as the rest of this type. (The sum of two or more types is a

type; a minimum type is one which is not such a sum.) In view of the

Contradiction, this view seems the best ; for not-w must be the range of

falsehood of "a; is a u" and "x is an x" must be in general meaningless;

consequently " a; is a u'' must require that x and u should be of difierent

types. It is doubtful whether this result can be insured except by confining

ourselves, in this connection, to minimum types.

There is an unavoidable conflict with common sense in the necessity for

denying that a mixed class (i.e. one whose members are not all of the same

minimum type) can ever be of the same type as one of its members.

Consider, for example, such phrases as " Heine and the French." If this is

to be a class consisting of two individuals, " the French " must be under-

stood as " the French nation," i.e., as the class as one. If we are speaking

of the French as many, we get a class consisting not of two members, but of

one more than there are Frenchmen. Whether it is possible to form a class

of which one member is Heine, while the other is the French as many, is a

point to which I shall return later ; for the present it is enough to remark

that, if there be such a class, it must, if the Contradiction is to be avoided,

be of a different type both from classes of individuals and from classes of

classes of individuals.

The next type after classes of individuals consists of classes of classes of

individuals. Such are, for example, associations of clubs ; the members of

such associations, the clubs, are themselves classes of individuals. It willbe

convenient to speak of classes only where we have classes of individuals, of

classes of classes only where we have classes of classes of individuals, and so

on. For the general notion, I shall use the word range. There is a pro-

gression of such types, since a range may be formed of objects of any given

type, and the result is a range of higher type than its members.

A new series of ,types begins with the couple with sense. A range of

such types is what Symbolic Logic treats as a relation : this is the extensional

view of relations. We may then form ranges of relations, or relations of

relations, or relations of couples (such as separation in Projective Geometry*),

* Cf. § 203.
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or relations o^f individuals to couples, and so on ; and in tliis way we get,

not merely a single progression, but a whole infinite series of progressions.

We have also the types formed of trios, which are the members of triple

relations taken in extension as ranges ; but of trios there are several kinds

that are reducible to previous types. Thus if <f>{x, y, z) be a prepositional

function, it may be a product of propositions <l>i(x) . ^2(2/) • '^3(*) or a product

<^i(a:) . 4>J^y,
z), or a proposition about x and the couple (y, z), or it may be

analyzable in other analogous ways. In such cases, a new type does not arise.

But if our proposition is not so analyzable—and there seems no d, priori reason

why it should always be so—then we obtain a new type, namelj' the trio.

We can form ranges of trios, couples of trios, trios of trios, couples of a trio

and an individual, and so on. All these yield new types. Thus we obtain

an immense hierarchy of types, and it is difficult to be sure how many there

may be ; but the method of obtaining new types suggests that the total

number is only a^ (the number of finite integers), since the series obtained

more or less resembles the series of rationals in the order 1, 2, ..., n, ..., 1/2,

1/3, ..., Ijn, ..., 2/3, ..., 2/5, ...2/(2rn- 1), ... This, however, is only a

conjecture.

Each of the types above enumerated is a minimum type ; i.e., if <f>{x) be

a prepositional function which is significant for one value of x belonging to

one of the above types, then ^(as) is significant for every value of x belonging

to the said type. But it would seem—though of this I am doubtful—that

the sum of any number of minimum types is a type, i.e. is a range of signifi-

cance for certain prepositional functions. Whether or not this is universally

true, all ranges certainly form a type, since every range has a number ; and
so do all objects, since every object is identical with itself.

Outside the above series of types lies the type proposition ; and from this

as starting-point a new hierarchy, one might suppose, could be started ; but

there are certain difficulties in the way of such a view, which render it

doubtful whether propositions can be treated like other objects.

498. Numbers, also, are a type lying outside the above series, and pre-

senting certain difficulties, owing to the fact that every number selects

certain objects out of every other type of ranges, namely those ranges which

have the given number of members. This renders the obvious definition of

erroneous ; for every type of range will have its own null-range, which will

be a member of considered as a range of ranges, so that we cannot say that

is the range whose only member is tlie null-range. Also numbers require a

consideration of the totality of types and ranges ; and in this consideration

there may be difficulties.

Since all ranges have numbers, ranges are a range ; consequently x^x is

sometimes significant, and in these cases its denial is also significant. Con-

sequently there is a range vo of ranges for which x(.x is false : thus the

Contradiction proves that this range w does not belong to the range of

significance of Xix. We may observe that xe.x can only be significant when x

is of a type of infinite order, since, in xeu, u must always be of a type higher

by one than x ; but the range of all ranges is of course of a type of infinite

order.

Since numbers are a type, the prepositional function "a; is net a u,"



526 Appendix B [498

where m is a range of numbers, must mean " a; is a number which is not a u"

;

unless, indeed, to escape this somewhat paradoxical result, we say that,

although numbers are a type in regard to certain propositions, they are not

a type in regard to such propositions as "m is contained in v " or "a; is a u.''

Such a view is perfectly tenable, though it leads to complications of which it

is hard to see the end.

That propositions are a type results from the fact—if it be a fact—that

only propositions can significantly be said to be true or false. Certainly

true propositions appear to form a type, since they alone are asserted (cf.

Appendix A. § 479). But if so, the number of propositions is as great as

that of all objects absolutely, since every object is identical with itself, and

"a; is identical with x" has a one-one relation to x. In this there are,

however, two difficulties. First, what we called the propositional concept

appears to be always an individual ; consequently there should be no more

propositions than individuals. Secondly, if it is possible, as it seems to be, to

form ranges of propositions, there must be more such ranges than there are

propositions, although such ranges are only some among objects (cf. § 343).

These two difficulties are very serious, and demand a full discussion.

499. The first point may be illustrated by somewhat simpler ones.

There are, we know, more classes than individuals ; but predicates are

individuals. Consequently not all classes have defining predicates. This

result, which is also deducible from the Contradiction, shows how necessary

it is to distinguish classes from predicates, and to adhere to the extensional

view of classes. Similarly there are more ranges of couples than there are

couples, and therefore more than there are individuals; but verbs, which

express relations intensionally, are individuals. Consequently not every

range of couples forms the extension of some verb, although every such

range forms the extension of some propositional function containing two

variables. Although, therefore, verbs are essential in the logical genesis of

such propositional functions, the intensional standjjoint is inadequate to give

all the objects which Symbolic Logic regards as relations.

In the case of propositions, it seems as though there were always an

associated verbal noun which is an individual. "We have " a; is identical

with X " and " the self-identity of x," " x differs from y " and " the difference

of X and y " ; and so on. T^he verbal noun, which is what we called the

propositional concept, appears on inspection to be an individual ; but this is

impossible, for "the self-identity of x" has as many values as there are

objects, and therefore more values than there are individuals. This results

from the fact that there are propositions concerning every conceivable object,

and the definition of identity shows (§ 26) that every object concerning which
there are propositions, is identical with itself. The only method of evading
this difficulty is to deny that propositional concepts are individuals; and
this seems to be the course to which we are driven. It is undeniable,
however, that a propositional concept and a colour are two objects; hence
we shall have to admit that it is possible to form mixed ranges, whose
members are not all of the same type ; but such ranges will be always of

a different type from what we may call pure ranges, i.e. such as have only

members of one type. The propositional concept seems, in fact, to be nothing
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other than the proposition itself, the difference being merely the psychological

one that we do not assert the proposition in the one case, and do assert it in

the other.

500. The second point presents greater difficulties. We cannot deny

that there are ranges of propositions, for we often wish to assert the logical

product of such ranges; yet we cannot admit that there are more ranges

than propositions. At first sight, the difficulty might be thought to be

solved by the fact that there is a proposition associated with every range of

propositions which is not null, namely the logical product of the propositions

of the range*; but this does not destroy Cantor's proof that a range has

more sub-ranges than members. Let us apply the proof by assuming a

particular one-one relation, which associates every proposition p which is not

a logical product with the range whose only member is p, while it associates

the product of all propositions with the null-range of propositions, and

associates every other logical product of propositions with the range of its

own factors. Then the range w which, by the general principle of Cantor's

proof, is not correlated with any proposition, is the range of propositions

which are logical products, but are not themselves factors of themselves.

But, by the definition of the correlating relation, w ought to be correlated

with the logical product of w. It will be found that the old contradiction

breaks out afresh ; for we can prove that the logical product of w both is and

is not a member of w. This seems to show that there is no such range as w;

but the doctrine of types does not show why there is no such range. It seems

to follow that the Contradiction requires further subtleties for its solution;

but what these are, I am at a loss to imagine.

Let us state this new contradiction more fully. If m be a class of

propositions, the proposition " every m is true " may or may not be itself an

m. But there is a one-one relation of this proposition to vi: if n be different;

from m, " every n is true " is not the same proposition as " every m is true."

Consider now the whole class of propositions of the form " every m is true,"

and having the property of not being members of their respective m's. Let

this class be w, and let p be the proposition " every w is true." If ju is a w,

it must possess the defining property of w; but this property demands that

p should not be a w. On the other hand, if p be not a w, then p does possess

the defining property of w, and therefore is a w. Thus the contradiction

appears unavoidable.

In order to deal with this contradiction, it is desirable to reopen the

question of the identity of equivalent propositional functions and of the

nature of the logical product of two propositions. These questions arise

as follows. If m be a class of propositions, their logical product is the

proposition "every m is true," which I shall denote by ^'m. If we now
consider the logical product of the class of propositions composed of m

* It might be doubted whether the relation of ranges of propositions to their logical

products is one-one or many-one. For example, does the logical product of p and q and r

differ from that of pq and r? A reference to the definition of the logical product (p. 21)

will set this doubt at rest; for the two logical products in question, though equivalent, are

by no means identical. Consequently there is a one-one relation of all ranges of propositions

to some propositions, which is directly contradictory to Cantor's theorem.
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together with a'ot, this is equivalent to " Every m is true and every m
is true,' i.e. to "every m is true" i.e. to A'm. Thus the logical product

of the new class of propositions is equivalent to a member of the new class,

which is the same as the logical product of m. Thus if we identify equivalent

prepositional functions [^'ni being a prepositional function of m), the proof

of the above contradiction fails, since every proposition of the form ^'m is

the logical product both of a class of which it is a member and of a class of

which it is not a member.

But such an escape is, in reality, impracticable, for it is quite self-evident

that equivalent prepositional functions are often not identical. Who will

maintain, for example, that "a; is an even prime other than 2" is identical

with "X is one of Charles II.'s wise deeds or foolish sayings'"! Yet these

are equivalent, if a well-known epitaph is to be credited. The logical product

of all the propositions of the class composed of j/i and '^'m is "Every proposition

which either is an m or asserts that every m is true, is true " ; and this is not

identical with "every m is true," although the two are equivalent. Thus
there seems no simple method of avoiding the contradiction in question.

The close analogy of this contradiction with the one discussed in

Chapter x strongly suggests that the two must have the same solution,

or at least very similar solutions. It is possible, of course, to hold that

propositions themselves are of various types, and that logical products must
have propositions of only one type as factors. But this suggestion seems

harsh and highly artificial.

To sum up : it appears that the special contradiction of Chapter x is

solved by the doctrine of types, but that there is at least one closely

analogous contradiction which is probably not soluble by this doctrine.

The totality of all logical objects, or of all propositions, involves, it would
seem, a fundamental logical difficulty. What the complete solution of the

difficulty may be, I have not succeeded in discovering; but as it affects the

very foundations of reasoning, I earnestlj' commend the study of it to the

attention of all students of logic.
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Frege's solution of, 522; law of, 455

Coordinates, 439 ; projective, 385, 388, 390,

422, 427
Correlation, 260 ; of classes, 261 ; of series,

261, 321
Counting, 114, 133, 309
Couples, are relations classes of? 24, 99,

524; with sense, 99, 512, 524
Couples, separation of, 200, 205, 214, 237;
and transitive asymmetrical relations,

215, 238; in projective geometry, 386,

387
Conturat, 66, 194 n., 267 ra., 291 n., 296 «.,

310 n., 326 re. , 410 re., 441m.
Cremona, 384 re., 420

Dedekind, 90, 111, 157, 199, 239 re., 245-
251, 294, 307, 315, 357 re., 381, 387, 438;

on irrationals, 278 ft.

Deduction, 522 ;
principles of, 4, 15, 16

Definition, 15, 27, 111, 429, 497;
and the, 62 ; always nominal, 112 ; by
abstraction, 114, 219, 249

De Morgan, 23, 64re., 218re., 219re., 326, 376
Denoting, 45, 47, 53, 106, 131;
and predicates, 54; and any, etc., 55, 62;
are there different kinds of? 56, 61 ; and
identity, 63 ; and infinite classes, 72, 73,

145, 350
Derivatives, of a series, 290 ft., 323; of

functions, 328
Descartes, 157
Dichotomy, Zeno's- argument of, 348
Differential coefficients, 173, 328
Dimensions, 372, 374 ; definable logically,

376 ; axiom of three, 388, 399
Dini, 324 re., 327, 328 »., 329 re.

Direction, 435
Disjunction, 15 re., 17, 31; variable and

constant, 22, 58

Distance, 171, 179, 182 re., 195, 252-256,

288, 353;
measurement of, 180, 181, 254, 408; and
order, 204, 409, 419; and relative posi-

tion, 252 ; not impUed by order, 252,

254; definition of, 253; and limits, 254;
and stretch, 254, 342, 352, 408 ff., 435;
in Arithmetic, 254 ; axioms of, 407 ft.,

413, 424; and straight Une, 410; pro-

jective theory of, 422, 425, 427; de-

scriptive theory of, 423-5
Distributive law, 240, 307
Diversity, 23 ; conceptual, 46
Divisibility, infinite, 460

• Divisibility, magnitude of, 149, 151, 153,

173, 230, 333, 345, 411, 425, 428; and
measurement, 178; not a property of

wholes as such, 179, 412
Domain, see Relation
Duality, logical, 26; geometrical, 375, 392
Du Bois Beymond, 181 re., 254, 336
Dynamics, vi ; as pure mathematics, 465

;

two principles of, 496

Economics, mathematical, 233 re.

Electricity, 494, 496
Empiricism, 373, 492
Bpistemology, 339
Equality, 219, 339 ; of classes, 21 ; of re-

lations, 24 ; of quantities, 159
Equivalence, of propositions, 15, 527
Ether, 485, 496
Euclid, 157, 287, 373, 404, 420, 438;

his errors, 405-407
Euler, 329 re.

Evellin, 352
Existence, vii, 449, 458, 472;

of a class, 21, 32
Existence-theorems, ix, 322, 431, 497;
and Euclid's problems, 404

Exponentiation, 120, 308
Exportation, 16

Extension and Intension, 66

Fano, 385 n.

Field, see Belation
Finite, 121, 192, 371
Finitude, axiom of, 188, 191, 460; abso-

lute and relative, 332



Index 531

Force, 474, 482
Formal truth, 40, 105
Formalism, limits of, 16, 41
Formula, 267
Fractions, 149, 150, 161
Frege, vi, viii, 19, 68 n., 78 n.. Ill, 124 n.,

132, 142, 451 n., 501 ff.

;

three points of disagreement with, 501

;

his three elements in judgment, 502

;

his sign of judgment, 503, 519 ; his

theory of ranges, 505, 510 ff.; his Be-
griff, 505, 507 ; his Symbolic Logic, 518

;

his Arithmetic, 519 ; his theory of pro-

gressions, 520; Kerry's criticism of, 520
Frischauf, 410
Functions, 32, 262, 263; non-serial, 263;

numerical, 265 ; complex, 266, 376 ; real,

324 ; continuous, 326 ; Frege's theory of,

505 ff.

Functions, prepositional, 13, 19, 82-88, 92,

263, 356, 508 ff.; definable? 83; inde-

finable, 88, 106; more numerous than
terms ? 103 ; and the contradiction, 103

;

with two variables,' 94, 506; and classes,

19, 88, 93, 98; variable, 103, 104; car-

dinal number of, 367; range of signifi-

cance of, 523
Fundamental bodies, 491

Generalization, 7; algebraical, 267, 377
Geometry, 199, 372 ; distance and stretch

theories of, 181 ; and actual space, 372,

374; three kinds of, 381; based on dis-

tance, 410, 492 ; and order, 419 ; has no
indemonstrables, 429

Geometry, descriptive, 199, 382, 393-403;
indefinables of, 394, 395, 397 ; axioms
of, 394 ff.; their mutual independence,

396; relation to projective Geometry,
400 ft.; and distance, 423-425

Geometry, elUptic, 206, 382, 391, 399, 413

;

Euclidean, 391, 399, 442 ; hyperbolic,

255, 382, 391, 399 ; non-Euclidean, 158,

179, 255, 373, 381, 436 ; of position, 393

Geometry, metrical, 382, 392, 403, 404-418;
and quantity, 407 ; and distance, 407

;

and stretch, 414; relation to projective

and descriptive Geometry, 419-428 •

Geometry, projective, 199, 206, 381-392;
and order, 385 ff., 389, 421 ; requires

three dimensions, 394, 399 n. ; differences

from descriptive Geometry, 419 ; inde-

pendent of metrical Geometry, 419-421

;

history of, 420; and distance, 421, 425, 427
• Gilman, 203 m.

Grammar, 42, 497
Grassmann, 376
Gravitation, 485, 487, 490, 491
Greater, 122, 159, 222, 306, 323, 364
Groups, continuous, 436

Hamilton, 376
Harmonic relation, 384
Hegel, 105, 137, 287, 346, 355
Helmholtz, 241
Hertz, 494-496

Heymans, 489
Hilbert, 384 n., 405 n., 415 n.

Idea and object, 450
Identity, 20, 96, 219, 502;

distinguished from equality, 21 ; and
denoting, 63 ; of indiscernibles, 451

Imagiuaries, 376
Impenetrability, 467, 480
Implication, formal, 5, 11, 14, 36-41, 89,

106, 518; asserts a class of material

implications, 38 ; and any, etc., 91
Implication, material, 14, 26, 33-36, 106,

203 11. ; Frege's theory of, 518
Importation, 16
Inclusion, of classes, 19, 36, 40, 78
Ineommensurables, 287, 438, 439
Incompatibility, synthetic, 233
Indefinables, v, 112
Indication, 502
Individual, relation to class, 18, 19, 26,

77, 103, 512, 522; distinct from class

whose only member it is? vi, 23, 68,

106, 130, 513, 514, 517
Induction, 11 n., 441 ; mathematical, 123,

192, 240, 245, 246, 248, 260, 307, 314,

315, 357, 371, 520
Inertia, law of, 482
Inextensive, 342
Inference, asyllogistio, 10; and deduction,

11 n.; logical and psychological, 33; two
premisses unnecessary, 35

Infinite, 121, 259, 260, 315, 368

;

antinomies of, 188, 190, 355 ; not spe-

cially quantitative, 194; as limit of

segments, 273 ; mathematical theory of,

304, 355; philosophy of, 355-368; im-

proper, 331-337; orders of, 335
Infinitesimal, 188, 260, 276, 325, 330, 331-

337;
defined, 331 ; instances of, 332 ;

philo-

sophy of, 338-345; and continuity, 344;
and change, 347

Integers, infinite classes of, 299, 310 n.

Integral, definite, 329

Intensity, 164
Interaction, 446, 453
Intuition, 260, 339, 456
Involution, 385, 426
Is, 49, 64«., 100, 106
Isolated points, 290

Jermelo, 306 n.

Jevons, 376
Johnson, viii, 435 n.

Jordan, 329 «.

Kant, 4, 143, 158, 168, 177, 184, 223 m.,

227, 259, 326, 339, 342, 355, 373, 442,

446, 450, 454, 456-461, 489
Kerry, 505, 520-522
Killing, 400 ?i., 404 re., 405 n., 415 n., 434 m.

Kinetic axes, 490
Kirchoff, 474
Klein, 385, 389, 390 n., 421, 422 n., 424 «.,

426 re., 434 «., 436
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Eronecker, 241

Law, 268
Leibniz, 5, 10, 132, 143, 144, 145 n., 221,

222, 227, 228, 252, 287, 306, 325,

329 n., 888, 842, 347, 855, 410, 440 re.,

445, 450, 451, 456, 461, 489, 492
Lie, 436
Likeness, 242, 261, 262, 317, 321
Limitation, principle of, 314
Limiting-point, 290, 323
Limits, 276 ff., 820, 361; and infinity,

188, 189, 260; and continuity, 353
conditions for existence of, 291 fi., 389
and the infinitesimal calculus, 825, 339
of functions, 327, 828 ; and magnitude, 341

Line, see Straight
Line-Geometry, 432
Linearity, axiom of, 181, 252, 254, 408
Lobatchewsky, 373
Logic, symbolic, 10-32 ; three parts of, 11

;

and mathematics, v, 5, 8, 106, 397, 429,

457
Lotze, 221, 446 ff.

Macaulay, 491
Mach, 474, 489, 492
Magnitude, 159, 164 fE., 194; relative theory

of, 162; absolute theory of, 164; axioms
of, 168, 165, 168; kinds of, 164, 3.?4;

and divisibility, 173 ; and existence, 174,

177, 342 ; extensive, 182 ; intensive, 182,

326, 342; discrete and continuous, 193,

346 ; positive and negative, 229-231

;

infinitesimal, 332; limiting, 341
Manifold, 67
Mass, 481 n., 483, 488, 495;

centre of, 490
Mathematics, pure, vii, 3, 106, 112, 397,

429, 456, 497; applied, 5, 8, 112, 429;
arithmetizatiou of, 259

Matter, 465-468; as substance, 466;
relation to space and time, 467; logical

definition of, 468
Maxwell, 489
McCoU, 12, 13, 22
Meaning, 47, 502
Measure, Zeno's argument of, 352
Measurement, 157, 176-183, 195;
Meinong, 55 m., 162 m., 168, 171 n., 173 re.,

181ra., 184, 187, 252, 258, 289, 419, 502re.,

503
Mill, 373, 522
Mobius net, 385, 388
Monadism, 476
Monism, 44, 447
Moore, viii, 24, 44 re., 51 Ji., 446 re., 448 re.,

454 re.

Motion, 265, 344, 405, 469-473;
state of, 351, 478 ; in geometry, 406, 418;
logical definition of, 473; laws of,

482-488 ; absolute and relative, 489-493

;

Hertz's law of, 495
Motions, kinematical, 480; kinetic, 480;

thinkable, 494; possible, 495; natural,
495

Multiplication, arithmetical, 119, 807, 308

;

ordinal, 318

reth, 243, 250, 312
Necessity, 454
Negation, of propositions, 18, 31 ; of classes,

28, 31, 524; of relations, 25
Neumann, 490
Newton, 325, 338, 469, 481, 482-492
Noel, 348, 352
Null-class, vi, 22, 23, 32, 38, 68, 73, 106,

517, 525
Number, algebraical generalization of, 267-

Number, cardinal, logical theory of. 111 ff.,

241, 519, 520-522; definable? Ill, 112,

130; defined, 115, 305; and classes, 112,

805, 306, 519; defined by abstraction, 114;
transfinite, 112, 260, 304-811; finite, 124,

260, 857; Dedekind's definition of, 247,

249 ; Cantor's definition of, 304 ; addition

of, 118, 307 ; multiplication of, 119, 807,

308; of finite integers, 122, 309, 364;
well-ordered, 323, 364 ; of the continuum,
310, 864 ; is there a greatest ? 101, 362 ff.

;

of cardinal numbers, 862 ; of classes, 362

;

of propositions, 362, 526, 527 ; as a logical

type, 525
Number, ordinal, 240, 319; defined, 242,

317; Dedekind's definition of, 248; not
prior to cardinal, 241, 249-251; trans-

finite, 240 re., 260, 312-324 ; finite, 243,

260 ; of finite ordinals, 248, 318 ; second
class of, 312, 315, 322 ; two principles of

formation of, 313; addition of, 317;
subtraction of, 317; multiplication of,

318 ; division of, 318 ; no greatest, 323,

864 ;
positive and negative, 244

Number, relation-, 262, 321
Numbers, complex, 872, 376 ff., 379;

ordinal, series of, 323 ;
positive and

negative, 229 ; real, 270
Numbers, irrational, 157, 270 ff., 820; arith-

metical theories of, 277 ff.

Numbers, rational, 149 ff., 259, 335 ; car-

dinal number of, 310; ordinal type of,

296, 316, 320

Object, 55 re.

Occupation (of space or time), 465, 469,
471, 472

One, 241, 356, 520; definable? 112, 130,

135 ; applicable to individuals or to

classes? 180, 132, 517
Oppositeness, 96, 205
Order, 199 ff., 207-217, 255;

not psychological, "242
; cyclic, 199 ; and

infinity, 188, 189, 191, 195 ; in projective
space,385 ff., 389; in descriptive space,

394, 395
Ordinal element, 200, 353

Padoa, Hire., 114 re., 125, 205
Parallelism, psychophysical, 177
Parallelogram law, 477
Parallels, axiom of, 404
Part, 360; proper, 121, 246n.; ordinal, 361;
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three kinds of, 138, 143; similarity to
whole, 121, 148, 306, 316, 350, 355, 358, 371

P&6C&1 420
Pasoh,'390re., 391 n., 393 ft., 407 m., 417
Peano, vi, vii, 4, 10 ff., 23, 26-32, 36, 62,

68, 78 ff., Ill, 114, 115, 131, 139, 142,

152, 159»., 163n., 199, 205m., 219,
241 n., 248, 270, 290, 300 m., 328 m.,

334 m., 835, 841, 360, 410, 437, 448,

501, 514, 519;
his indefinables, 27, 112 ; his indemon-
strables, 29; his Arithmetic, 124-128,
238 m. ; on real numbers, 274 ; on de-

scriptive geometry, 393 ff. ; on theory of

vectors, 432
Pearson, 474, 489
Peiroe, 23, 26, 203 m., 232 m., 320 ra., 376,

887 m.

Pencils of planes, 400
Perception, its function in philosophy, y, 129
Permutations, 316
Philosophy, of Mathematics, 4, 226 ; dis-

tinguished from Mathematics, 128 ; and
Mathematics, 338

Fieri, 199, 216 n, 382 ff., 410, 421
Planes, projective, 384 ; kinds of, 391

;

descriptive, 398 ; ideal, 400, 402 ; metri-

cal 410
Plato', 73, 355, 857, 438, 446
Pleasure, quantity of, 162, 174 ; magnitude

of, 164 ; and pain, 233 n.

Pluralism, viii

Poincar^, 847
Point-pairs, 426
Points, 382, 394, 487, 443;

rational and irrational, 889 ; ideal, 400 ;

proper and improper ideal, 423 ; ima-
ginary, 420; logical objections to, 445-455;

material, 445 ; indiscernible ? 446, 451

Position, absolute and relative, 220, 221,

444 ff.

Power, 364 m. See Number, ca/rdinal

Predicates, 45, 56
;
predicable of themselves,

96, 97, 102
Premiss, empirical, 441
Presentations, 446, 450
Primes, ordinal, 319
Process, endless. See Regress.

Product, logical, of propositions, 16, 519,

527 ; of classes, 21

Product, relative, 25, 98
Progressions, 199, 239 ft., 247, 283, 813,

314, 520;
existence of, 822, 497

Projection, 390, 393
Proper names, 42, 44, 502
Propositions, ix, 13, 15, 211, 502, 525;

unity of, 50, 51, 107, 139, 466, 507; when
analyzable into subject and assertion,

88 ff., 106, 505-510 ; can they be infinite-

ly complex? 145; cardinal number of,

367; contradiction as to number of, 527 ;

existential theory of, viii, 449, 493

Quadratic forms, 104, 512, 514
Quadrics, 403

Quadrilateral construction, 333, 884 ; in

metrical geometry, 417
Quantity, 159; relation to number, 157,

158, 160 ; not always divisible, 160, 170

;

sometimes a relation, 161, 172 ; range of,

170-175 ; and infinity, 188 ; does not
occur in pure mathematics, 158, 419

Quaternions, 432

s, 511 ft., 524; extensional or in-

tensional ? 511 ; double, 512
Batio, 149, 336
Bays, 231, 898, 414 ; order of, 415
Beality, Kant's category of, 842, 844
Beduction, 17
Eeferent, 24, 96, 99, 263
Begress, endless. 50, 99, 223, 348
Begression, 291, 300, 320
Eelation, 95, 107 ; peculiar to two terms, 25,

99, 268 ; domain of, 26, 97, 98 ; converse

domain of, 97, 98; field of, 97, 98; in

itself and as relating, 49, 100 ; of a term
to itself, 86, 96, 97, 105 ; definable as a

class of couples ? 99, 512 ; of a relation

to its terms, 99 ; fundamental, 112 ; when
analyzable, 163; particularized by its

terms, 51m., 52, 211; finite, 262

Belations, intensional view of, 24, 523, 526;
extensional view of, 99, 523, 526 ; mon-
istic and monadistio theories of, 221 ft.

;

as functions of two variables, 507, 521

;

converse of, 26, 95, 97, 201m., 228; reality

of? viii, 99, 221, 224, 446 ff. ; sense of, 86,

95, 99, 107, 225, 227; difference from
numbers, 95 ; with assigned domains, 26,

268; types of, 8, 28, 403, 436; symmetri-
cal, 25, 96, 114, 208m., 218; asymmetrical,

25, 200, 203m., 218-226; not-symmetrical,

25, 96, 218; transitive, 114, 203, 218; in-

transitive, 218 ; not-transitive, 218 ; re-

flexive, 114, 159m., 219, 220; many-one,
114, 246 b; one-one, 113, 180, 305; non-
repeating, 232 m.; serial, 242; propo-

sitional, 510; triangular, 204, 211, 471,

472. See Verhs
Eelation-number. See Number, relation-

Eelatum, 24, 96, 99, 263
Bepresentation, of a system, 245

Besemblance, immediate, 171

Best, 265
Beye, 403 n.

Eiemann, 266
Eight and left, 223 n., 281, 417

Eigidity, 405
Botation, absolute, 489 ft.

Schroder, 10 n., 12m., 18, 22, 24, 26, 142,

201m., 221m., 282, 806 n., 320 m., 367 m.

Segments, 271, 859; and limits, 292;

completed, 289, 803; of compact series,

299-802; of well-ordered series, 314 m.;

infinitesimal, 334, 858, 868 ; in projective

geometry, 385 ff. ; in descriptive geometry,

394, 897
Semi-continuum, 320

Separation. See Couples
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Series, 199; compact, 193 m., 203, 259, 271,

277,287,289,299-303;olosed,202,204,205,
284-238, 297, 381, 387 ; infinite, 204, 239

;

denumerable, 296, 298 ; continuous, 205,

271, 287 ff. ; well-ordered, 310, 319, 322,

363 ; independent, 262 ; by correlation,

262, 363; complete, 269, 303; perfect,

273, 288, 290, 292, 297; coherent, 274,

283, 297; cohesive, 288; fundamental,
283, 297 ; simple and multiple, 372 ; and
distance, 204; andtriangularrelations, 204

Sheaves, 400
Sign, difference of, 227-233
Similarity, of classes, 113, 249, 261, 805,

356 ; of null-classes, 521 ; of whole and
part, see PaH

Simplification, 16

Some, distinguished from a, 56 n., 59

Space, 372, 436, 442 ; an infinite aggregate,

143, 443, 455; absolute, 227, 445 ff.;

finite and infinite, 403 ; continuity of,

437-444; subjective? 446; empty, 446,

449, 465; h, priori? 454; and existence,

vii, 458, 461
Spaces, projective, defined, 430; Euclidean,

defined, 432; Cliflorld'B, defined, 434
Spinoza, 221, 448
Staudt, von, 199, 216, 338, 384, 385n., 421,

427 n.

Stolz, 90, 282 n., 283 n., 334,386, 378w., 379
Straight lines, elliptic, 205; projective,

382 ff., 387, 391; segments of projective,

885; descriptive, 394-898; segments of

descriptive, 894, 397; ideal, 400,

402; metrical, 410; kinds of, 382, 391;
and distance, 410, 492

Streintz, 491
Stretch, 181, 182 n., 230, 254, 288, 342, 353,

408 ff., 425
Sub-classes, number contained in a given

class, 366, 527
Subject, and predicate, 47, 54, 77, 95, 211,

221, 448, 451, 471; logical, can it be

plural? 69, 76, 132, 136, 516
Substance, 48, 471
Substantives, 42
Such that, 3, 11, 19, 20, 28, 79, 82
Sum, logical, 21 ; relative, 26

Superposition, 161, 405
Syllogism, 10, 16, 21, 30, 457
System, singly infinite, 245, 247

Tautology, law of, 23

Terms, 43, 55 n., 152, 211, 448, 471, 522;
of a proposition, 45, 95, 211 ; combina-
tions of, 55, 56 ; simple and complex,

137; of a whole, 143; principal, in a

series, 297 ; four classes of, 465 ; car-

dinal number of, 362, 366
Tetrahedra, 387, 899
Than, 100
The, 62

Therefore, 36, 504
Things, 44, 106, 466, 505; and change, 471
Time, an infinite aggregate, 144 ; relational

theory of, 265 ; Kant's theory of, 456, 458
Totality, 362, 368, 528
Transcendental Aesthetic, 259 ; Dialectic, 259
Triangles, 387, 898
Trios, 525
Tristram Shandy, paradox of, 358
Truth, 8, 35, 48, 504
Truth-values, 502, 519
Two, 135 ; not mental, 451
Types, logical, 103, 104, 107, 181, ]39n.,

367, 368, 521, 528-528; minimum, 524,

525; mixed, 524, 526; number of, 525;
of infinite order, 525

Types, ordinal, 261, 821

Unequal, 160 n.

Unit, 136, 140; material, 468
Unities, 139, 442; infinite, 144, 223 n.;

organic, 466

Vacuum, 468
Vaihinger, 446 m., 456
Vailati, 205, 215, 235, 393 n., 394, 395, 413
Validity, 450
Variable, 5, 6, 19, 89-94, 107, 264;

apparent and real, 13; range of, 36,

518 ; as concept, 86 ; and generality,

90 ; in Arithmetic, 90 ; does not vary, 90,

844, 851 ; restricted, 90; conjunctive and
disjunctive, 92 ; individuahty of, 94 ; in-

dependent, 268
Vectors, 132
Velocity, 473, 482
Verbs, 20 m., 42, 47-52, 106; and relations,

49, 526
Vieta, 157
Vivanti, 203 n., 288 m., 307 m., 308
Volumes, 231, 338, 417, 440, 443

Ward, 474, 489
Weierstrass, 111, 157, 259, 826, 347, 473;,

on irrationals, 2S2
Whitehead, vi, viii, 119, 253 n., 299 n.,

807m., 308, 311m., 322, 376 n., 377,
424 ?i., 426

Wholes, 77, 137 ; distinct from classes as

many, 69, 132, 134 n.; and logical

priority, 137, 147; two kinds of, 138;
distinct from all their parts, 140, 141,

225 ; infinite, 143-148, 838, 349 ; always
either aggregates or unities? 146, 440,

460 ; collective and distributive, 348

;

and enumeration, 360

Zeno, 347 ff., 855, 358
Zero, 168, 195, 356 ; Meinong's theory of,

184, 187 ; as minimum, 185 ; of distance,

186; as null-segment, 186, 273; and
negation, 186, 187;. and existence, 187

CAMBBIDGE : PBINTED BY J. AND 0. F. CLAY, AT THE UNIVERSITY PRESS.










